1
|
Gonzalez M, Gradwell MA, Thackray JK, Patel KR, Temkar KK, Abraira VE. Using DeepLabCut-Live to probe state dependent neural circuits of behavior with closed-loop optogenetic stimulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.28.605489. [PMID: 39131312 PMCID: PMC11312470 DOI: 10.1101/2024.07.28.605489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Background Closed-loop behavior paradigms enable us to dissect the state-dependent neural circuits underlying behavior in real-time. However, studying context-dependent locomotor perturbations has been challenging due to limitations in molecular tools and techniques for real-time manipulation of spinal cord circuits. New Method We developed a novel closed-loop optogenetic stimulation paradigm that utilizes DeepLabCut-Live pose estimation to manipulate primary sensory afferent activity at specific phases of the locomotor cycle in mice. A compact DeepLabCut model was trained to track hindlimb kinematics in real-time and integrated into the Bonsai visual programming framework. This allowed an LED to be triggered to photo-stimulate sensory neurons expressing channelrhodopsin at user-defined pose-based criteria, such as during the stance or swing phase. Results Optogenetic activation of nociceptive TRPV1+ sensory neurons during treadmill locomotion reliably evoked paw withdrawal responses. Photoactivation during stance generated a brief withdrawal, while stimulation during swing elicited a prolonged response likely engaging stumbling corrective reflexes. Comparison with Existing Methods This new method allows for high spatiotemporal precision in manipulating spinal circuits based on the phase of the locomotor cycle. Unlike previous approaches, this closed-loop system can control for the state-dependent nature of sensorimotor responses during locomotion. Conclusions Integrating DeepLabCut-Live with optogenetics provides a powerful new approach to dissect the context-dependent role of sensory feedback and spinal interneurons in modulating locomotion. This technique opens new avenues for uncovering the neural substrates of state-dependent behaviors and has broad applicability for studies of real-time closed-loop manipulation based on pose estimation.
Collapse
Affiliation(s)
- Melissa Gonzalez
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, United States of America
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, United States of America
- Department of Biomedical Engineering, Rutgers University, The State University of New Jersey, New Brunswick, NJ, United States of America
| | - Mark A Gradwell
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, United States of America
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, United States of America
| | - Joshua K Thackray
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, United States of America
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, United States of America
- Human Genetics Institute of New Jersey, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States of America
| | - Komal R Patel
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, United States of America
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, United States of America
- Department of Psychology, Rutgers University, The State University of New Jersey, New Brunswick, NJ, United States of America
| | - Kanaksha K Temkar
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, United States of America
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, United States of America
| | - Victoria E Abraira
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, United States of America
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, United States of America
| |
Collapse
|
2
|
Razian M, Hosseinzadeh M, Behm DG, Sardroodian M. Effect of leg dominance on ipsilateral and contralateral limb training adaptation in middle-aged women after unilateral sensorimotor and resistance exercise training. Res Sports Med 2024; 32:345-362. [PMID: 36036379 DOI: 10.1080/15438627.2022.2113878] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/12/2022] [Indexed: 10/15/2022]
Abstract
The aim was to examine the directionality of global training effects in middle-aged women after unilateral training. Thirty-nine middle-aged female volunteers (59.4 ± 5.4 years) were randomly assigned to one of three groups: 1. Unilateral Dominant Lower Limb Training (UDLT); 2. Unilateral Non-Dominant Lower Limb Training (UNDLT) or 3. Control group. Outcome measures assessing isometric strength, static and dynamic balance were recorded at baseline, and 1 week after 12 weeks (post-test) of training or no-intervention. The net cross education adaptation changes of the contralateral quadriceps isometric maximum voluntary (MVC) force (F2,34 = 4.33; p = 0.022), Stork balance score (F2,34 = 4.26; p = 0.023) and the Star Excursion Balance test score (F2,34 = 11.80; p = 0.001) were asymmetrical in the UNDLT group and on average, exceeded the UDLT group. The results demonstrated asymmetrical cross education training adaptations with unilateral training of non-dominant leg (UNDLT) to contralateral homologous and heterologous muscles, with the exception of knee flexor MVC. The results of this study provide a novel exercise or rehabilitation strategy that can be employed when one of the limbs is affected.
Collapse
Affiliation(s)
- Mina Razian
- Department of Sport Science, University of Bojnord, Bojnord, North Khorasan, Iran
| | - Mahdi Hosseinzadeh
- Department of Sport Injuries and Corrective Exercises, Sport Sciences Research Institute, Tehran, Iran
| | - David G Behm
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, Newfoundland and Labrador, St. John's, Canada
| | - Mahta Sardroodian
- Department of Sport Science, University of Bojnord, Bojnord, North Khorasan, Iran
| |
Collapse
|
3
|
Schnerwitzki D, Englert C, Schmidt M. Adapting the pantograph limb: Differential robustness of fore- and hindlimb kinematics against genetically induced perturbation in the neural control networks and its evolutionary implications. ZOOLOGY 2023; 157:126076. [PMID: 36842298 DOI: 10.1016/j.zool.2023.126076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 01/28/2023] [Accepted: 02/07/2023] [Indexed: 02/19/2023]
Abstract
The evolutionary transformation of limb morphology to the four-segmented pantograph of therians is among the milestones of mammalian evolution. But, it is still unknown if changes of the mechanical limb function were accompanied by corresponding changes in development and sensorimotor control. The impressive locomotor performance of mammals leaves no doubt about the high integration of pattern formation, neural control and mechanics. But, deviations from normal intra- and interlimb coordination (spatial and temporal) become evident in the presence of perturbations. We induced a perturbation in the development of the neural circuits of the spinal cord of mice (Mus musculus) using a deletion of the Wilms tumor suppressor gene Wt1 in a subpopulation of dI6 interneurons. These interneurons are assumed to participate in the intermuscular coordination within the limb and in left-right-coordination between the limbs. We describe the locomotor kinematics in mice with conditional Wt1 knockout and compare them to mice without Wt1 deletion. Unlike knockout neonates, knockout adult mice do not display severe deviations from normal (=control group) interlimb coordination, but the coordinated protraction and retraction of the limbs is altered. The forelimbs are more affected by deviations from the control than the hindlimbs. This observation appears to reflect a different degree of integration and resistance against the induced perturbation between the limbs. Interestingly, the observed effects are similar to locomotor deficits reported to arise when sensory feedback from proprioceptors or cutaneous receptors is impaired. A putative participation of Wt1 positive dI6 interneurons in sensorimotor integration is therefore considered.
Collapse
Affiliation(s)
- Danny Schnerwitzki
- Molecular Genetics Lab, Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany.
| | - Christoph Englert
- Molecular Genetics Lab, Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany; Institute of Biochemistry and Biophysics, Friedrich-Schiller-University Jena, Jena, Germany.
| | - Manuela Schmidt
- Institute of Zoology and Evolutionary Research with Phyletic Museum, Ernst-Haeckel building and Didactics of Biology, Friedrich Schiller University Jena, Erbertstrasse 1, 07743 Jena, Germany.
| |
Collapse
|
4
|
Lacroix-Ouellette P, Dubuc R. Brainstem neural mechanisms controlling locomotion with special reference to basal vertebrates. Front Neural Circuits 2023; 17:910207. [PMID: 37063386 PMCID: PMC10098025 DOI: 10.3389/fncir.2023.910207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
Over the last 60 years, the basic neural circuitry responsible for the supraspinal control of locomotion has progressively been uncovered. Initially, significant progress was made in identifying the different supraspinal structures controlling locomotion in mammals as well as some of the underlying mechanisms. It became clear, however, that the complexity of the mammalian central nervous system (CNS) prevented researchers from characterizing the detailed cellular mechanisms involved and that animal models with a simpler nervous system were needed. Basal vertebrate species such as lampreys, xenopus embryos, and zebrafish became models of choice. More recently, optogenetic approaches have considerably revived interest in mammalian models. The mesencephalic locomotor region (MLR) is an important brainstem region known to control locomotion in all vertebrate species examined to date. It controls locomotion through intermediary cells in the hindbrain, the reticulospinal neurons (RSNs). The MLR comprises populations of cholinergic and glutamatergic neurons and their specific contribution to the control of locomotion is not fully resolved yet. Moreover, the downward projections from the MLR to RSNs is still not fully understood. Reporting on discoveries made in different animal models, this review article focuses on the MLR, its projections to RSNs, and the contribution of these neural elements to the control of locomotion. Excellent and detailed reviews on the brainstem control of locomotion have been recently published with emphasis on mammalian species. The present review article focuses on findings made in basal vertebrates such as the lamprey, to help direct new research in mammals, including humans.
Collapse
Affiliation(s)
| | - Réjean Dubuc
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
- Department of Physical Activity Sciences, Université du Québec à Montréal, Montréal, QC, Canada
- Research Group for Adapted Physical Activity, Université du Québec à Montréal, Montréal, QC, Canada
- *Correspondence: Réjean Dubuc,
| |
Collapse
|
5
|
Abstract
When animals walk overground, mechanical stimuli activate various receptors located in muscles, joints, and skin. Afferents from these mechanoreceptors project to neuronal networks controlling locomotion in the spinal cord and brain. The dynamic interactions between the control systems at different levels of the neuraxis ensure that locomotion adjusts to its environment and meets task demands. In this article, we describe and discuss the essential contribution of somatosensory feedback to locomotion. We start with a discussion of how biomechanical properties of the body affect somatosensory feedback. We follow with the different types of mechanoreceptors and somatosensory afferents and their activity during locomotion. We then describe central projections to locomotor networks and the modulation of somatosensory feedback during locomotion and its mechanisms. We then discuss experimental approaches and animal models used to investigate the control of locomotion by somatosensory feedback before providing an overview of the different functional roles of somatosensory feedback for locomotion. Lastly, we briefly describe the role of somatosensory feedback in the recovery of locomotion after neurological injury. We highlight the fact that somatosensory feedback is an essential component of a highly integrated system for locomotor control. © 2021 American Physiological Society. Compr Physiol 11:1-71, 2021.
