1
|
Uwaezuoke SN, Odimegwu CL, Mbanefo NR, Eneh CI, Arodiwe IO, Muoneke UV, Ogbuka FN, Ndiokwelu CO, Akwue AT. Vitamin D 3 supplementation as an adjunct in the management of childhood infectious diarrhea: a systematic review. BMC Infect Dis 2023; 23:159. [PMID: 36918811 PMCID: PMC10015675 DOI: 10.1186/s12879-023-08077-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/13/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Some studies have reported the possible role of vitamin D3 in ameliorating disease outcomes in childhood infectious diarrhea. However, findings about its effectiveness and the association of serum vitamin D levels with diarrhea risk appear inconsistent. We aimed to determine the efficacy of oral vitamin D3 as an adjunct in managing childhood infectious diarrhea and the relationship between vitamin D status and the disease. METHODS We searched the PubMed and Google Scholar electronic databases for relevant articles without limiting their year of publication. We selected primary studies that met the review's inclusion criteria, screened their titles and abstracts, and removed duplicates. We extracted data items from selected studies using a structured data-extraction form. We conducted a quality assessment of randomized controlled trials (RCTs) and non-randomized studies with the Cochrane collaboration tool and the Newcastle Ottawa Scale, respectively. We assessed the strength of the relationship between serum vitamin D levels and diarrhea using the correlation model. We estimated the I2 and tau2 values to assess between-study heterogeneity. RESULTS Nine full-text articles were selected, consisting of one RCT, three cross-sectional studies, two cohort studies, two longitudinal/prospective studies, and one case-control study. A total of 5,545 participants were evaluated in the nine studies. Six non-randomized studies provided weak evidence of the relationship between vitamin D levels and diarrhea risk as there was no correlation between the two variables. The only RCT failed to demonstrate any beneficial role of vitamin D3 in reducing the risk of recurrent diarrhea. The calculated I2 and tau2 values of 86.5% and 0.03, respectively suggested a high between-study heterogeneity which precluded a meta-analysis of study results. CONCLUSION Oral vitamin D3 may not be an effective adjunct in managing childhood infectious diarrhea. Additionally, the relationship between vitamin D status and infectious diarrhea appears weak. We recommend more adequately-powered RCTs to determine the effectiveness of vitamin D3 as an adjunct therapy in infectious diarrhea.
Collapse
Affiliation(s)
- Samuel N Uwaezuoke
- Department of Pediatrics, The University of Nigeria Teaching Hospital Ituku-Ozalla Enugu, Enugu, Nigeria.
| | - Chioma L Odimegwu
- Department of Pediatrics, The University of Nigeria Teaching Hospital Ituku-Ozalla Enugu, Enugu, Nigeria
| | - Ngozi R Mbanefo
- Department of Pediatrics, The University of Nigeria Teaching Hospital Ituku-Ozalla Enugu, Enugu, Nigeria
| | - Chizoma I Eneh
- Department of Pediatrics, Enugu State University Teaching Hospital, Enugu, Nigeria
| | - Ijeoma O Arodiwe
- Department of Pediatrics, The University of Nigeria Teaching Hospital Ituku-Ozalla Enugu, Enugu, Nigeria
| | - Uzoamaka V Muoneke
- Department of Pediatrics, The University of Nigeria Teaching Hospital Ituku-Ozalla Enugu, Enugu, Nigeria
| | - Francis N Ogbuka
- Department of Pediatrics, Enugu State University Teaching Hospital, Enugu, Nigeria
| | - Chibuzo O Ndiokwelu
- Department of Pediatrics, The University of Nigeria Teaching Hospital Ituku-Ozalla Enugu, Enugu, Nigeria
| | - Anthony T Akwue
- Emergency Department, ASEER field Hospital, Mecca, Kingdom of Saudi Arabia
