1
|
Hwang S, Park S, Yaseen U, Lee HJ, Cha JY. KLF10 Inhibits TGF-β-Mediated Activation of Hepatic Stellate Cells via Suppression of ATF3 Expression. Int J Mol Sci 2023; 24:12602. [PMID: 37628783 PMCID: PMC10454374 DOI: 10.3390/ijms241612602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Liver fibrosis is a progressive and debilitating condition characterized by the excessive deposition of extracellular matrix proteins. Stellate cell activation, a major contributor to fibrogenesis, is influenced by Transforming growth factor (TGF-β)/SMAD signaling. Although Krüppel-like-factor (KLF) 10 is an early TGF-β-inducible gene, its specific role in hepatic stellate cell activation remains unclear. Our previous study demonstrated that KLF10 knockout mice develop severe liver fibrosis when fed a high-sucrose diet. Based on these findings, we aimed to identify potential target molecules involved in liver fibrosis and investigate the mechanisms underlying the KLF10 modulation of hepatic stellate cell activation. By RNA sequencing analysis of liver tissues from KLF10 knockout mice with severe liver fibrosis induced by a high-sucrose diet, we identified ATF3 as a potential target gene regulated by KLF10. In LX-2 cells, an immortalized human hepatic stellate cell line, KLF10 expression was induced early after TGF-β treatment, whereas ATF3 expression showed delayed induction. KLF10 knockdown in LX-2 cells enhanced TGF-β-mediated activation, as evidenced by elevated fibrogenic protein levels. Further mechanistic studies revealed that KLF10 knockdown promoted TGF-β signaling and upregulated ATF3 expression. Conversely, KLF10 overexpression suppressed TGF-β-mediated activation and downregulated ATF3 expression. Furthermore, treatment with the chemical chaperone 4-PBA attenuated siKLF10-mediated upregulation of ATF3 and fibrogenic responses in TGF-β-treated LX-2 cells. Collectively, our findings suggest that KLF10 acts as a negative regulator of the TGF-β signaling pathway, exerting suppressive effects on hepatic stellate cell activation and fibrogenesis through modulation of ATF3 expression. These results highlight the potential therapeutic implications of targeting the KLF10-ATF3 axis in liver fibrosis treatment.
Collapse
Affiliation(s)
- Soonjae Hwang
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, Incheon 21999, Republic of Korea; (S.H.); (H.-J.L.)
| | - Sangbin Park
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea; (S.P.); (U.Y.)
| | - Uzma Yaseen
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea; (S.P.); (U.Y.)
| | - Ho-Jae Lee
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, Incheon 21999, Republic of Korea; (S.H.); (H.-J.L.)
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea; (S.P.); (U.Y.)
| | - Ji-Young Cha
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, Incheon 21999, Republic of Korea; (S.H.); (H.-J.L.)
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea; (S.P.); (U.Y.)
| |
Collapse
|
2
|
Lee J, Oh AR, Lee HY, Moon YA, Lee HJ, Cha JY. Deletion of KLF10 Leads to Stress-Induced Liver Fibrosis upon High Sucrose Feeding. Int J Mol Sci 2020; 22:ijms22010331. [PMID: 33396939 PMCID: PMC7794950 DOI: 10.3390/ijms22010331] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 12/24/2020] [Accepted: 12/26/2020] [Indexed: 12/12/2022] Open
Abstract
Liver fibrosis is a consequence of chronic liver injury associated with chronic viral infection, alcohol abuse, and nonalcoholic fatty liver. The evidence from clinical and animal studies indicates that transforming growth factor-β (TGF-β) signaling is associated with the development of liver fibrosis. Krüppel-like factor 10 (KLF10) is a transcription factor that plays a significant role in TGF-β-mediated cell growth, apoptosis, and differentiation. In recent studies, it has been reported to be associated with glucose homeostasis and insulin resistance. In the present study, we investigated the role of KLF10 in the progression of liver disease upon a high-sucrose diet (HSD) in mice. Wild type (WT) and Klf10 knockout (KO) mice were fed either a control chow diet or HSD (50% sucrose) for eight weeks. Klf10 KO mice exhibited significant hepatic steatosis, inflammation, and liver injury upon HSD feeding, whereas the WT mice exhibited mild hepatic steatosis with no apparent liver injury. The livers of HSD-fed Klf10 KO mice demonstrated significantly increased endoplasmic reticulum stress, oxidative stress, and proinflammatory cytokines. Klf10 deletion led to the development of sucrose-induced hepatocyte cell death both in vivo and in vitro. Moreover, it significantly increased fibrogenic gene expression and collagen accumulation in the liver. Increased liver fibrosis was accompanied by increased phosphorylation and nuclear localization of Smad3. Here, we demonstrate that HSD-fed mice develop a severe liver injury in the absence of KLF10 due to the hyperactivation of the endoplasmic reticulum stress response and CCAAT/enhance-binding protein homologous protein (CHOP)-mediated apoptosis of hepatocytes. The current study suggests that KLF10 plays a protective role against the progression of hepatic steatosis into liver fibrosis in a lipogenic state.