Collapse
Affiliation(s)
- Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Quebec, Canada
| | - Turgay Akay
- Department of Medical Neuroscience, Atlantic Mobility Action Project, Brain Repair Center, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Boris I Prilutsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
6
|
Hachmann JT, Yousak A, Wallner JJ, Gad PN, Edgerton VR, Gorgey AS. Epidural spinal cord stimulation as an intervention for motor recovery after motor complete spinal cord injury. J Neurophysiol 2021; 126:1843-1859. [PMID: 34669485 DOI: 10.1152/jn.00020.2021] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 10/12/2021] [Indexed: 12/19/2022] Open
Abstract
Spinal cord injury (SCI) commonly results in permanent loss of motor, sensory, and autonomic function. Recent clinical studies have shown that epidural spinal cord stimulation may provide a beneficial adjunct for restoring lower extremity and other neurological functions. Herein, we review the recent clinical advances of lumbosacral epidural stimulation for restoration of sensorimotor function in individuals with motor complete SCI and we discuss the putative neural pathways involved in this promising neurorehabilitative approach. We focus on three main sections: review recent clinical results for locomotor restoration in complete SCI; discuss the contemporary understanding of electrical neuromodulation and signal transduction pathways involved in spinal locomotor networks; and review current challenges of motor system modulation and future directions toward integrative neurorestoration. The current understanding is that initial depolarization occurs at the level of large diameter dorsal root proprioceptive afferents that when integrated with interneuronal and latent residual supraspinal translesional connections can recruit locomotor centers and augment downstream motor units. Spinal epidural stimulation can initiate excitability changes in spinal networks and supraspinal networks. Different stimulation parameters can facilitate standing or stepping, and it may also have potential for augmenting myriad other sensorimotor and autonomic functions. More comprehensive investigation of the mechanisms that mediate the transformation of dysfunctional spinal networks to higher functional states with a greater focus on integrated systems-based control system may reveal the key mechanisms underlying neurological augmentation and motor restoration after severe paralysis.
Collapse
Affiliation(s)
- Jan T Hachmann
- Department of Neurological Surgery, Virginia Commonwealth University, Richmond, Virginia
| | - Andrew Yousak
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VAMC, Richmond, Virginia
| | - Josephine J Wallner
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VAMC, Richmond, Virginia
| | - Parag N Gad
- Department of Neurobiology, University of California, Los Angeles, California
| | - V Reggie Edgerton
- Department of Neurobiology, University of California, Los Angeles, California
- Fundación Institut Guttmann, Institut Universitari de Neurorehabilitació Badalona, Barcelona, Spain
| | - Ashraf S Gorgey
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VAMC, Richmond, Virginia
- Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
7
|
Hiraoka K. Phase-Dependent Crossed Inhibition Mediating Coordination of Anti-phase Bilateral Rhythmic Movement: A Mini Review. Front Hum Neurosci 2021; 15:668442. [PMID: 34025379 PMCID: PMC8136415 DOI: 10.3389/fnhum.2021.668442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/12/2021] [Indexed: 11/13/2022] Open
Abstract
The activity of the left and right central pattern generators (CPGs) is efficiently coordinated during locomotion. To achieve this coordination, the interplay between the CPG controlling one leg and that controlling another must be present. Previous findings in aquatic vertebrates and mammalians suggest that the alternate activation of the left and right CPGs is mediated by the commissural interneurons crossing the midline of the spinal cord. Especially, V0 commissural interneurons mediate crossed inhibition during the alternative activity of the left and right CPGs. Even in humans, phase-dependent modulation of the crossed afferent inhibition during gait has been reported. Based on those previous findings, crossed inhibition of the CPG in one leg side caused by the activation of the contralateral CPG is a possible mechanism underlying the coordination of the anti-phase rhythmic movement of the legs. It has been hypothesized that the activity of the flexor half center in the CPG inhibits the contralateral flexor half center, but crossed inhibition of the extensor half center is not present because of the existence of the double limb support during gait. Nevertheless, previous findings on the phase-dependent crossed inhibition during anti-phase bilateral movement of the legs are not in line with this hypothesis. For example, extensor activity caused crossed inhibition of the flexor half center during bilateral cycling of the legs. In another study, the ankle extensor was inhibited at the period switching from extension to flexion during anti-phase rhythmic movement of the ankles. In this review article, I provide a critical discussion about crossed inhibition mediating the coordination of the anti-phase bilateral rhythmic movement of the legs.
Collapse
Affiliation(s)
- Koichi Hiraoka
- College of Health and Human Sciences, Osaka Prefecture University, Habikino, Japan
| |
Collapse
|
8
|
Norton JA. Intermuscular Coherence in the Presence of Electrical Stimulation. Front Syst Neurosci 2021; 15:647430. [PMID: 34017239 PMCID: PMC8129195 DOI: 10.3389/fnsys.2021.647430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/14/2021] [Indexed: 11/13/2022] Open
Abstract
The nervous system uses oscillations to convey information efficiently. Inter-muscular coherence in the 15-35 Hz range is thought to represent common cortical drive to muscles, but is also in the frequency band in which electrical stimulation is applied to restore movement following neurological disease or injury. We wished to determine if, when stimulation is applied at the peak frequency of the coherence spectra it was still possible to determine voluntary effort. Using healthy human subjects we stimulated muscles in the arms and legs, separate experiments, while recording EMG activity from pairs of muscles including the stimulated muscles. Offline coherence analysis was performed. When stimulation is greater than motor threshold, and applied at the peak of the coherence spectra a new peak appears in the spectra, presumably representing a new frequency of oscillation within the nervous system. This does not appear at lower stimulation levels, or with lower frequencies. The nervous system is capable of switching oscillatory frequencies to account for noise in the environment.
Collapse
Affiliation(s)
- Jonathan A Norton
- Division of Neurosurgery, Department of Surgery, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
9
|
Henry RJ, Meadows VE, Stoica BA, Faden AI, Loane DJ. Longitudinal Assessment of Sensorimotor Function after Controlled Cortical Impact in Mice: Comparison of Beamwalk, Rotarod, and Automated Gait Analysis Tests. J Neurotrauma 2020; 37:2709-2717. [PMID: 32484024 PMCID: PMC8024371 DOI: 10.1089/neu.2020.7139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Traumatic brain injury (TBI) patients are reported to experience long-term sensorimotor dysfunction, with gait deficits evident up to 2 years after the initial brain trauma. Experimental TBI including rodent models of penetrating ballistic-like brain injury and severe controlled cortical impact (CCI) can induce impairments in static and dynamic gait parameters. It is reported that the majority of deficits in gait-related parameters occur during the acute phase post-injury, as functional outcomes return toward baseline levels at chronic time points. In the present study, we carried out a longitudinal analysis of static, temporal and dynamic gait patterns following moderate-level CCI in adult male C57Bl/6J mice using the automated gait analysis apparatus, CatWalk. For comparison, we also performed longitudinal assessment of fine-motor coordination and function in CCI mice using more traditional sensorimotor behavioral tasks such as the beamwalk and accelerating rotarod tasks. We determined that longitudinal CatWalk analysis did not detect TBI-induced deficits in static, temporal, or dynamic gait parameters at acute or chronic time points. In contrast, the rotarod and beamwalk tasks showed that CCI mice had significant motor function impairments as demonstrated by deficits in balance and fine-motor coordination through 28 days post-injury. Stereological analysis confirmed that CCI produced a significant lesion in the parietal cortex at 28 days post-injury. Overall, these findings demonstrate that CatWalk analysis of gait parameters is not useful for assessment of long-term sensorimotor dysfunction after CCI, and that more traditional neurobehavioral tests should be used to quantify acute and chronic deficits in sensorimotor function.
Collapse
Affiliation(s)
- Rebecca J. Henry
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Victoria E. Meadows
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Bogdan A. Stoica
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Alan I. Faden
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - David J. Loane
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| |
Collapse
|
10
|
Domínguez-Rodríguez LE, Stecina K, García-Ramírez DL, Mena-Avila E, Milla-Cruz JJ, Martínez-Silva L, Zhang M, Hultborn H, Quevedo JN. Candidate Interneurons Mediating the Resetting of the Locomotor Rhythm by Extensor Group I Afferents in the Cat. Neuroscience 2020; 450:96-112. [PMID: 32946952 DOI: 10.1016/j.neuroscience.2020.09.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/07/2020] [Accepted: 09/04/2020] [Indexed: 10/23/2022]
Abstract
Sensory information arising from limb movements controls the spinal locomotor circuitry to adapt the motor pattern to demands of the environment. Stimulation of extensor group (gr) I afferents during fictive locomotion in decerebrate cats prolongs the ongoing extension, and terminates ongoing flexion with an initiation of the subsequent extension, i. e. "resetting to extension". Moreover, instead of the classical Ib non-reciprocal inhibition, stimulation of extensor gr I afferents produces a polysynaptic excitation in extensor motoneurons with latencies (∼3.5-4.0 ms) compatible with 3 interposed interneurons. We assume that some interneurons in this pathway actually belong to the rhythm-generating layer of the locomotor Central Pattern Generator (CPG), since their activity was correlated to a resetting of the rhythm. In the present work fictive locomotion was (mostly) induced by i.v. injection of nialamide followed by l-DOPA in paralyzed cats following decerebration and spinalization at C1 level. In some experiments, we extended previous observations during fictive locomotion on the emergence and locomotor state-dependence of polysynaptic excitatory postsynaptic potentials from extensor gr I afferents to ankle extensor motoneurons. However, the main focus was to record location and properties of interneurons (n = 62) that (i) were active during the extensor phase of fictive locomotion and (ii) received short-latency excitation (mono-, di- or polysynaptic) from extensor gr I afferents. We conclude that the interneurons recorded fulfill the characteristics to belong to the neuronal pathway activated by extensor gr I afferents during locomotion, and may contribute to the 'resetting to extension' as part of the locomotor CPG.