| |
Collapse
|
2
|
Huang F, Huang S. Active vitamin D3 attenuates the severity of Salmonella colitis in mice by orchestrating innate immunity. Immun Inflamm Dis 2021; 9:481-491. [PMID: 33559391 PMCID: PMC8127544 DOI: 10.1002/iid3.408] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/02/2021] [Accepted: 01/19/2021] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Salmonella spp. pose major public health problems worldwide. A better understanding of the pathogenesis of these foodborne pathogens is a prerequisite for the design of improved intervention strategies that could reduce the use of antimicrobial agents and drug-resistant Salmonellosis. Accumulating evidence indicates that vitamin D is involved in regulating innate immunity, and may, therefore, play a key role in human responses to infection. Studies have suggested 1,25-dihydroxyvitamin D3 (1,25D3), the active form of vitamin D, effectively ameliorates colitis. These findings have broad implications for the use of vitamin D compounds in colitis. This study investigated the effect of active vitamin D3 on the severity of Salmonella colitis. METHODS A Salmonella colitis model was established with 6-8-week-old male C57BL/6 mice: Streptomycin-pretreated C57BL/6 mice were infected orally with Salmonella enterica serova Typhimurium wild-type strain SL1344 for 48 h. The mice were randomly assigned to control, model, and 1,25(OH)2 D3 -treated groups. After the experiment, the mice were sacrificed, and intestinal, spleen, and liver tissue samples were removed to analyze bacterial colonization, western blot for protein levels, and real-time-polymer chain reaction for messenger RNA (mRNA) expression. RESULTS We observed that 1,25D3 reduced the severity of Salmonella colitis in C57BL/6 mice by reducing cecal mIL-1beta, mIL-6, mTNF-alpha, and mIL-8 mRNA expressions, bacterial colonization (CFU/mg tissue) in the liver and spleen, but increased the human β-defensin-2 mRNA and autophagy protein expression, compared to those of the SL1344 infection only. CONCLUSIONS Our results document that active vitamin D3 reduced Salmonella colitis by decreasing inflammation, and bacterial translocation via induction of killing and autophagic clearance of pathogenic organisms.
Collapse
Affiliation(s)
- Fu‐Chen Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial HospitalChang Gung University College of MedicineKaohsiungTaiwan
| | - Shun‐Chen Huang
- Department of PathologyKaohsiung Chang Gung Memorial HospitalKaohsiungTaiwan
| |
Collapse
|
3
|
Rodríguez-Carlos A, Jacobo-Delgado YM, Santos-Mena AO, Rivas-Santiago B. Modulation of cathelicidin and defensins by histone deacetylase inhibitors: A potential treatment for multi-drug resistant infectious diseases. Peptides 2021; 140:170527. [PMID: 33744370 DOI: 10.1016/j.peptides.2021.170527] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/26/2021] [Accepted: 03/09/2021] [Indexed: 12/12/2022]
Abstract
Infectious diseases are an important growing public health problem, which perspective has worsened due to the increasing number of drug-resistant strains in the last few years. Although diverse solutions have been proposed, one viable solution could be the use of immune system modulators. The induction of the immune response can be increased by histone deacetylase inhibitors (iHDAC), which in turn modulate the chromatin and increase the activation of different cellular pathways and nuclear factors such as STAT3, HIF-1α NF-kB, C/EBPα and, AP-1. These pathways are capable to promote several immune response-related molecules including those with antimicrobial properties such as antimicrobial peptides (AMPs) that lead to the elimination of pathogens including multi drug-resistant strains.