Collapse
Affiliation(s)
- Junghoon Lee
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon 21999, Korea; (J.L.); (A.-R.O.); (H.-Y.L.)
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea
| | - Ah-Reum Oh
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon 21999, Korea; (J.L.); (A.-R.O.); (H.-Y.L.)
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea
| | - Hui-Young Lee
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon 21999, Korea; (J.L.); (A.-R.O.); (H.-Y.L.)
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea
| | - Young-Ah Moon
- Department of Molecular Medicine, Inha University School of Medicine, Incheon 22212, Korea;
| | - Ho-Jae Lee
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon 21999, Korea; (J.L.); (A.-R.O.); (H.-Y.L.)
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea
- Correspondence: (H.-J.L.); (J.-Y.C.); Tel.: +82-32-899-6054 (H.-J.L.); +82-32-899-6070 (J.-Y.C.)
| | - Ji-Young Cha
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon 21999, Korea; (J.L.); (A.-R.O.); (H.-Y.L.)
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea
- Gachon Medical Research Institute, Gachon University Gil Medical Center, Incheon 21565, Korea
- Correspondence: (H.-J.L.); (J.-Y.C.); Tel.: +82-32-899-6054 (H.-J.L.); +82-32-899-6070 (J.-Y.C.)
| |
Collapse
|
3
|
Kammoun M, Piquereau J, Nadal‐Desbarats L, Même S, Beuvin M, Bonne G, Veksler V, Le Fur Y, Pouletaut P, Même W, Szeremeta F, Constans J, Bruinsma ES, Nelson Holte MH, Najafova Z, Johnsen SA, Subramaniam M, Hawse JR, Bensamoun SF. Novel role of Tieg1 in muscle metabolism and mitochondrial oxidative capacities. Acta Physiol (Oxf) 2020; 228:e13394. [PMID: 31560161 DOI: 10.1111/apha.13394] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 12/26/2022]
Abstract
AIM Tieg1 is involved in multiple signalling pathways, human diseases, and is highly expressed in muscle where its functions are poorly understood. METHODS We have utilized Tieg1 knockout (KO) mice to identify novel and important roles for this transcription factor in regulating muscle ultrastructure, metabolism and mitochondrial functions in the soleus and extensor digitorum longus (EDL) muscles. RNA sequencing, immunoblotting, transmission electron microscopy, MRI, NMR, histochemical and mitochondrial function assays were performed. RESULTS Loss of Tieg1 expression resulted in altered sarcomere organization and a significant decrease in mitochondrial number. Histochemical analyses demonstrated an absence of succinate dehydrogenase staining and a decrease in cytochrome c oxidase (COX) enzyme activity in KO soleus with similar, but diminished, effects in the EDL. Decreased complex I, COX and citrate synthase (CS) activities were detected in the soleus muscle of KO mice indicating altered mitochondrial function. Complex I activity was also diminished in KO EDL. Significant decreases in CS and respiratory chain complex activities were identified in KO soleus. 1 H-NMR spectra revealed no significant metabolic difference between wild-type and KO muscles. However, 31 P spectra revealed a significant decrease in phosphocreatine and ATPγ. Altered expression of 279 genes, many of which play roles in mitochondrial and muscle function, were identified in KO soleus muscle. Ultimately, all of these changes resulted in an exercise intolerance phenotype in Tieg1 KO mice. CONCLUSION Our findings have implicated novel roles for Tieg1 in muscle including regulation of gene expression, metabolic activity and organization of tissue ultrastructure. This muscle phenotype resembles diseases associated with exercise intolerance and myopathies of unknown consequence.