Collapse
Affiliation(s)
| | - K Stecina
- Spinal Cord Research Centre, University of Manitoba, Winnipeg, Canada; Dept. of Neuroscience, University of Copenhagen, Denmark
| | - D L García-Ramírez
- Dept. of Physiology, Biophysics and Neuroscience, CINVESTAV del IPN, Mexico City, Mexico; Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| | - E Mena-Avila
- Dept. of Physiology, Biophysics and Neuroscience, CINVESTAV del IPN, Mexico City, Mexico
| | - J J Milla-Cruz
- Dept. of Physiology, Biophysics and Neuroscience, CINVESTAV del IPN, Mexico City, Mexico
| | - L Martínez-Silva
- Dept. of Physiology, Biophysics and Neuroscience, CINVESTAV del IPN, Mexico City, Mexico; Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - M Zhang
- Dept. of Neuroscience, University of Copenhagen, Denmark; Inst. of Molecular Medicine, Medical Faculty, University of Southern Denmark, Odense, Denmark
| | - H Hultborn
- Dept. of Neuroscience, University of Copenhagen, Denmark.
| | - J N Quevedo
- Dept. of Physiology, Biophysics and Neuroscience, CINVESTAV del IPN, Mexico City, Mexico.
| |
Collapse
|
11
|
Stolz T, Diesner M, Neupert S, Hess ME, Delgado-Betancourt E, Pflüger HJ, Schmidt J. Descending octopaminergic neurons modulate sensory-evoked activity of thoracic motor neurons in stick insects. J Neurophysiol 2019; 122:2388-2413. [DOI: 10.1152/jn.00196.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Neuromodulatory neurons located in the brain can influence activity in locomotor networks residing in the spinal cord or ventral nerve cords of invertebrates. How inputs to and outputs of neuromodulatory descending neurons affect walking activity is largely unknown. With the use of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and immunohistochemistry, we show that a population of dorsal unpaired median (DUM) neurons descending from the gnathal ganglion to thoracic ganglia of the stick insect Carausius morosus contains the neuromodulatory amine octopamine. These neurons receive excitatory input coupled to the legs’ stance phases during treadmill walking. Inputs did not result from connections with thoracic central pattern-generating networks, but, instead, most are derived from leg load sensors. In excitatory and inhibitory retractor coxae motor neurons, spike activity in the descending DUM (desDUM) neurons increased depolarizing reflexlike responses to stimulation of leg load sensors. In these motor neurons, descending octopaminergic neurons apparently functioned as components of a positive feedback network mainly driven by load-detecting sense organs. Reflexlike responses in excitatory extensor tibiae motor neurons evoked by stimulations of a femur-tibia movement sensor either are increased or decreased or were not affected by the activity of the descending neurons, indicating different functions of desDUM neurons. The increase in motor neuron activity is often accompanied by a reflex reversal, which is characteristic for actively moving animals. Our findings indicate that some descending octopaminergic neurons can facilitate motor activity during walking and support a sensory-motor state necessary for active leg movements. NEW & NOTEWORTHY We investigated the role of descending octopaminergic neurons in the gnathal ganglion of stick insects. The neurons become active during walking, mainly triggered by input from load sensors in the legs rather than pattern-generating networks. This report provides novel evidence that octopamine released by descending neurons on stimulation of leg sense organs contributes to the modulation of leg sensory-evoked activity in a leg motor control system.
Collapse
Affiliation(s)
- Thomas Stolz
- Departments of Biology and Animal Physiology, University of Cologne, Cologne, Germany
| | - Max Diesner
- Department of Biology, Institute of Zoology, University of Cologne, Cologne, Germany
| | - Susanne Neupert
- Department of Biology, Institute of Zoology, University of Cologne, Cologne, Germany
| | - Martin E. Hess
- Departments of Biology and Animal Physiology, University of Cologne, Cologne, Germany
| | | | - Hans-Joachim Pflüger
- Institute für Biologie und Neurobiologie, Freie Universität Berlin, Berlin, Germany
| | - Joachim Schmidt
- Departments of Biology and Animal Physiology, University of Cologne, Cologne, Germany
| |
Collapse
|
12
|
Taga A, Dastgheyb R, Habela C, Joseph J, Richard JP, Gross SK, Lauria G, Lee G, Haughey N, Maragakis NJ. Role of Human-Induced Pluripotent Stem Cell-Derived Spinal Cord Astrocytes in the Functional Maturation of Motor Neurons in a Multielectrode Array System. Stem Cells Transl Med 2019; 8:1272-1285. [PMID: 31631575 PMCID: PMC6877769 DOI: 10.1002/sctm.19-0147] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/30/2019] [Indexed: 01/15/2023] Open
Abstract
The ability to generate human‐induced pluripotent stem cell (hiPSC)‐derived neural cells displaying region‐specific phenotypes is of particular interest for modeling central nervous system biology in vitro. We describe a unique method by which spinal cord hiPSC‐derived astrocytes (hiPSC‐A) are cultured with spinal cord hiPSC‐derived motor neurons (hiPSC‐MN) in a multielectrode array (MEA) system to record electrophysiological activity over time. We show that hiPSC‐A enhance hiPSC‐MN electrophysiological maturation in a time‐dependent fashion. The sequence of plating, density, and age in which hiPSC‐A are cocultured with MN, but not their respective hiPSC line origin, are factors that influence neuronal electrophysiology. When compared to coculture with mouse primary spinal cord astrocytes, we observe an earlier and more robust electrophysiological maturation in the fully human cultures, suggesting that the human origin is relevant to the recapitulation of astrocyte/motor neuron crosstalk. Finally, we test pharmacological compounds on our MEA platform and observe changes in electrophysiological activity, which confirm hiPSC‐MN maturation. These findings are supported by immunocytochemistry and real‐time PCR studies in parallel cultures demonstrating human astrocyte mediated changes in the structural maturation and protein expression profiles of the neurons. Interestingly, this relationship is reciprocal and coculture with neurons influences astrocyte maturation as well. Taken together, these data indicate that in a human in vitro spinal cord culture system, astrocytes support hiPSC‐MN maturation in a time‐dependent and species‐specific manner and suggest a closer approximation of in vivo conditions. stem cells translational medicine2019;8:1272&1285 We describe a fully human, spinal cord‐specific, coculture platform with human‐induced pluripotent stem cell‐derived motor neurons and astrocytes for multielectrode array recording. We show that human‐induced pluripotent stem cell‐derived motor neurons/human‐induced pluripotent stem cell‐derived astrocytes bidirectional morphological and molecular maturation is reflected by electrophysiological recordings with multielectrode array recording.![]()
Collapse
Affiliation(s)
- Arens Taga
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Raha Dastgheyb
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Christa Habela
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jessica Joseph
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Sarah K Gross
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Giuseppe Lauria
- Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy.,Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Milan, Italy
| | - Gabsang Lee
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland, USA
| | - Norman Haughey
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | | |
Collapse
|
13
|
Iyengar RS, Pithapuram MV, Singh AK, Raghavan M. Curated Model Development Using NEUROiD: A Web-Based NEUROmotor Integration and Design Platform. Front Neuroinform 2019; 13:56. [PMID: 31440153 PMCID: PMC6693358 DOI: 10.3389/fninf.2019.00056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 07/11/2019] [Indexed: 11/24/2022] Open
Abstract
Decades of research on neuromotor circuits and systems has provided valuable information on neuronal control of movement. Computational models of several elements of the neuromotor system have been developed at various scales, from sub-cellular to system. While several small models abound, their structured integration is the key to building larger and more biologically realistic models which can predict the behavior of the system in different scenarios. This effort calls for integration of elements across neuroscience and musculoskeletal biomechanics. There is also a need for development of methods and tools for structured integration that yield larger in silico models demonstrating a set of desired system responses. We take a small step in this direction with the NEUROmotor integration and Design (NEUROiD) platform. NEUROiD helps integrate results from motor systems anatomy, physiology, and biomechanics into an integrated neuromotor system model. Simulation and visualization of the model across multiple scales is supported. Standard electrophysiological operations such as slicing, current injection, recording of membrane potential, and local field potential are part of NEUROiD. The platform allows traceability of model parameters to primary literature. We illustrate the power and utility of NEUROiD by building a simple ankle model and its controlling neural circuitry by curating a set of published components. NEUROiD allows researchers to utilize remote high-performance computers for simulation, while controlling the model using a web browser.
Collapse
Affiliation(s)
- Raghu Sesha Iyengar
- Spine Labs, Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, India
| | - Madhav Vinodh Pithapuram
- Spine Labs, Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, India
| | - Avinash Kumar Singh
- Spine Labs, Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, India
| | - Mohan Raghavan
- Spine Labs, Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, India
| |
Collapse
|
14
|
Tolstenkov O, Van der Auwera P, Steuer Costa W, Bazhanova O, Gemeinhardt TM, Bergs AC, Gottschalk A. Functionally asymmetric motor neurons contribute to coordinating locomotion of Caenorhabditis elegans. eLife 2018; 7:34997. [PMID: 30204083 PMCID: PMC6173582 DOI: 10.7554/elife.34997] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 09/09/2018] [Indexed: 12/11/2022] Open
Abstract
Locomotion circuits developed in simple animals, and circuit motifs further evolved in higher animals. To understand locomotion circuit motifs, they must be characterized in many models. The nematode Caenorhabditis elegans possesses one of the best-studied circuits for undulatory movement. Yet, for 1/6th of the cholinergic motor neurons (MNs), the AS MNs, functional information is unavailable. Ventral nerve cord (VNC) MNs coordinate undulations, in small circuits of complementary neurons innervating opposing muscles. AS MNs differ, as they innervate muscles and other MNs asymmetrically, without complementary partners. We characterized AS MNs by optogenetic, behavioral and imaging analyses. They generate asymmetric muscle activation, enabling navigation, and contribute to coordination of dorso-ventral undulation as well as anterio-posterior bending wave propagation. AS MN activity correlated with forward and backward locomotion, and they functionally connect to premotor interneurons (PINs) for both locomotion regimes. Electrical feedback from AS MNs via gap junctions may affect only backward PINs.
Collapse
Affiliation(s)
- Oleg Tolstenkov
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany.,Institute for Biophysical Chemistry, Goethe University, Frankfurt, Germany.,Cluster of Excellence Frankfurt Macromolecular Complexes, Goethe University, Frankfurt, Germany
| | - Petrus Van der Auwera
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany.,Institute for Biophysical Chemistry, Goethe University, Frankfurt, Germany.,Department of Biology, Functional Genomics and Proteomics Unit, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Wagner Steuer Costa
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany.,Institute for Biophysical Chemistry, Goethe University, Frankfurt, Germany
| | - Olga Bazhanova
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
| | - Tim M Gemeinhardt
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany.,Institute for Biophysical Chemistry, Goethe University, Frankfurt, Germany
| | - Amelie Cf Bergs
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany.,Institute for Biophysical Chemistry, Goethe University, Frankfurt, Germany.,International Max Planck Research School in Structure and Function of Biological Membranes, Frankfurt, Germany
| | - Alexander Gottschalk
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany.,Institute for Biophysical Chemistry, Goethe University, Frankfurt, Germany.,Cluster of Excellence Frankfurt Macromolecular Complexes, Goethe University, Frankfurt, Germany
| |
Collapse
|
15
|
Spinal Hb9::Cre-derived excitatory interneurons contribute to rhythm generation in the mouse. Sci Rep 2017; 7:41369. [PMID: 28128321 PMCID: PMC5269678 DOI: 10.1038/srep41369] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 12/20/2016] [Indexed: 11/14/2022] Open
Abstract
Rhythm generating neurons are thought to be ipsilaterally-projecting excitatory neurons in the thoracolumbar mammalian spinal cord. Recently, a subset of Shox2 interneurons (Shox2 non-V2a INs) was found to fulfill these criteria and make up a fraction of the rhythm-generating population. Here we use Hb9::Cre mice to genetically manipulate Hb9::Cre-derived excitatory interneurons (INs) in order to determine the role of these INs in rhythm generation. We demonstrate that this line captures a consistent population of spinal INs which is mixed with respect to neurotransmitter phenotype and progenitor domain, but does not overlap with the Shox2 non-V2a population. We also show that Hb9::Cre-derived INs include the comparatively small medial population of INs which continues to express Hb9 postnatally. When excitatory neurotransmission is selectively blocked by deleting Vglut2 from Hb9::Cre-derived INs, there is no difference in left-right and/or flexor-extensor phasing between these cords and controls, suggesting that excitatory Hb9::Cre-derived INs do not affect pattern generation. In contrast, the frequencies of locomotor activity are significantly lower in cords from Hb9::Cre-Vglut2Δ/Δ mice than in cords from controls. Collectively, our findings indicate that excitatory Hb9::Cre-derived INs constitute a distinct population of neurons that participates in the rhythm generating kernel for spinal locomotion.