Collapse
Affiliation(s)
- Adrián Rodríguez-Carlos
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico
| | | | - Alan O Santos-Mena
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico
| | - Bruno Rivas-Santiago
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico.
| |
Collapse
|
4
|
Woodhams DC, Rollins-Smith LA, Reinert LK, Lam BA, Harris RN, Briggs CJ, Vredenburg VT, Patel BT, Caprioli RM, Chaurand P, Hunziker P, Bigler L. Probiotics Modulate a Novel Amphibian Skin Defense Peptide That Is Antifungal and Facilitates Growth of Antifungal Bacteria. MICROBIAL ECOLOGY 2020; 79:192-202. [PMID: 31093727 DOI: 10.1007/s00248-019-01385-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/25/2019] [Indexed: 06/09/2023]
Abstract
Probiotics can ameliorate diseases of humans and wildlife, but the mechanisms remain unclear. Host responses to interventions that change their microbiota are largely uncharacterized. We applied a consortium of four natural antifungal bacteria to the skin of endangered Sierra Nevada yellow-legged frogs, Rana sierrae, before experimental exposure to the pathogenic fungus Batrachochytrium dendrobatidis (Bd). The probiotic microbes did not persist, nor did they protect hosts, and skin peptide sampling indicated immune modulation. We characterized a novel skin defense peptide brevinin-1Ma (FLPILAGLAANLVPKLICSITKKC) that was downregulated by the probiotic treatment. Brevinin-1Ma was tested against a range of amphibian skin cultures and found to inhibit growth of fungal pathogens Bd and B. salamandrivorans, but enhanced the growth of probiotic bacteria including Janthinobacterium lividum, Chryseobacterium ureilyticum, Serratia grimesii, and Pseudomonas sp. While commonly thought of as antimicrobial peptides, here brevinin-1Ma showed promicrobial function, facilitating microbial growth. Thus, skin exposure to probiotic bacterial cultures induced a shift in skin defense peptide profiles that appeared to act as an immune response functioning to regulate the microbiome. In addition to direct microbial antagonism, probiotic-host interactions may be a critical mechanism affecting disease resistance.
Collapse
Affiliation(s)
- Douglas C Woodhams
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA.
| | - Louise A Rollins-Smith
- Departments of Pathology, Microbiology and Immunology and Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
- Department of Biological Science, Vanderbilt University School of Medicine, Nashville, TN, 37235, USA
| | - Laura K Reinert
- Departments of Pathology, Microbiology and Immunology and Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Briana A Lam
- Department of Biology, James Madison University, Harrisonburg, VA, 22807, USA
| | - Reid N Harris
- Department of Biology, James Madison University, Harrisonburg, VA, 22807, USA
| | - Cheryl J Briggs
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, 93106-9610, USA
| | - Vance T Vredenburg
- Department of Biology, San Francisco State University, San Francisco, CA, 94132-1722, USA
| | - Bhumi T Patel
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Richard M Caprioli
- Mass Spectrometry Research Center and Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232-8575, USA
| | - Pierre Chaurand
- Department of Chemistry, Université de Montréal, Montreal, QC, H3T 1J4, Canada
| | - Peter Hunziker
- Functional Genomics Center Zurich, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Laurent Bigler
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| |
Collapse
|
5
|
Golpour A, Bereswill S, Heimesaat MM. Antimicrobial and Immune-Modulatory Effects of Vitamin D Provide Promising Antibiotics-Independent Approaches to Tackle Bacterial Infections - Lessons Learnt from a Literature Survey. Eur J Microbiol Immunol (Bp) 2019; 9:80-87. [PMID: 31662886 PMCID: PMC6798578 DOI: 10.1556/1886.2019.00014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 07/24/2019] [Indexed: 12/19/2022] Open
Abstract
Antimicrobial multidrug-resistance (MDR) constitutes an emerging threat to global health and makes the effective prevention and treatment of many, particularly severe infections challenging, if not impossible. Many antibiotic classes have lost antimicrobial efficacy against a plethora of infectious agents including bacterial species due to microbial acquisition of distinct resistance genes. Hence, the development of novel anti-infectious intervention strategies including antibiotic-independent approaches is urgently needed. Vitamins such as vitamin D and vitamin D derivates might be such promising molecular candidates to combat infections caused by bacteria including MDR strains. Using the Pubmed database, we therefore performed an in-depth literature survey, searching for publications on the antimicrobial effect of vitamin D directed against bacteria including MDR strains. In vitro and clinical studies between 2009 and 2019 revealed that vitamin D does, in fact, possess antimicrobial properties against both Gram-positive and Gram-negative bacterial species, whereas conflicting results could be obtained from in vivo studies. Taken together, the potential anti-infectious effects for the antibiotic-independent application of vitamin D and/or an adjunct therapy in combination with antibiotic compounds directed against infectious diseases such as tuberculosis, H. pylori infections, or skin diseases, for instance, should be considered and further investigated in more detail.