Collapse
Affiliation(s)
- Malek Kammoun
- Biomechanics and Bioengineering Laboratory Alliance Sorbonne Universités Université de Technologie de Compiègne UMR CNRS 7338 Compiègne France
| | - Jerome Piquereau
- Signalling and Cardiovascular Pathophysiology ‐ UMR‐S 1180 Université Paris‐Sud INSERM Université Paris‐Saclay Châtenay‐Malabry France
| | | | - Sandra Même
- CNRS UPR4301 Centre de Biophysique Moléculaire Orléans France
| | - Maud Beuvin
- Inserm U974 Centre de Recherche en Myologie Sorbonne Université Paris France
| | - Gisèle Bonne
- Inserm U974 Centre de Recherche en Myologie Sorbonne Université Paris France
| | - Vladimir Veksler
- Signalling and Cardiovascular Pathophysiology ‐ UMR‐S 1180 Université Paris‐Sud INSERM Université Paris‐Saclay Châtenay‐Malabry France
| | - Yann Le Fur
- Aix‐Marseille University CNRS CRMBM Marseille France
| | - Philippe Pouletaut
- Biomechanics and Bioengineering Laboratory Alliance Sorbonne Universités Université de Technologie de Compiègne UMR CNRS 7338 Compiègne France
| | - William Même
- CNRS UPR4301 Centre de Biophysique Moléculaire Orléans France
| | | | - Jean‐Marc Constans
- Institut Faire Faces EA Chimère Imagerie et Radiologie Médicale CHU Amiens Amiens France
| | | | | | - Zeynab Najafova
- Department of General, Visceral and Pediatric Surgery University Medical Center Göttingen Göttingen Germany
| | - Steven A. Johnsen
- Department of General, Visceral and Pediatric Surgery University Medical Center Göttingen Göttingen Germany
| | | | - John R. Hawse
- Department of Biochemistry and Molecular Biology Mayo Clinic Rochester MN USA
| | - Sabine F. Bensamoun
- Biomechanics and Bioengineering Laboratory Alliance Sorbonne Universités Université de Technologie de Compiègne UMR CNRS 7338 Compiègne France
| |
Collapse
|
4
|
Mella J, Pérez V, Zelada D, Moreno N, Ionescu A, Perlson E, Henríquez JP. Efficient gene transfer into primary muscle cells to analyze nerve-independent postsynaptic organization in vitro. Neuromuscul Disord 2019; 29:533-542. [DOI: 10.1016/j.nmd.2019.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/23/2019] [Accepted: 05/17/2019] [Indexed: 01/08/2023]
|
5
|
Yu X, Hu Y, Wu Y, Fang C, Lai J, Chen S, Li Y, Zeng C, Zeng Y. The c‐Myc‐regulated miR‐17‐92 cluster mediates ATRA‐induced APL cell differentiation. Asia Pac J Clin Oncol 2019; 15:364-370. [DOI: 10.1111/ajco.13225] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/11/2019] [Indexed: 01/04/2023]
Affiliation(s)
- Xibao Yu
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterState Key Laboratory Oncology in South China Guangzhou China
- Key Laboratory for Regenerative Medicine of Ministry of EducationInstitute of HematologyJinan University Guangzhou China
| | - Yanyun Hu
- Key Laboratory for Regenerative Medicine of Ministry of EducationInstitute of HematologyJinan University Guangzhou China
| | - Yifan Wu
- Key Laboratory for Regenerative Medicine of Ministry of EducationInstitute of HematologyJinan University Guangzhou China
| | - Chunsheng Fang
- Key Laboratory for Regenerative Medicine of Ministry of EducationInstitute of HematologyJinan University Guangzhou China
| | - Jing Lai
- Department of HematologyFirst Affiliated HospitalJinan University Guangzhou China
| | - Shaohua Chen
- Key Laboratory for Regenerative Medicine of Ministry of EducationInstitute of HematologyJinan University Guangzhou China
| | - Yangqiu Li
- Key Laboratory for Regenerative Medicine of Ministry of EducationInstitute of HematologyJinan University Guangzhou China
- Department of HematologyFirst Affiliated HospitalJinan University Guangzhou China
| | - Chengwu Zeng