Collapse
|
16
|
Ben-Avraham D, Karasik D, Verghese J, Lunetta KL, Smith JA, Eicher JD, Vered R, Deelen J, Arnold AM, Buchman AS, Tanaka T, Faul JD, Nethander M, Fornage M, Adams HH, Matteini AM, Callisaya ML, Smith AV, Yu L, De Jager PL, Evans DA, Gudnason V, Hofman A, Pattie A, Corley J, Launer LJ, Knopman DS, Parimi N, Turner ST, Bandinelli S, Beekman M, Gutman D, Sharvit L, Mooijaart SP, Liewald DC, Houwing-Duistermaat JJ, Ohlsson C, Moed M, Verlinden VJ, Mellström D, van der Geest JN, Karlsson M, Hernandez D, McWhirter R, Liu Y, Thomson R, Tranah GJ, Uitterlinden AG, Weir DR, Zhao W, Starr JM, Johnson AD, Ikram MA, Bennett DA, Cummings SR, Deary IJ, Harris TB, Kardia SLR, Mosley TH, Srikanth VK, Windham BG, Newman AB, Walston JD, Davies G, Evans DS, Slagboom EP, Ferrucci L, Kiel DP, Murabito JM, Atzmon G. The complex genetics of gait speed: genome-wide meta-analysis approach. Aging (Albany NY) 2017; 9:209-246. [PMID: 28077804 PMCID: PMC5310665 DOI: 10.18632/aging.101151] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 12/26/2016] [Indexed: 01/08/2023]
Abstract
Emerging evidence suggests that the basis for variation in late-life mobility is attributable, in part, to genetic factors, which may become increasingly important with age. Our objective was to systematically assess the contribution of genetic variation to gait speed in older individuals. We conducted a meta-analysis of gait speed GWASs in 31,478 older adults from 17 cohorts of the CHARGE consortium, and validated our results in 2,588 older adults from 4 independent studies. We followed our initial discoveries with network and eQTL analysis of candidate signals in tissues. The meta-analysis resulted in a list of 536 suggestive genome wide significant SNPs in or near 69 genes. Further interrogation with Pathway Analysis placed gait speed as a polygenic complex trait in five major networks. Subsequent eQTL analysis revealed several SNPs significantly associated with the expression of PRSS16, WDSUB1 and PTPRT, which in addition to the meta-analysis and pathway suggested that genetic effects on gait speed may occur through synaptic function and neuronal development pathways. No genome-wide significant signals for gait speed were identified from this moderately large sample of older adults, suggesting that more refined physical function phenotypes will be needed to identify the genetic basis of gait speed in aging.
Collapse
Affiliation(s)
- Dan Ben-Avraham
- Department of Medicine and Genetics Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - David Karasik
- Institute for Aging Research, Hebrew SeniorLife, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02131, USA
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Joe Verghese
- Integrated Divisions of Cognitive & Motor Aging (Neurology) and Geriatrics (Medicine), Montefiore-Einstein Center for the Aging Brain, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Kathryn L. Lunetta
- The National Heart Lung and Blood Institute's Framingham Heart Study, Framingham, MA 01702, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Jennifer A. Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - John D. Eicher
- The National Heart Lung and Blood Institute's Framingham Heart Study, Framingham, MA 01702, USA
- Population Sciences Branch, National Heart Lung and Blood Institute, Framingham, MA 01702, USA
| | - Rotem Vered
- Psychology Department, University of Haifa, Haifa, Israel
| | - Joris Deelen
- Molecular Epidemiology, Leiden University Medical Center, Leiden, Netherlands
- Max Planck Institute for Biology of Ageing, Köln, Germany
| | - Alice M. Arnold
- Department of Biostatistics, University of Washington, Seattle, WA 98115, USA
| | - Aron S. Buchman
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60614, USA
| | - Toshiko Tanaka
- Translational Gerontology Branch, National Institute on Aging, Baltimore MD 21224, USA
| | - Jessica D. Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI 48104, USA
| | - Maria Nethander
- Bioinformatics Core Facility, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Myriam Fornage
- The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Hieab H. Adams
- Department of Epidemiology, Erasmus MC, Rotterdam, Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Amy M. Matteini
- Division of Geriatric Medicine, Johns Hopkins Medical Institutes, Baltimore, MD 21224, USA
| | - Michele L. Callisaya
- Medicine, Peninsula Health, Peninsula Clinical School, Central Clinical School, Frankston, Melbourne, Victoria, Australia
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Albert V. Smith
- Icelandic Heart Association, Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Lei Yu
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60614, USA
| | - Philip L. De Jager
- Broad Institute of Harvard and MIT, Cambridge, Harvard Medical School, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Denis A. Evans
- Rush Institute for Healthy Aging and Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Vilmundur Gudnason
- Icelandic Heart Association, Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Albert Hofman
- Department of Epidemiology, Erasmus MC, Rotterdam, Netherlands
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Alison Pattie
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Janie Corley
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Lenore J. Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Neeta Parimi
- California Pacific Medical Center Research Institute, San Francisco, CA 94107, USA
| | - Stephen T. Turner
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Marian Beekman
- Molecular Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - Danielle Gutman
- Department of Human Biology, Faculty of Natural Science, University of Haifa, Haifa, Israel
| | - Lital Sharvit
- Department of Human Biology, Faculty of Natural Science, University of Haifa, Haifa, Israel
| | - Simon P. Mooijaart
- Gerontology and Geriatrics, Leiden University Medical Center, Leiden, Netherland
| | - David C. Liewald
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Jeanine J. Houwing-Duistermaat
- Genetical Statistics, Leiden University Medical Center, Leiden, Netherland. Department of Statistics, University of Leeds, Leeds, UK
| | - Claes Ohlsson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska, Academy, University of Gothenburg, Gothenburg, Sweden
| | - Matthijs Moed
- Molecular Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Dan Mellström
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska, Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Magnus Karlsson
- Clinical and Molecular Osteoporosis Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Dena Hernandez
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD 20892, USA
| | - Rebekah McWhirter
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Yongmei Liu
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Russell Thomson
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
- School of Computing, Engineering and Mathematics, University of Western Sydney, Sydney, Australia
| | - Gregory J. Tranah
- California Pacific Medical Center Research Institute, San Francisco, CA 94107, USA
| | - Andre G. Uitterlinden
- Department of Internal Medicine, Erasmus MC, and Netherlands Genomics Initiative (NGI)-sponsored Netherlands Consortium for Healthy Aging (NCHA), Rotterdam, The Netherlands
| | - David R. Weir
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI 48104, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - John M. Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, UK
| | - Andrew D. Johnson
- The National Heart Lung and Blood Institute's Framingham Heart Study, Framingham, MA 01702, USA
- Population Sciences Branch, National Heart Lung and Blood Institute, Framingham, MA 01702, USA
| | - M. Arfan Ikram
- Department of Epidemiology, Erasmus MC, Rotterdam, Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, Netherlands
| | - David A. Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60614, USA
| | - Steven R. Cummings
- California Pacific Medical Center Research Institute, San Francisco, CA 94107, USA
| | - Ian J. Deary
- Department of Psychology, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Tamara B. Harris
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sharon L. R. Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Thomas H. Mosley
- University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Velandai K. Srikanth
- Medicine, Peninsula Health, Peninsula Clinical School, Central Clinical School, Frankston, Melbourne, Victoria, Australia
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | | | - Ann B. Newman
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jeremy D. Walston
- Division of Geriatric Medicine, Johns Hopkins Medical Institutes, Baltimore, MD 21224, USA
| | - Gail Davies
- Department of Psychology, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Daniel S. Evans
- California Pacific Medical Center Research Institute, San Francisco, CA 94107, USA
| | - Eline P. Slagboom
- Molecular Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, Baltimore MD 21224, USA
| | - Douglas P. Kiel
- Institute for Aging Research, Hebrew SeniorLife, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02131, USA
- Broad Institute of Harvard and MIT, Boston, MA 02131, USA
| | - Joanne M. Murabito
- The National Heart Lung and Blood Institute's Framingham Heart Study, Framingham, MA 01702, USA
- Section of General Internal Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Gil Atzmon
- Department of Medicine and Genetics Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Human Biology, Faculty of Natural Science, University of Haifa, Haifa, Israel
| |
Collapse
|
17
|
Yamaguchi A, Cavin Barnes J, Appleby T. Rhythm generation, coordination, and initiation in the vocal pathways of male African clawed frogs. J Neurophysiol 2017; 117:178-194. [PMID: 27760822 PMCID: PMC5209533 DOI: 10.1152/jn.00628.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/15/2016] [Indexed: 01/12/2023] Open
Abstract
Central pattern generators (CPGs) in the brain stem are considered to underlie vocalizations in many vertebrate species, but the detailed mechanisms underlying how motor rhythms are generated, coordinated, and initiated remain unclear. We addressed these issues using isolated brain preparations of Xenopus laevis from which fictive vocalizations can be elicited. Advertisement calls of male X. laevis that consist of fast and slow trills are generated by vocal CPGs contained in the brain stem. Brain stem central vocal pathways consist of a premotor nucleus [dorsal tegmental area of medulla (DTAM)] and a laryngeal motor nucleus [a homologue of nucleus ambiguus (n.IX-X)] with extensive reciprocal connections between the nuclei. In addition, DTAM receives descending inputs from the extended amygdala. We found that unilateral transection of the projections between DTAM and n.IX-X eliminated premotor fictive fast trill patterns but did not affect fictive slow trills, suggesting that the fast and slow trill CPGs are distinct; the slow trill CPG is contained in n.IX-X, and the fast trill CPG spans DTAM and n.IX-X. Midline transections that eliminated the anterior, posterior, or both commissures caused no change in the temporal structure of fictive calls, but bilateral synchrony was lost, indicating that the vocal CPGs are contained in the lateral halves of the brain stem and that the commissures synchronize the two oscillators. Furthermore, the elimination of the inputs from extended amygdala to DTAM, in addition to the anterior commissure, resulted in autonomous initiation of fictive fast but not slow trills by each hemibrain stem, indicating that the extended amygdala provides a bilateral signal to initiate fast trills. NEW & NOTEWORTHY Central pattern generators (CPGs) are considered to underlie vocalizations in many vertebrate species, but the detailed mechanisms underlying their functions remain unclear. We addressed this question using an isolated brain preparation of African clawed frogs. We discovered that two vocal phases are mediated by anatomically distinct CPGs, that there are a pair of CPGs contained in the left and right half of the brain stem, and that mechanisms underlying initiation of the two vocal phases are distinct.