Collapse
Affiliation(s)
- Ainoosh Golpour
- Institute of Microbiology, Infectious Diseases and Immunology Charité - University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Stefan Bereswill
- Institute of Microbiology, Infectious Diseases and Immunology Charité - University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Markus M Heimesaat
- Institute of Microbiology, Infectious Diseases and Immunology Charité - University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
6
|
Vitamin D-binding protein is inversely associated with the incidence of gastrointestinal and ear infections in school-age children. Epidemiol Infect 2018; 146:1996-2002. [PMID: 30056817 DOI: 10.1017/s0950268818002066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Circulating 25-hydroxy vitamin D (25(OH)D) is related to decreased rates of gastrointestinal and ear infections in school-age children. Vitamin D-binding protein (DBP) transports 25(OH)D and exerts immunological functions; however, it is unknown whether DBP is associated with infectious morbidity in children. We quantified plasma DBP concentrations in 540 school-age children at the time of recruitment into a cohort study in Bogotá, Colombia and obtained daily information on infectious morbidity symptoms and doctor visits during the school year. We compared the incidence rates of gastrointestinal and respiratory symptoms across quartiles of DBP concentration by estimating adjusted incidence rate ratios (IRRs) with 95% confidence interval (CI). We also estimated the per cent of the associations between DBP and morbidity that were mediated through 25(OH)D using a counterfactual frame. Mean ± s.d. DBP concentration was 2650 ± 1145 nmol/l. DBP was inversely associated with the rates of diarrhoea with vomiting (IRR for quartiles 2-4 vs. 1 = 0.48; 95% CI 0.25-0.92; P = 0.03) and earache/ear discharge with fever (IRR for quartiles 2-4 vs. 1 = 0.29; 95% CI 0.12-0.71; P = 0.006). The DBP-morbidity associations were not mediated through 25(OH)D. We conclude that plasma DBP predicts lower incidence of gastrointestinal and ear infections in school-age children independent of 25(OH)D.
Collapse
|
7
|
Bergman P, Seyedoleslami Esfahani S, Engström Y. Drosophila as a Model for Human Diseases—Focus on Innate Immunity in Barrier Epithelia. Curr Top Dev Biol 2017; 121:29-81. [DOI: 10.1016/bs.ctdb.2016.07.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Attia S, Versloot CJ, Voskuijl W, van Vliet SJ, Di Giovanni V, Zhang L, Richardson S, Bourdon C, Netea MG, Berkley JA, van Rheenen PF, Bandsma RH. Mortality in children with complicated severe acute malnutrition is related to intestinal and systemic inflammation: an observational cohort study. Am J Clin Nutr 2016; 104:1441-1449. [PMID: 27655441 PMCID: PMC5081715 DOI: 10.3945/ajcn.116.130518] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 08/24/2016] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Diarrhea affects a large proportion of children with severe acute malnutrition (SAM). However, its etiology and clinical consequences remain unclear. OBJECTIVE We investigated diarrhea, enteropathogens, and systemic and intestinal inflammation for their interrelation and their associations with mortality in children with SAM. DESIGN Intestinal pathogens (n = 15), cytokines (n = 29), fecal calprotectin, and the short-chain fatty acids (SCFAs) butyrate and propionate were determined in children aged 6-59 mo (n = 79) hospitalized in Malawi for complicated SAM. The relation between variables, diarrhea, and death was assessed with partial least squares (PLS) path modeling. RESULTS Fatal subjects (n = 14; 18%) were younger (mean ± SD age: 17 ± 11 compared with 25 ± 11 mo; P = 0.01) with higher prevalence of diarrhea (46% compared with 18%, P = 0.03). Intestinal pathogens Shigella (36%), Giardia (33%), and Campylobacter (30%) predominated, but their presence was not associated with death or diarrhea. Calprotectin was significantly higher in children who died [median (IQR): 1360 mg/kg feces (2443-535 mg/kg feces) compared with 698 mg/kg feces (1438-244 mg/kg feces), P = 0.03]. Butyrate [median (IQR): 31 ng/mL (112-22 ng/mL) compared with 2036 ng/mL (5800-149 ng/mL), P = 0.02] and propionate [median (IQR): 167 ng/mL (831-131 ng/mL) compared with 3174 ng/mL (5819-357 ng/mL), P = 0.04] were lower in those who