- Key Laboratory for Regenerative Medicine of Ministry of EducationInstitute of HematologyJinan University Guangzhou China
| | - Yixin Zeng
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterState Key Laboratory Oncology in South China Guangzhou China
| |
Collapse
|
6
|
Oishi Y, Manabe I. Krüppel-Like Factors in Metabolic Homeostasis and Cardiometabolic Disease. Front Cardiovasc Med 2018; 5:69. [PMID: 29942807 PMCID: PMC6004387 DOI: 10.3389/fcvm.2018.00069] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 05/21/2018] [Indexed: 12/16/2022] Open
Abstract
Members of the Krüppel-like factor (KLF) family of transcription factors, which are characterized by the presence of three conserved Cys2/His2 zinc-fingers in their C-terminal domains, control a wide variety of biological processes. In particular, recent studies have revealed that KLFs play diverse and essential roles in the control of metabolism at the cellular, tissue and systemic levels. In both liver and skeletal muscle, KLFs control glucose, lipid and amino acid metabolism so as to coordinate systemic metabolism in the steady state and in the face of metabolic stresses, such as fasting. The functions of KLFs within metabolic tissues are also important contributors to the responses to injury and inflammation within those tissues. KLFs also control the function of immune cells, such as macrophages, which are involved in the inflammatory processes underlying both cardiovascular and metabolic diseases. This review focuses mainly on the physiological and pathological functions of KLFs in the liver and skeletal muscle. The involvement of KLFs in inflammation in these tissues is also summarized. We then discuss the implications of KLFs' control of metabolism and inflammation in cardiometabolic diseases.
Collapse
Affiliation(s)
- Yumiko Oishi
- Department of Biochemistry & Molecular Biology, Nippon Medical School, Tokyo, Japan
| | - Ichiro Manabe
- Department of Disease Biology and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
7
|
TIEG1 Represses Smad7-Mediated Activation of TGF-β1/Smad Signaling in Keloid Pathogenesis. J Invest Dermatol 2017; 137:1051-1059. [PMID: 28108300 DOI: 10.1016/j.jid.2016.12.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/14/2016] [Accepted: 12/19/2016] [Indexed: 01/16/2023]
Abstract
Transforming growth factor-β (TGF-β)/Smad signaling plays a key role in excessive fibrosis and keloid formations. Smad7 is a negative feedback regulator that prevents activation of TGF-β/Smad signaling. However, the regulatory mechanism for Smad7 in the keloid pathogenic process remains elusive. Here, we show that expression of TIEG1 is markedly higher in keloid fibroblasts, whereas protein, mRNA, and promoter activity levels of Smad7 are decreased. When TIEG1 was knocked down with small interfering RNA, both the promoter activity and protein expression of Smad7 were increased, whereas collagen production and the proliferation, migration, and invasion of keloid fibroblasts were decreased. In contrast, TIEG1 overexpression led to a decrease in Smad7 expression and Smad7 promoter activity. Upon TGF-β1 stimulation, TIEG1 promoted Smad2 phosphorylation by down-regulating Smad7. Luciferase reporter assays and chromatin immunoprecipitation assays further showed that TIEG1 can directly bind a GC-box/Sp1 site located between nucleotides -1392 and -1382 in the Smad7 promoter to repress Smad7 promoter activity. Taken together, these findings show that TIEG1 is highly expressed in human keloids and that it directly binds and represses Smad7 promoter-mediated activation of TGF-β/Smad2 signaling, thus providing clues for development of TIEG1 blocking strategies for therapy or prophylaxis of keloids.