Collapse
Affiliation(s)
- Ayako Yamaguchi
- Department of Biology, University of Utah, Salt Lake City, Utah
| | | | - Todd Appleby
- Department of Biology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
18
|
Maguire CC, Sieben JM, de Bie RA. The influence of walking-aids on the plasticity of spinal interneuronal networks, central-pattern-generators and the recovery of gait post-stroke. A literature review and scholarly discussion. J Bodyw Mov Ther 2016; 21:422-434. [PMID: 28532887 DOI: 10.1016/j.jbmt.2016.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/10/2016] [Accepted: 09/20/2016] [Indexed: 12/27/2022]
Abstract
BACKGROUND Many aspects of post-stroke gait-rehabilitation are based on low-level evidence or expert opinion. Neuroscientific principles are often not considered when evaluating the impact of interventions. The use of walking-aids including canes and rollators, although widely used for long periods, has primarily been investigated to assess the immediate kinetic, kinematic or physiological effects. The long-term impact on neural structures und functions remains unclear. METHODS A literature review of the function of and factors affecting plasticity of spinal interneuronal-networks and central-pattern-generators (CPG) in healthy and post-stroke patients. The relevance of these mechanisms for gait recovery and the potential impact of walking-aids is discussed. RESULTS Afferent-input to spinal-networks influences motor-output and spinal and cortical plasticity. Disrupted input may adversely affect post-stroke plasticity and functional recovery. Joint and muscle unloading and decoupling from four-limb CPG control may be particularly relevant. CONCLUSIONS Canes and rollators disrupt afferent-input and may negatively affect the recovery of gait.
Collapse
Affiliation(s)
- Clare C Maguire
- Department of Physiotherapy, Bildungszentrum Gesundheit Basel-Stadt, 4142, Muenchenstein, Switzerland; CAPHRI School for Public Health and Primary Care, Maastricht University, 6200 MD, Maastricht, The Netherlands.
| | - Judith M Sieben
- CAPHRI School for Public Health and Primary Care, Maastricht University, 6200 MD, Maastricht, The Netherlands; Department of Anatomy and Embryology, Maastricht University, 6200 MD, Maastricht, The Netherlands
| | - Robert A de Bie
- CAPHRI School for Public Health and Primary Care, Maastricht University, 6200 MD, Maastricht, The Netherlands; Department of Epidemiology, Maastricht University, 6200 MD, Maastricht, The Netherlands
| |
Collapse
|
19
|
Staiger EA, Albright JD, Brooks SA. Genome‐wide association mapping of heritable temperament variation in the
T
ennessee
W
alking
H
orse. GENES BRAIN AND BEHAVIOR 2016; 15:514-26. [DOI: 10.1111/gbb.12290] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 03/03/2016] [Accepted: 03/11/2016] [Indexed: 12/26/2022]
Affiliation(s)
- E. A. Staiger
- Department of Animal Science Cornell University Ithaca NY
| | - J. D. Albright
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine University of Tennessee Knoxville TN
| | - S. A. Brooks
- Department of Animal Science University of Florida Gainesville FL USA
| |
Collapse
|
20
|
Trojanowski NF, Raizen DM, Fang-Yen C. Pharyngeal pumping in Caenorhabditis elegans depends on tonic and phasic signaling from the nervous system. Sci Rep 2016; 6:22940. [PMID: 26976078 PMCID: PMC4791602 DOI: 10.1038/srep22940] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/23/2016] [Indexed: 02/02/2023] Open
Abstract
Rhythmic movements are ubiquitous in animal locomotion, feeding, and circulatory systems. In some systems, the muscle itself generates rhythmic contractions. In others, rhythms are generated by the nervous system or by interactions between the nervous system and muscles. In the nematode Caenorhabditis elegans, feeding occurs via rhythmic contractions (pumping) of the pharynx, a neuromuscular feeding organ. Here, we use pharmacology, optogenetics, genetics, and electrophysiology to investigate the roles of the nervous system and muscle in generating pharyngeal pumping. Hyperpolarization of the nervous system using a histamine-gated chloride channel abolishes pumping, and optogenetic stimulation of pharyngeal muscle in these animals causes abnormal contractions, demonstrating that normal pumping requires nervous system function. In mutants that pump slowly due to defective nervous system function, tonic muscle stimulation causes rapid pumping, suggesting tonic neurotransmitter release may regulate pumping. However, tonic cholinergic motor neuron stimulation, but not tonic muscle stimulation, triggers pumps that electrophysiologically resemble typical rapid pumps. This suggests that pharyngeal cholinergic motor neurons are normally rhythmically, and not tonically active. These results demonstrate that the pharynx generates a myogenic rhythm in the presence of tonically released acetylcholine, and suggest that the pharyngeal nervous system entrains contraction rate and timing through phasic neurotransmitter release.
Collapse
Affiliation(s)
- Nicholas F Trojanowski
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104 PA, USA.,Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, 19104 PA, USA.,Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104 PA, USA
| | - David M Raizen
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104 PA, USA
| | - Christopher Fang-Yen
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, 19104 PA, USA.,Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104 PA, USA
| |
Collapse
|
21
|
Abstract
Background Qualitative and quantitative measurements of motor performance are essential for characterizing perturbations of motor systems. Although several methods exist for analyzing specific motor tasks, few behavioral assays are readily available to researchers that provide a complete set of kinematic parameters in rodents. Results Here we present MouseWalker, an integrated hardware and software system that provides a comprehensive and quantitative description of kinematic features in freely walking rodents. Footprints are visualized with high spatial and temporal resolution by a non-invasive optical touch sensor coupled to high-speed imaging. A freely available and open-source software package tracks footprints and body features to generate a comprehensive description of many locomotion features, including static parameters such as footprint position and stance patterns and dynamic parameters, such as step and swing cycle duration, and inter-leg coordination. Using this method, we describe walking by wild-type mice including several previously undescribed parameters. For example, we demonstrate that footprint touchdown occurs instantaneously by the entire paw with no obvious rostral–caudal or lateral–medial bias. Conclusions The readily available MouseWalker system and the large set of readouts it generates greatly increases the currently available toolkit for the analysis of wild type and aberrant locomotion in rodents. Electronic supplementary material The online version of this article (doi:10.1186/s12915-015-0154-0) contains supplementary material, which is available to authorized users.
Collapse
|
22
|
Welniarz Q, Dusart I, Gallea C, Roze E. One hand clapping: lateralization of motor control. Front Neuroanat 2015; 9:75. [PMID: 26082690 PMCID: PMC4451425 DOI: 10.3389/fnana.2015.00075] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/17/2015] [Indexed: 12/20/2022] Open
Abstract
Lateralization of motor control refers to the ability to produce pure unilateral or asymmetric movements. It is required for a variety of coordinated activities, including skilled bimanual tasks and locomotion. Here we discuss the neuroanatomical substrates and pathophysiological underpinnings of lateralized motor outputs. Significant breakthroughs have been made in the past few years by studying the two known conditions characterized by the inability to properly produce unilateral or asymmetric movements, namely human patients with congenital “mirror movements” and model rodents with a “hopping gait”. Whereas mirror movements are associated with altered interhemispheric connectivity and abnormal corticospinal projections, abnormal spinal cord interneurons trajectory is responsible for the “hopping gait”. Proper commissural axon guidance is a critical requirement for these mechanisms. Interestingly, the analysis of these two conditions reveals that the production of asymmetric movements involves similar anatomical and functional requirements but in two different structures: (i) lateralized activation of the brain or spinal cord through contralateral silencing by cross-midline inhibition; and (ii) unilateral transmission of this activation, resulting in lateralized motor output.
Collapse
Affiliation(s)
- Quentin Welniarz
- Neuroscience Paris Seine, CNRS UMR8246, Inserm U1130, Sorbonne Universités, UPMC UM119 Paris, France ; Inserm U1127, CNRS UMR 7225, Sorbonne Universités, UPMC UMR S1127, Institut du Cerveau et de la Moelle épinière, ICM Paris, France
| | - Isabelle Dusart
- Neuroscience Paris Seine, CNRS UMR8246, Inserm U1130, Sorbonne Universités, UPMC UM119 Paris, France
| | - Cécile Gallea
- Inserm U1127, CNRS UMR 7225, Sorbonne Universités, UPMC UMR S1127, Institut du Cerveau et de la Moelle épinière, ICM Paris, France
| | - Emmanuel Roze
- Inserm U1127, CNRS UMR 7225, Sorbonne Universités, UPMC UMR S1127, Institut du Cerveau et de la Moelle épinière, ICM Paris, France ; Département des Maladies du Système Nerveux, AP-HP, Hôpital Pitié Salpêtrière Paris, France
| |
Collapse
|
23
|
Ziemlińska E, Kügler S, Schachner M, Wewiór I, Czarkowska-Bauch J, Skup M. Overexpression of BDNF increases excitability of the lumbar spinal network and leads to robust early locomotor recovery in completely spinalized rats. PLoS One 2014; 9:e88833. [PMID: 24551172 PMCID: PMC3925164 DOI: 10.1371/journal.pone.0088833] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 01/16/2014] [Indexed: 02/05/2023] Open
Abstract
Strategies to induce recovery from lesions of the spinal cord have not fully resulted in clinical applications. This is a consequence of a number of impediments that axons encounter when trying to regrow beyond the lesion site, and that intraspinal rearrangements are subjected to. In the present study we evaluated (1) the possibility to improve locomotor recovery after complete transection of the spinal cord by means of an adeno-associated (AAV) viral vector expressing the neurotrophin brain-derived neurotrophic factor (BDNF) in lumbar spinal neurons caudal to the lesion site and (2) how the spinal cord transection and BDNF treatment affected neurotransmission in the segments caudal to the lesion site. BDNF overexpression resulted in clear increases in expression levels of molecules involved in glutamatergic (VGluT2) and GABAergic (GABA, GAD65, GAD67) neurotransmission in parallel with a reduction of the potassium-chloride co-transporter (KCC2) which contributes to an inhibitory neurotransmission. BDNF treated animals showed significant improvements in assisted locomotor performance, and performed locomotor movements with body weight support and plantar foot placement on a moving treadmill. These positive effects of BDNF local overexpression were detectable as early as two weeks after spinal cord transection and viral vector application and lasted for at least 7 weeks. Gradually increasing frequencies of clonic movements at the end of the experiment attenuated the quality of treadmill walking. These data indicate that BDNF has the potential to enhance the functionality of isolated lumbar circuits, but also that BDNF levels have to be tightly controlled to prevent hyperexcitability.