died. Mortality was directly related to high systemic inflammation (path coefficient = 0.49), whereas diarrhea, high calprotectin, and low SCFA production related to death indirectly via their more direct association with systemic inflammation. CONCLUSIONS Diarrhea, high intestinal inflammation, low concentrations of fecal SCFAs, and high systemic inflammation are significantly related to mortality in SAM. However, these relations were not mediated by the presence of intestinal pathogens. These findings offer an important understanding of inflammatory changes in SAM, which may lead to improved therapies. This trial was registered at www.controlled-trials.com as ISRCTN13916953.
Collapse
Affiliation(s)
- Suzanna Attia
- Division of Gastroenterology, Hepatology, and Nutrition
| | - Christian J Versloot
- Physiology and Experimental Medicine, Peter Gilgan Centre for Research and Learning
| | - Wieger Voskuijl
- Department of Paediatrics and Child Health, College of Medicine, University of Malawi, Blantyre, Malawi.,Global Child Health Group, Emma Children's Hospital, Academic Medical Centre, Amsterdam, Netherlands
| | - Sara J van Vliet
- University of Groningen, University Medical Center Groningen, Department of Pediatric Gastroenterology, Hepatology, and Nutrition, Groningen, Netherlands
| | - Valeria Di Giovanni
- Physiology and Experimental Medicine, Peter Gilgan Centre for Research and Learning
| | - Ling Zhang
- Physiology and Experimental Medicine, Peter Gilgan Centre for Research and Learning
| | | | - Céline Bourdon
- Physiology and Experimental Medicine, Peter Gilgan Centre for Research and Learning
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - James A Berkley
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi Nuffield Department of Clinical Medicine, Oxford University, Oxford, United Kingdom; and.,Childhood Acute Illness and Nutrition Network (CHAIN)
| | - Patrick F van Rheenen
- University of Groningen, University Medical Center Groningen, Department of Pediatric Gastroenterology, Hepatology, and Nutrition, Groningen, Netherlands
| | - Robert Hj Bandsma
- Division of Gastroenterology, Hepatology, and Nutrition, .,Physiology and Experimental Medicine, Peter Gilgan Centre for Research and Learning.,Centre for Global Child Health, The Hospital for Sick Children, Toronto, Ontario, Canada.,University of Groningen, University Medical Center Groningen, Department of Pediatric Gastroenterology, Hepatology, and Nutrition, Groningen, Netherlands.,Childhood Acute Illness and Nutrition Network (CHAIN)
| |
Collapse
|
9
|
Anderson M, Sansonetti PJ, Marteyn BS. Shigella Diversity and Changing Landscape: Insights for the Twenty-First Century. Front Cell Infect Microbiol 2016; 6:45. [PMID: 27148494 PMCID: PMC4835486 DOI: 10.3389/fcimb.2016.00045] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/28/2016] [Indexed: 12/17/2022] Open
Abstract
Shigella is a pathovar of Escherichia coli comprising four groups, Shigella flexneri, Shigella sonnei, Shigella dysenteriae, and Shigella boydii, each of them, with the exception of S.sonnei, comprising several serotypes. Shigella accounts for the majority of dysentery causing infections occurring world-wide each year. Recent advancements in the Shigella field have led to a better understanding of the molecular mechanisms underlying host epithelial cell invasion and immune cell function manipulation, mainly using S. flexneri as a model. Host-cell invasion is the final step of the infection process, as Shigella's virulence strategy relies also on its ability to survive hostile conditions during its journey through the gastro-intestinal tract, to compete with the host microbiota and to cross the intestinal mucus layer. Hence, the diversity of the virulence strategies among the different Shigella species has not yet been deeply investigated, which might be an important step to understand the epidemiological spreading of Shigella species worldwide and a key aspect for the validation of novel vaccine candidates. The recent development of high-throughput screening and sequencing methods will facilitate these complex comparison studies. In this review we discuss several of the major avenues that the Shigella research field has taken over the past few years and hopefully gain some insights into the questions that remain surrounding this important human pathogen.