Collapse
|
8
|
Kammoun M, Meme S, Meme W, Subramaniam M, Hawse JR, Canon F, Bensamoun SF. Impact of TIEG1 on the structural properties of fast- and slow-twitch skeletal muscle. Muscle Nerve 2016; 55:410-416. [PMID: 27421714 DOI: 10.1002/mus.25252] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2016] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Transforming growth factor-beta (TGF-β)-inducible early gene-1 (TIEG1) is a transcription factor that is highly expressed in skeletal muscle. The purpose of this study was to characterize the structural properties of both fast-twitch (EDL) and slow-twitch (soleus) muscles in the hindlimb of TIEG1-deficient (TIEG1-/- ) mice. METHODS Ten slow and 10 fast muscles were analyzed from TIEG1-/- and wild-type (WT) mice using MRI texture (MRI-TA) and histological analyses. RESULTS MRI-TA could discriminate between WT slow and fast muscles. Deletion of the TIEG1 gene led to changes in the texture profile within both muscle types. Specifically, muscle isolated from TIEG1-/- mice displayed hypertrophy, hyperplasia, and a modification of fiber area distribution. CONCLUSIONS We demonstrated that TIEG1 plays an important role in the structural properties of skeletal muscle. This study further implicates important roles for TIEG1 in the development of skeletal muscle and suggests that defects in TIEG1 expression and/or function may be associated with muscle disease. Muscle Nerve 55: 410-416, 2017.
Collapse
Affiliation(s)
- Malek Kammoun
- Université de Technologie de Compiègne, Centre de Recherches de Royallieu, Laboratoire de Biomécanique et de BioIngénierie, UMR CNRS 7338, BP 20529, 60205, Compiègne Cedex, France
| | - Sandra Meme
- Centre de Biophysique Moléculaire, CNRS UPR4301, Orléans, France
| | - William Meme
- Centre de Biophysique Moléculaire, CNRS UPR4301, Orléans, France
| | - Malayannan Subramaniam
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - John R Hawse
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Francis Canon
- Université de Technologie de Compiègne, Centre de Recherches de Royallieu, Laboratoire de Biomécanique et de BioIngénierie, UMR CNRS 7338, BP 20529, 60205, Compiègne Cedex, France
| | - Sabine F Bensamoun
- Université de Technologie de Compiègne, Centre de Recherches de Royallieu, Laboratoire de Biomécanique et de BioIngénierie, UMR CNRS 7338, BP 20529, 60205, Compiègne Cedex, France
| |
Collapse
|
9
|
Kammoun M, Pouletaut P, Canon F, Subramaniam M, Hawse JR, Vayssade M, Bensamoun SF. Impact of TIEG1 Deletion on the Passive Mechanical Properties of Fast and Slow Twitch Skeletal Muscles in Female Mice. PLoS One 2016; 11:e0164566. [PMID: 27736981 PMCID: PMC5063386 DOI: 10.1371/journal.pone.0164566] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 09/27/2016] [Indexed: 11/24/2022] Open
Abstract
As transforming growth factor (TGF)-β inducible early gene-1 is highly expressed in skeletal muscle, the effect of TIEG1 gene deletion on the passive mechanical properties of slow and fast twitch muscle fibers was analyzed. Twenty five muscle fibers were harvested from soleus (Sol) and extensor digitorum longus (EDL) muscles from TIEG1-/- (N = 5) and control (N = 5) mice. Mechanical tests were performed on fibers and the dynamic and static stresses were measured. A viscoelastic Hill model of 3rd order was used to fit the experimental relaxation test data. In parallel, immunohistochemical analyses were performed on three serial transverse sections to detect the myosin isoforms within the slow and fast muscles. The percentage and the mean cross sectional area of each fiber type were calculated. These tests revealed a significant increase in the mechanical stress properties for the TIEG1-/- Sol fibers while a significant decrease appeared for the TIEG1-/- EDL fibers. Hill model tracked the shape of the experimental relaxation curve for both genotypes and both fiber types. Immunohistochemical results showed hypertrophy of all fiber types for TIEG1-/- muscles with an increase in the percentage of glycolytic fibers (IIX, and IIB) and a decrease of oxidative fibers (I, and IIA). This study has provided new insights into the role of TIEG1, known as KLF10, in the functional (SoltypeI: more resistant, EDLtypeIIB: less resistant) and morphological (glycolytic hypertrophy) properties of fast and slow twitch skeletal muscles. Further investigation at the cellular level will better reveal the role of the TIEG1 gene in skeletal muscle tissue.