Collapse
Affiliation(s)
| | - Sebastian Kügler
- Center of Molecular Physiology of the Brain, University of Göttingen, Göttingen, Germany
| | - Melitta Schachner
- Center for Neuroscience, Shantou University Medical College, Shantou, China
| | - Iwona Wewiór
- Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | | |
Collapse
|
24
|
Lamb DG, Calabrese RL. Correlated conductance parameters in leech heart motor neurons contribute to motor pattern formation. PLoS One 2013; 8:e79267. [PMID: 24260181 PMCID: PMC3832487 DOI: 10.1371/journal.pone.0079267] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 09/23/2013] [Indexed: 11/26/2022] Open
Abstract
Neurons can have widely differing intrinsic membrane properties, in particular the density of specific conductances, but how these contribute to characteristic neuronal activity or pattern formation is not well understood. To explore the relationship between conductances, and in particular how they influence the activity of motor neurons in the well characterized leech heartbeat system, we developed a new multi-compartmental Hodgkin-Huxley style leech heart motor neuron model. To do so, we evolved a population of model instances, which differed in the density of specific conductances, capable of achieving specific output activity targets given an associated input pattern. We then examined the sensitivity of measures of output activity to conductances and how the model instances responded to hyperpolarizing current injections. We found that the strengths of many conductances, including those with differing dynamics, had strong partial correlations and that these relationships appeared to be linked by their influence on heart motor neuron activity. Conductances that had positive correlations opposed one another and had the opposite effects on activity metrics when perturbed whereas conductances that had negative correlations could compensate for one another and had similar effects on activity metrics.
Collapse
Affiliation(s)
- Damon G. Lamb
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| | - Ronald L. Calabrese
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| |
Collapse
|
25
|
Tsuruyama K, Hsiao CF, Chandler SH. Participation of a persistent sodium current and calcium-activated nonspecific cationic current to burst generation in trigeminal principal sensory neurons. J Neurophysiol 2013; 110:1903-14. [PMID: 23883859 DOI: 10.1152/jn.00410.2013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The properties of neurons participating in masticatory rhythmogenesis are not clearly understood. Neurons within the dorsal trigeminal principal sensory nucleus (dPrV) are potential candidates as components of the masticatory central pattern generator (CPG). The present study examines in detail the ionic mechanisms controlling burst generation in dPrV neurons in rat (postnatal day 8-12) brain stem slices using whole cell and perforated patch-clamp methods. Nominal extracellular Ca(2+) concentration transformed tonic discharge in response to a maintained step pulse of current into rhythmical bursting in 38% of nonbursting neurons. This change in discharge mode was suppressed by riluzole, a persistent Na(+) current (INaP) antagonist. Veratridine, which suppresses the Na(+) channel inactivation mechanism, induced rhythmical bursting in nonbursting neurons in normal artificial cerebrospinal fluid, suggesting that INaP contributes to burst generation. Nominal extracellular Ca(2+) exposed a prominent afterdepolarizing potential (ADP) following a single spike induced by a 3-ms current pulse, which was suppressed, but not completely blocked, by riluzole. Application of BAPTA, a Ca(2+) chelator, intracellularly, or flufenamic acid, a Ca(2+)-activated nonspecific cationic channel (ICAN) antagonist, extracellularly to the bath, suppressed rhythmical bursting and the postspike ADP. Application of drugs to alter Ca(2+) release from endoplasmic reticulum also suppressed bursting. Finally, voltage-clamp methods demonstrated that nominal Ca(2+) facilitated INaP and induced ICAN. These data demonstrate for the first time that the previously observed induction in dPrV neurons of rhythmical bursting in nominal Ca(2+) is mediated by enhancement of INaP and onset of ICAN, which are dependent on intracellular Ca(2+).
Collapse
Affiliation(s)
- Kentaro Tsuruyama
- Department of Integrative Biology and Physiology and the Brain Research Institute, University of California at Los Angeles, California
| | | | | |
Collapse
|
26
|
Activity-dependent changes in extracellular Ca2+ and K+ reveal pacemakers in the spinal locomotor-related network. Neuron 2013; 77:1047-54. [PMID: 23522041 DOI: 10.1016/j.neuron.2013.01.026] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2013] [Indexed: 11/22/2022]
Abstract
Changes in the extracellular ionic concentrations occur as a natural consequence of firing activity in large populations of neurons. The extent to which these changes alter the properties of individual neurons and the operation of neuronal networks remains unknown. Here, we show that the locomotor-like activity in the isolated neonatal rodent spinal cord reduces the extracellular calcium ([Ca(2+)]o) to 0.9 mM and increases the extracellular potassium ([K(+)]o) to 6 mM. Such changes in [Ca(2+)]o and [K(+)]o trigger pacemaker activities in interneurons considered to be part of the locomotor network. Experimental data and a modeling study show that the emergence of pacemaker properties critically involves a [Ca(2+)]o-dependent activation of the persistent sodium current (INaP). These results support a concept for locomotor rhythm generation in which INaP-dependent pacemaker properties in spinal interneurons are switched on and tuned by activity-dependent changes in [Ca(2+)]o and [K(+)]o.
Collapse
|
27
|
Spence AJ, Nicholson-Thomas G, Lampe R. Closing the loop in legged neuromechanics: An open-source computer vision controlled treadmill. J Neurosci Methods 2013; 215:164-9. [DOI: 10.1016/j.jneumeth.2013.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 03/11/2013] [Accepted: 03/12/2013] [Indexed: 01/19/2023]
|
28
|
Mladinic M, Nistri A, Taccola G. Acute Spinal Cord Injury In Vitro: Insight into Basic Mechanisms. ANIMAL MODELS OF SPINAL CORD REPAIR 2013. [DOI: 10.1007/978-1-62703-197-4_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
29
|
Wosnitza A, Engelen J, Gruhn M. Segment-specific and state-dependent targeting accuracy of the stick insect. J Exp Biol 2013; 216:4172-83. [DOI: 10.1242/jeb.092106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
In its natural habitat, Carausius morosus climbs on the branches of bushes and trees. Previous work suggested that stick insects perform targeting movements with their hind legs to find support more easily. It has been assumed that the animals use position information from the anterior legs to control the touchdown position of the ipsilateral posterior legs. Here we address the questions if not only the hind but also the middle leg performs targeting, and if targeting is still present in a walking animal when influences of mechanical coupling through the ground are removed. If this were the case, it would emphasize the role of underlying neuronal mechanisms. We studied whether targeting occurred in both legs, when the rostral neighboring leg, i.e. either middle- or front leg, was placed at defined positions relative to the body, and analyzed targeting precision for dependency on the targeted position. Under these conditions, the touchdown positions of the hind legs show correlation to the position of the middle leg parallel and perpendicular to the body axis while only weak correlation exists between the middle and front legs, and only in parallel to the body axis. In continuously walking tethered animals targeting accuracy of hind and middle legs parallel to the body axis was barely different. However, targeting became significantly more accurate perpendicular to the body axis. Our results suggest that a neural mechanism exists for controlling the touchdown position of the posterior leg but that the strength of this mechanism is segment-specific and dependent on the behavioral context in which it is used.
Collapse
|
30
|
Pugh JA, Aronyk KE, Norton JA. Neural activity generated in the neural placode and nerve roots in the neonate with spina bifida. J Neurosurg Pediatr 2012; 9:452-6. [PMID: 22462714 DOI: 10.3171/2012.1.peds11317] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The authors conducted a study to determine the neurophysiological capacity of the neural placode in spina bifida neonates and to determine if the spinal nerve roots in these neonates had normal stimulation. METHODS The authors present a case series of 2 neonates born with open neural tube defects who underwent neural tube closure within 24 hours of birth. Neurophysiological monitoring and electrical stimulation of the placode and nerve roots was performed before and after closure of the neural tube. RESULTS Stimulation of nerve roots resulted in evoked electromyographic responses in distinct muscle groups, indicative of the myotome innervation pattern. Stimulation threshold did not change significantly after closure of the placode. Stimulation within the placode generated an alternating pattern of activity in the left and right legs. CONCLUSIONS Closure of the neural tube did not affect the stimulation threshold of the nerve roots, which remained easily excitable. The viability of the nerve roots suggests that they may be candidates for neural prostheses in the future. The neural placode contains basic neural elements for generating a locomotor-like pattern in response to tonic neural inputs.
Collapse
Affiliation(s)
- Jeffrey A Pugh
- Division of Neurosurgery, Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
31
|
Dyck J, Lanuza GM, Gosgnach S. Functional characterization of dI6 interneurons in the neonatal mouse spinal cord. J Neurophysiol 2012; 107:3256-66. [PMID: 22442567 DOI: 10.1152/jn.01132.2011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Our understanding of the neural control of locomotion has been greatly enhanced by the ability to identify and manipulate genetically defined populations of interneurons that comprise the locomotor central pattern generator (CPG). To date, the dI6 interneurons are one of the few populations that settle in the ventral region of the postnatal spinal cord that have not been investigated. In the present study, we utilized a novel transgenic mouse line to electrophysiologically characterize dI6 interneurons located close to the central canal and study their function during fictive locomotion. The majority of dI6 cells investigated were found to be rhythmically active during fictive locomotion and could be divided into two electrophysiologically distinct populations of interneurons. The first population fired rhythmic trains of action potentials that were loosely coupled to ventral root output and contained several intrinsic membrane properties of rhythm-generating neurons, raising the possibility that these cells may be involved in the generation of rhythmic activity in the locomotor CPG. The second population fired rhythmic trains of action potentials that were tightly coupled to ventral root output and lacked intrinsic oscillatory mechanisms, indicating that these neurons may be driven by a rhythm-generating network. Together these results indicate that dI6 neurons comprise an important component of the locomotor CPG that participate in multiple facets of motor behavior.