Collapse
Affiliation(s)
- Mark Anderson
- Institut Pasteur, Unité de Pathogénie Microbienne MoléculaireParis, France; Institut National de la Santé et de la Recherche Médicale, Unité 786Paris, France
| | - Philippe J Sansonetti
- Institut Pasteur, Unité de Pathogénie Microbienne MoléculaireParis, France; Institut National de la Santé et de la Recherche Médicale, Unité 786Paris, France; Collège de FranceParis, France
| | - Benoit S Marteyn
- Institut Pasteur, Unité de Pathogénie Microbienne MoléculaireParis, France; Institut National de la Santé et de la Recherche Médicale, Unité 786Paris, France
| |
Collapse
|
10
|
Ahmed AMS, Magalhaes RJS, Ahmed T, Long KZ, Hossain M, Islam MM, Mahfuz M, Gaffar SMA, Sharmeen A, Haque R, Guerrant RL, Petri WA, Mamun AA. Vitamin-D status is not a confounder of the relationship between zinc and diarrhoea: a study in 6-24-month-old underweight and normal-weight children of urban Bangladesh. Eur J Clin Nutr 2016; 70:620-8. [PMID: 26956127 DOI: 10.1038/ejcn.2016.7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 10/23/2015] [Accepted: 11/26/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND/OBJECTIVE The role of micronutrients particularly zinc in childhood diarrhoea is well established. Immunomodulatory functions of vitamin-D in diarrhoea and its role in the effect of other micronutrients are not well understood. This study aimed to investigate whether vitamin-D directly associated or confounded the association between other micronutrient status and diarrhoeal incidence and severity in 6-24-month underweight and normal-weight children in urban Bangladesh. SUBJECTS/METHODS Multivariable generalised estimating equations were used to estimate incidence rate ratios for incidence (Poisson) and severity (binomial) of diarrhoea on cohorts of 446 normal-weight and 466 underweight children. Outcomes of interest included incidence and severity of diarrhoea, measured daily during a follow-up period of 5 months. The exposure of interest was vitamin-D status at enrolment. RESULTS Normal-weight and underweight children contributed 62 117 and 62 967 day observation, with 14.2 and 12.8 days/child/year of diarrhoea, respectively. None of the models showed significant associations of vitamin-D status with diarrhoeal morbidity. In the final model, zinc-insufficient normal-weight children had 1.3 times more days of diarrhoea than sufficient children (P<0.05). Again zinc insufficiency and mother's education (1-5 and >5 years) had 1.8 and 2.3 times more risk of severe diarrhoea. In underweight children, older age and female had 24-63 and 17% fewer days of diarrhoea and 52-54 and 31% fewer chances of severe diarrhoea. CONCLUSION Vitamin-D status was not associated with incidence and severity of diarrhoea in study children. Role of zinc in diarrhoea was only evident in normal-weight children. Our findings demonstrate that vitamin-D is not a confounder of the relationship between zinc and diarrhoea.