Collapse
Affiliation(s)
- Malek Kammoun
- Biomechanics and Bioengineering Laboratory, UMR CNRS 7338, Sorbonne University, Université de Technologie de Compiègne, Compiègne, France
| | - Philippe Pouletaut
- Biomechanics and Bioengineering Laboratory, UMR CNRS 7338, Sorbonne University, Université de Technologie de Compiègne, Compiègne, France
| | - Francis Canon
- Biomechanics and Bioengineering Laboratory, UMR CNRS 7338, Sorbonne University, Université de Technologie de Compiègne, Compiègne, France
| | - Malayannan Subramaniam
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, Minnesota, 55905, United States of America
| | - John R. Hawse
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, Minnesota, 55905, United States of America
| | - Muriel Vayssade
- Biomechanics and Bioengineering Laboratory, UMR CNRS 7338, Sorbonne University, Université de Technologie de Compiègne, Compiègne, France
| | - Sabine F. Bensamoun
- Biomechanics and Bioengineering Laboratory, UMR CNRS 7338, Sorbonne University, Université de Technologie de Compiègne, Compiègne, France
- * E-mail:
| |
Collapse
|
10
|
Zeng C, Yu X, Lai J, Yang L, Chen S, Li Y. Overexpression of the long non-coding RNA PVT1 is correlated with leukemic cell proliferation in acute promyelocytic leukemia. J Hematol Oncol 2015; 8:126. [PMID: 26545364 PMCID: PMC4636781 DOI: 10.1186/s13045-015-0223-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 11/03/2015] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Acute promyelocytic leukemia (APL) is associated with chromosomal translocation t(15;17), which results in the proliferation of morphologically abnormal promyelocytes. Gain of supernumerary copies of the 8q24 chromosomal region, which harbors MYC and PVT1, has been shown to be the most common secondary alteration in human APL. Increased MYC can accelerate the development of myeloid leukemia in APL. However, the role that the expression of the long non-coding RNA (lncRNA) PVT1 plays in the pathogenesis of APL remains largely unknown. FINDINGS In this study, we first analyzed the lncRNA PVT1 expression level in peripheral blood cells from 28 patients with de novo APL, and significantly upregulated PVT1 was found in APL patients compared with healthy donors. We then observed significantly lower MYC and PVT1 expression during all-trans retinoic acid (ATRA)-induced differentiation and cell cycle arrest in the APL cell line. MYC knockdown in NB4 cells led to PVT1 downregulation. Moreover, PVT1 knockdown by RNA interference led to suppression of the MYC protein level, and cell proliferation was inhibited. CONCLUSION Our findings reveal that the lncRNA PVT1 may play an important role in the proliferation of APL cells and may be useful for future therapeutic management.