Collapse
Affiliation(s)
- Jason Dyck
- Department of Physiology, Center for Neuroscience, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
32
|
Origin of excitation underlying locomotion in the spinal circuit of zebrafish. Proc Natl Acad Sci U S A 2012; 109:5511-6. [PMID: 22431619 DOI: 10.1073/pnas.1115377109] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neural circuits in the spinal cord transform instructive signals from the brain into well-coordinated locomotor movements by virtue of rhythm-generating components. Although evidence suggests that excitatory interneurons are the essence of locomotor rhythm generation, their molecular identity and the assessment of their necessity have remained unclear. Here we show, using larval zebrafish, that V2a interneurons represent an intrinsic source of excitation necessary for the normal expression of the locomotor rhythm. Acute and selective ablation of these interneurons increases the threshold of induction of swimming activity, decreases the burst frequency, and alters the coordination of the rostro-caudal propagation of activity. Thus, our results argue that V2a interneurons represent a source of excitation that endows the spinal circuit with the capacity to generate locomotion.
Collapse
|
33
|
Boyce VS, Park J, Gage FH, Mendell LM. Differential effects of brain-derived neurotrophic factor and neurotrophin-3 on hindlimb function in paraplegic rats. Eur J Neurosci 2011; 35:221-32. [PMID: 22211901 PMCID: PMC3509221 DOI: 10.1111/j.1460-9568.2011.07950.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We compared the effect of viral administration of brain-derived neurotrophic factor (BDNF) or neurotrophin 3 (NT-3) on locomotor recovery in adult rats with complete thoracic (T10) spinal cord transection injuries, in order to determine the effect of chronic neurotrophin expression on spinal plasticity. At the time of injury, BDNF, NT-3 or green fluorescent protein (GFP) (control) was delivered to the lesion via adeno-associated virus (AAV) constructs. AAV–BDNF was significantly more effective than AAV–NT-3 in eliciting locomotion. In fact, AAV–BDNF-treated rats displayed plantar, weight-supported hindlimb stepping on a stationary platform, that is, without the assistance of a moving treadmill and without step training. Rats receiving AAV–NT-3 or AAV–GFP were incapable of hindlimb stepping during this task, despite provision of balance support. AAV–NT-3 treatment did promote the recovery of treadmill-assisted stepping, but this required continuous perineal stimulation. In addition, AAV–BDNF-treated rats were sensitized to noxious heat, whereas AAV–NT-3-treated and AAV–GFP-treated rats were not. Notably, AAV–BDNF-treated rats also developed hindlimb spasticity, detracting from its potential clinical applicability via the current viral delivery method. Intracellular recording from triceps surae motoneurons revealed that AAV–BDNF significantly reduced motoneuron rheobase, suggesting that AAV–BDNF promoted the recovery of over-ground stepping by enhancing neuronal excitability. Elevated nuclear c-Fos expression in interneurons located in the L2 intermediate zone after AAV–BDNF treatment indicated increased activation of interneurons in the vicinity of the locomotor central pattern generator. AAV–NT-3 treatment reduced motoneuron excitability, with little change in c-Fos expression. These results support the potential for BDNF delivery at the lesion site to reorganize locomotor circuits.
Collapse
Affiliation(s)
- Vanessa S Boyce
- Department of Neurobiology and Behavior, Life Sciences Building, Room 532, State University of New York at Stony Brook, Stony Brook, NY 11794-5230, USA
| | | | | | | |
Collapse
|
34
|
Witts EC, Panetta KM, Miles GB. Glial-derived adenosine modulates spinal motor networks in mice. J Neurophysiol 2011; 107:1925-34. [PMID: 22205649 PMCID: PMC3331664 DOI: 10.1152/jn.00513.2011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The activation of purinergic receptors modulates central pattern generators controlling rhythmic motor behaviors, including respiration in rodents and swimming in frog tadpoles. The present study aimed to determine whether purinergic signaling also modulates the mammalian locomotor central pattern generator. This was investigated by using isolated spinal cord preparations obtained from neonatal mice in which locomotor-related activity can be induced pharmacologically. The application of either ATP or adenosine led to a reduction in the frequency of locomotor activity recorded from ventral roots. ATP had no effect when applied in the presence of both the adenosine receptor antagonist theophylline and the ectonucleotidase inhibitor ARL67156, demonstrating that the effects of ATP application result from the breakdown of ATP to adenosine and subsequent activation of adenosine receptors. The application of theophylline or the A(1)-specific antagonist cyclopentyl dipropylxanthine, but not the A(2A)-receptor antagonist SCH58261, caused an increase in locomotor burst frequency, demonstrating that endogenously derived adenosine activates A(1) receptors during locomotor network activity. Furthermore, theophylline had no effect in the presence of the ectonucleotidase inhibitor ARL67156 or the glial toxins methionine sulfoximine or ethyl fluoracetate, suggesting that endogenous adenosine is derived from ATP, which is released from glia. Finally, adenosine had no effect on slow rhythmic activity recorded upon blockade of all inhibitory transmission, suggesting that adenosine may act via the modulation of inhibitory transmission. Together, these data highlight endogenous purinergic gliotransmission, involving activation of A(1) receptors, as an important intrinsic modulatory system controlling the frequency of activity generated by spinal locomotor circuitry in mammals.
Collapse
Affiliation(s)
- Emily C Witts
- School of Biology, Bute Bldg., Univ. of St. Andrews, St. Andrews, Fife KY16 9TS, UK.
| | | | | |
Collapse
|
35
|
Roffman RC, Norris BJ, Calabrese RL. Animal-to-animal variability of connection strength in the leech heartbeat central pattern generator. J Neurophysiol 2011; 107:1681-93. [PMID: 22190622 DOI: 10.1152/jn.00903.2011] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The heartbeat central pattern generator (CPG) in medicinal leeches controls blood flow within a closed circulatory by programming the constrictions of two parallel heart tubes. This circuit reliably produces a stereotyped fictive pattern of activity and has been extensively characterized. Here we determined, as quantitatively as possible, the strength of each inhibitory synapse and electrical junction within the core circuit of the heartbeat CPG. We also examined the animal-to-animal variability in strengths of these connections and, for some, determined the correlations between connections to the same postsynaptic target. The core CPG is composed of seven bilateral pairs of heart interneurons connected via both inhibitory chemical synapses and electrical junctions. Fifteen different connections within the core CPG were measured for strength using extracellular presynaptic recordings and postsynaptic voltage-clamp recordings across a minimum of seven individuals each, and the animal-to-animal variability was characterized. Connection strengths within the core network varied three to more than sevenfold among individuals (depending on the specific connection). The balance between two inputs onto various postsynaptic targets was explored by within-individual comparisons and correlation across individuals. Of the seven comparisons made within the core CPG, three showed a clear correlation of connection strengths, while the other four did not. We conclude that the leech heartbeat CPG can withstand wide variability in connection strengths and still produce stereotyped output. The network appears to preserve the relative strengths of some pairs of inputs, despite the animal-to-animal variability.
Collapse
Affiliation(s)
- Rebecca C Roffman
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
36
|
Anastasiades PG, Butt SJB. Decoding the transcriptional basis for GABAergic interneuron diversity in the mouse neocortex. Eur J Neurosci 2011; 34:1542-52. [DOI: 10.1111/j.1460-9568.2011.07904.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Blitz DM, Nusbaum MP. Neural circuit flexibility in a small sensorimotor system. Curr Opin Neurobiol 2011; 21:544-52. [PMID: 21689926 DOI: 10.1016/j.conb.2011.05.019] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 05/02/2011] [Accepted: 05/24/2011] [Indexed: 01/06/2023]
Abstract
Neuronal circuits underlying rhythmic behaviors (central pattern generators: CPGs) can generate rhythmic motor output without sensory input. However, sensory input is pivotal for generating behaviorally relevant CPG output. Here we discuss recent work in the decapod crustacean stomatogastric nervous system (STNS) identifying cellular and synaptic mechanisms whereby sensory inputs select particular motor outputs from CPG circuits. This includes several examples in which sensory neurons regulate the impact of descending projection neurons on CPG circuits. This level of analysis is possible in the STNS due to the relatively unique access to identified circuit, projection, and sensory neurons. These studies are also revealing additional degrees of freedom in sensorimotor integration that underlie the extensive flexibility intrinsic to rhythmic motor systems.
Collapse
Affiliation(s)
- Dawn M Blitz
- 215 Stemmler Hall, Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, United States
| | | |
Collapse
|
38
|
Kiehn O. Development and functional organization of spinal locomotor circuits. Curr Opin Neurobiol 2011; 21:100-9. [PMID: 20889331 DOI: 10.1016/j.conb.2010.09.004] [Citation(s) in RCA: 169] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 09/06/2010] [Accepted: 09/06/2010] [Indexed: 01/24/2023]
Abstract
The coordination and timing of muscle activities during rhythmic movements, like walking and swimming, are generated by intrinsic spinal motor circuits. Such locomotor networks are operational early in development and are found in all vertebrates. This review outlines and compares recent advances that have revealed the developmental and functional organization of these fundamental spinal motor networks in limbed and non-limbed animals. The comparison will highlight common principles and divergence in the organization of the spinal locomotor network structure in these different species as well as point to unresolved issues regarding the assembly and functioning of these networks.