Collapse
Affiliation(s)
- Chengwu Zeng
- First Affiliated Hospital, Jinan University, Guangzhou, 510632, China.,Institute of Hematology, Medical College, Jinan University, Guangzhou, 510632, China.,Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, China
| | - Xibao Yu
- Institute of Hematology, Medical College, Jinan University, Guangzhou, 510632, China.,Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, China
| | - Jing Lai
- First Affiliated Hospital, Jinan University, Guangzhou, 510632, China.,Institute of Hematology, Medical College, Jinan University, Guangzhou, 510632, China
| | - Lijiang Yang
- Institute of Hematology, Medical College, Jinan University, Guangzhou, 510632, China
| | - Shaohua Chen
- Institute of Hematology, Medical College, Jinan University, Guangzhou, 510632, China
| | - Yangqiu Li
- First Affiliated Hospital, Jinan University, Guangzhou, 510632, China. .,Institute of Hematology, Medical College, Jinan University, Guangzhou, 510632, China. .,Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
11
|
Zeng C, Xu Y, Xu L, Yu X, Cheng J, Yang L, Chen S, Li Y. Inhibition of long non-coding RNA NEAT1 impairs myeloid differentiation in acute promyelocytic leukemia cells. BMC Cancer 2014; 14:693. [PMID: 25245097 PMCID: PMC4180842 DOI: 10.1186/1471-2407-14-693] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 09/19/2014] [Indexed: 11/10/2022] Open
Abstract
Background Acute promyelocytic leukemia (APL) is characterized by the reciprocal translocation t(15;17), which fuses PML with retinoic acid receptor alpha (RARα). Although PML-RARα is crucially important for pathogenesis and responsiveness to treatment, the molecular and cellular mechanisms by which PML-RARα exerts its oncogenic potential have not been fully elucidated. Recent reports have suggested that long non-coding RNAs (lncRNAs) contribute to the precise control of gene expression and are involved in human diseases. Little is known about the role of lncRNA in APL. Methods We analyzed NEAT1 expression in APL samples and cell lines by real-time quantitative reverse transcription-PCR (qRT-PCR). The expression of PML-RARα was measured by Western blot. Cell differentiation was assessed by measuring the surface CD11b antigen expression by flow cytometry analysis. Results We found that nuclear enriched abundant transcript 1 (NEAT1), a lncRNA essential for the formation of nuclear body paraspeckles, is significantly repressed in de novo APL samples compared with those of healthy donors. We further provide evidence that NEAT1 expression was repressed by PML-RARα. Furthermore, significant NEAT1 upregulation was observed during all-trans retinoic acid (ATRA)-induced NB4 cell differentiation. Finally, we demonstrate the importance of NEAT1 in myeloid differentiation. We show that reduction of NEAT1 by small interfering RNA (siRNA) blocks ATRA-induced differentiation. Conclusions Our results indicate that reduced expression of the nuclear long noncoding RNA NEAT1 may play a role in the myeloid differentiation of APL cells. Electronic supplementary material The online version of this article (doi:10.1186/1471-2407-14-693) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yangqiu Li
- Institute of Hematology, Medical College, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
12
|
Drosophila TIEG is a modulator of different signalling pathways involved in wing patterning and cell proliferation. PLoS One 2011; 6:e18418. [PMID: 21494610 PMCID: PMC3072976 DOI: 10.1371/journal.pone.0018418] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 03/07/2011] [Indexed: 11/19/2022] Open
Abstract
Acquisition of a final shape and size during organ development requires a
regulated program of growth and patterning controlled by a complex genetic
network of signalling molecules that must be coordinated to provide positional
information to each cell within the corresponding organ or tissue. The mechanism
by which all these signals are coordinated to yield a final response is not well
understood. Here, I have characterized the Drosophila ortholog
of the human TGF-β Inducible Early Gene 1 (dTIEG). TIEG are zinc-finger
proteins that belong to the Krüppel-like factor (KLF) family and were
initially identified in human osteoblasts and pancreatic tumor cells for the
ability to enhance TGF-β response. Using the developing wing of
Drosophila as “in vivo” model, the dTIEG
function has been studied in the control of cell proliferation and patterning.
These results show that dTIEG can modulate Dpp signalling. Furthermore, dTIEG
also regulates the activity of JAK/STAT pathway suggesting a conserved role of
TIEG proteins as positive regulators of TGF-β signalling and as mediators of
the crosstalk between signalling pathways acting in a same cellular context.
Collapse
|
13
|
Miyake M, Hayashi S, Iwasaki S, Uchida T, Watanabe K, Ohwada S, Aso H, Yamaguchi T. TIEG1 negatively controls the myoblast pool indispensable for fusion during myogenic differentiation of C2C12 cells. J Cell Physiol 2011; 226:1128-36. [DOI: 10.1002/jcp.22434] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|