Collapse
Affiliation(s)
- Ole Kiehn
- Mammalian Locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, Retzius väg 8, 17177 Stockholm, Sweden.
| |
Collapse
|
39
|
Properties of a distinct subpopulation of GABAergic commissural interneurons that are part of the locomotor circuitry in the neonatal spinal cord. J Neurosci 2011; 31:4821-33. [PMID: 21451020 DOI: 10.1523/jneurosci.4764-10.2011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Commissural inhibitory interneurons (INs) are integral components of the locomotor circuitry that coordinate left-right motor activity during movements. We have shown that GABA-mediated synaptic transmission plays a key role in generating alternating locomotor-like activity in the mouse spinal cord (Hinckley et al., 2005a). The primary objective of our study was to determine whether properties of lamina VIII (LVIII) GABAergic INs in the spinal cord of GAD67::GFP transgenic mice fit the classification of rhythm-coordinating neurons in the locomotor circuitry. The relatively large green fluorescent protein-expressing (GFP(+)) INs had comparable morphological and electrophysiological properties, suggesting that they comprised a homogenous neuronal population. They displayed multipolar and complex dendritic arbors in ipsilateral LVII-LVIII, and their axonal projections crossed the ventral commissure and branched into contralateral ventral, medial, and dorsal laminae. Putative synaptic contacts evident as bouton-like varicosities were detected in close apposition to lateral motoneurons, Renshaw cells, other GFP(+) INs, and unidentified neurons. Exposure to a rhythmogenic mixture triggered locomotor-like rhythmic firing in the majority of LVIII GFP(+) INs. Their induced oscillatory activity was out-of-phase with bursts of contralateral motoneurons and in-phase with bouts of ipsilateral motor activity. Membrane voltage oscillations were elicited by rhythmic increases in excitatory synaptic drive and might have been augmented by three types of voltage-activated cationic currents known to increase neuronal excitability. Based on their axonal projections and activity pattern, we propose that this population of GABAergic INs forms a class of local commissural inhibitory interneurons that are integral component of the locomotor circuitry.
Collapse
|
40
|
Gosgnach S. The role of genetically-defined interneurons in generating the mammalian locomotor rhythm. Integr Comp Biol 2011; 51:903-12. [PMID: 21576118 DOI: 10.1093/icb/icr022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Locomotor behavior in mammals requires a complex pattern of muscle activation. Neural networks, known as central pattern generators (CPGs) and located entirely within the spinal cord, are responsible for generating much of the timing and pattern required for locomotor movements. Historically, identification of interneuronal components of the locomotor CPG in walking mammals has proven troublesome, primarily because of the difficulty in identifying functionally homogeneous groups of neurons in the spinal cord. Recently, a molecular approach has been used to identify populations of genetically similar interneurons based on the expression of transcription factors early in embryonic development. Preliminary work on these cell populations has shown that many comprise essential components of the locomotor CPG. Here I identify populations of genetically-defined interneurons that are candidate "first-order" cells of this neural network, potentially responsible for generating the locomotor rhythm in the mammalian spinal cord. Identification of the cell population(s) responsible for this key function will provide valuable insight into the structure and function of the locomotor CPG and could potentially lay the groundwork for the development of strategies aimed at regenerating motor pathways following injury to the spinal cord.
Collapse
Affiliation(s)
- Simon Gosgnach
- Department of Physiology, Center for Neuroscience, University of Alberta, 7-47 Medical Sciences Building, Edmonton, AB T6G2H7, Canada.
| |
Collapse
|
41
|
Iwagaki N, Miles GB. Activation of group I metabotropic glutamate receptors modulates locomotor-related motoneuron output in mice. J Neurophysiol 2011; 105:2108-20. [PMID: 21346211 DOI: 10.1152/jn.01037.2010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Fast glutamatergic transmission via ionotropic receptors is critical for the generation of locomotion by spinal motor networks. In addition, glutamate can act via metabotropic glutamate receptors (mGluRs) to modulate the timing of ongoing locomotor activity. In the present study, we investigated whether mGluRs also modulate the intensity of motor output generated by spinal motor networks. Application of the group I mGluR agonist (S)-3,5-dihydroxyphenylglycine (DHPG) reduced the amplitude and increased the frequency of locomotor-related motoneuron output recorded from the lumbar ventral roots of isolated mouse spinal cord preparations. Whole cell patch-clamp recordings of spinal motoneurons revealed multiple mechanisms by which group I mGluRs modulate motoneuron output. Although DHPG depolarized the resting membrane potential and reduced the voltage threshold for action potential generation, the activation of group I mGluRs had a net inhibitory effect on motoneuron output that appeared to reflect the modulation of fast, inactivating Na(+) currents and action potential parameters. In addition, group I mGluR activation decreased the amplitude of locomotor-related excitatory input to motoneurons. Analyses of miniature excitatory postsynaptic currents indicated that mGluRs modulate synaptic drive to motoneurons via both pre- and postsynaptic mechanisms. These data highlight group I mGluRs as a potentially important source of neuromodulation within the spinal cord that, in addition to modulating components of the central pattern generator for locomotion, can modulate the intensity of motoneuron output during motor behavior. Given that group I mGluR activation reduces motoneuron excitability, mGluRs may provide negative feedback control of motoneuron output, particularly during high levels of glutamatergic stimulation.
Collapse
Affiliation(s)
- Noboru Iwagaki
- School of Biology, University of St. Andrews, St. Andrews, Fife, United Kingdom
| | | |
Collapse
|
42
|
Mullins OJ, Hackett JT, Buchanan JT, Friesen WO. Neuronal control of swimming behavior: comparison of vertebrate and invertebrate model systems. Prog Neurobiol 2011; 93:244-69. [PMID: 21093529 PMCID: PMC3034781 DOI: 10.1016/j.pneurobio.2010.11.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 11/01/2010] [Accepted: 11/08/2010] [Indexed: 01/26/2023]
Abstract
Swimming movements in the leech and lamprey are highly analogous, and lack homology. Thus, similarities in mechanisms must arise from convergent evolution rather than from common ancestry. Despite over 40 years of parallel investigations into this annelid and primitive vertebrate, a close comparison of the approaches and results of this research is lacking. The present review evaluates the neural mechanisms underlying swimming in these two animals and describes the many similarities that provide intriguing examples of convergent evolution. Specifically, we discuss swim initiation, maintenance and termination, isolated nervous system preparations, neural-circuitry, central oscillators, intersegmental coupling, phase lags, cycle periods and sensory feedback. Comparative studies between species highlight mechanisms that optimize behavior and allow us a broader understanding of nervous system function.
Collapse
Affiliation(s)
- Olivia J. Mullins
- Dept. of Biology University of Virginia Charlottesville, VA 22904-4328
- Neuroscience Graduate Program University of Virginia Charlottesville, VA 22904-4328
| | - John T. Hackett
- Neuroscience Graduate Program University of Virginia Charlottesville, VA 22904-4328
- Dept. of Molecular Physiology and Biological Physics University of Virginia Charlottesville, VA 22904-4328
| | - James T. Buchanan
- Dept. of Biological Sciences Marquette University Milwaukee, WI 53233
| | - W. Otto Friesen
- Dept. of Biology University of Virginia Charlottesville, VA 22904-4328
- Neuroscience Graduate Program University of Virginia Charlottesville, VA 22904-4328
| |
Collapse
|
43
|
Holz A, Kollmus H, Ryge J, Niederkofler V, Dias J, Ericson J, Stoeckli ET, Kiehn O, Arnold HH. The transcription factors Nkx2.2 and Nkx2.9 play a novel role in floor plate development and commissural axon guidance. Development 2010; 137:4249-60. [PMID: 21068056 DOI: 10.1242/dev.053819] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The transcription factors Nkx2.2 and Nkx2.9 have been proposed to execute partially overlapping functions in neuronal patterning of the ventral spinal cord in response to graded sonic hedgehog signaling. The present report shows that in mice lacking both Nkx2 proteins, the presumptive progenitor cells in the p3 domain of the neural tube convert to motor neurons (MN) and never acquire the fate of V3 interneurons. This result supports the concept that Nkx2 transcription factors are required to establish V3 progenitor cells by repressing the early MN lineage-specific program, including genes like Olig2. Nkx2.2 and Nkx2.9 proteins also perform an additional, hitherto unknown, function in the development of non-neuronal floor plate cells. Here, we demonstrate that loss of both Nkx2 genes results in an anatomically smaller and functionally impaired floor plate causing severe defects in axonal pathfinding of commissural neurons. Defective floor plates were also seen in Nkx2.2(+/-);Nkx2.9(-/-) compound mutants and even in single Nkx2.9(-/-) mutants, suggesting that floor plate development is sensitive to dose and/or timing of Nkx2 expression. Interestingly, adult Nkx2.2(+/-);Nkx2.9(-/-) compound-mutant mice exhibit abnormal locomotion, including a permanent or intermittent hopping gait. Drug-induced locomotor-like activity in spinal cords of mutant neonates is also affected, demonstrating increased variability of left-right and flexor-extensor coordination. Our data argue that the Nkx2.2 and Nkx2.9 transcription factors contribute crucially to the formation of neuronal networks that function as central pattern generators for locomotor activity in the spinal cord. As both factors affect floor plate development, control of commissural axon trajectories might be the underlying mechanism.
Collapse
Affiliation(s)
- Andreas Holz
- Cell and Molecular Biology, University of Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Talpalar AE, Kiehn O. Glutamatergic mechanisms for speed control and network operation in the rodent locomotor CpG. Front Neural Circuits 2010; 4. [PMID: 20844601 PMCID: PMC2938926 DOI: 10.3389/fncir.2010.00019] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 07/12/2010] [Indexed: 11/13/2022] Open
Abstract
Locomotion is a fundamental motor act that, to a large degree, is controlled by central pattern-generating (CPG) networks in the spinal cord. Glutamate is thought to be responsible for most of the excitatory input to and the excitatory activity within the locomotor CPG. However, previous studies in mammals have produced conflicting results regarding the necessity and role of the different ionotropic glutamate receptors (GluRs) in the CPG function. Here, we use electrophysiological and pharmacological techniques in the in vitro neonatal mouse lumbar spinal cord to investigate the role of a broad range of ionotropic GluRs in the control of locomotor speed and intrinsic locomotor network function. We show that non-NMDA (non-NMDARs) and NMDA receptor (NMDAR) systems may independently mediate locomotor-like activity and that these receptors set different speeds of locomotor-like activity through mechanisms acting at various network levels. AMPA and kainate receptors are necessary for generating the highest locomotor frequencies. For coordination, NMDARs are more important than non-NMDARs for conveying the rhythmic signal from the network to the motor neurons during long-lasting and steady locomotor activity. This study reveals that a diversity of ionotropic GluRs tunes the network to perform at different locomotor speeds and provides multiple levels for potential regulation and plasticity.
Collapse
Affiliation(s)
- Adolfo E Talpalar
- Mammalian Locomotor Laboratory, Department of Neuroscience, Karolinska Institutet Stockholm, Sweden
| | | |
Collapse
|