Collapse
Affiliation(s)
- A M S Ahmed
- School of Public Health, The University of Queensland, Brisbane, QLD, Australia.,Centre for Nutrition and Food Security, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - R J S Magalhaes
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia.,Child Health Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - T Ahmed
- Centre for Nutrition and Food Security, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - K Z Long
- School of Public Health, The University of Queensland, Brisbane, QLD, Australia.,Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - MdI Hossain
- Centre for Nutrition and Food Security, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - M M Islam
- Centre for Nutrition and Food Security, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - M Mahfuz
- Centre for Nutrition and Food Security, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - S M A Gaffar
- Centre for Nutrition and Food Security, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - A Sharmeen
- Centre for Nutrition and Food Security, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - R Haque
- Centre for Nutrition and Food Security, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - R L Guerrant
- Division of Infectious Diseases and International Health, Department of Internal Medicine, University of Virginia, Charlottesville, VA, USA
| | - W A Petri
- Division of Infectious Diseases and International Health, Department of Internal Medicine, University of Virginia, Charlottesville, VA, USA
| | - A A Mamun
- School of Public Health, The University of Queensland, Brisbane, QLD, Australia.,Centre for Nutrition and Food Security, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| |
Collapse
|
11
|
Nuri R, Shprung T, Shai Y. Defensive remodeling: How bacterial surface properties and biofilm formation promote resistance to antimicrobial peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:3089-100. [PMID: 26051126 DOI: 10.1016/j.bbamem.2015.05.022] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/25/2015] [Accepted: 05/26/2015] [Indexed: 11/15/2022]
Abstract
Multidrug resistance bacteria are a major concern worldwide. These pathogens cannot be treated with conventional antibiotics and thus alternative therapeutic agents are needed. Antimicrobial peptides (AMPs) are considered to be good candidates for this purpose. Most AMPs are short and positively charged amphipathic peptides, which are found in all known forms of life. AMPs are known to kill bacteria by binding to the negatively charged bacterial surface, and in most cases cause membrane disruption. Resistance toward AMPs can be developed, by modification of bacterial surface molecules, secretion of protective material and up-regulation or elimination of specific proteins. Because of the general mechanisms of attachment and action of AMPs, bacterial resistance to AMPs often involves biophysical and biochemical changes such as surface rigidity, cell wall thickness, surface charge, as well as membrane and cell wall modification. Here we focus on the biophysical, surface and surrounding changes that bacteria undergo in acquiring resistance to AMPs. In addition we discuss the question of whether bacterial resistance to administered AMPs might compromise our innate immunity to endogenous AMPs. This article is part of a Special Issue entitled: Bacterial Resistance to Antimicrobial Peptides.
Collapse
Affiliation(s)
- Reut Nuri
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tal Shprung
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yechiel Shai
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
12
|
Broekman DC, Guðmundsson GH, Maier VH. Differential regulation of cathelicidin in salmon and cod. FISH & SHELLFISH IMMUNOLOGY 2013; 35:532-538. [PMID: 23727282 DOI: 10.1016/j.fsi.2013.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 04/29/2013] [Accepted: 05/06/2013] [Indexed: 06/02/2023]
Abstract
Antimicrobial peptides (AMPs) are an important component of innate immunity in vertebrates. The cathelicidin family of AMPs is well characterized in mammals and has also been reported in several fish species. In this study we investigated the regulation of cathelicidin expression in a gadoid and a salmonid cell-line in order to dissect the signalling pathways involved. For this, fish cells were treated with microbial lysates, purified microbial components and commercial signalling inhibitors and expression of cathelicidin was assessed with quantitative real-time PCR (qPCR). We found that cathelicidin expression was induced in both cell lines in response to microbial stimuli, but the response patterns differed in these evolutionary distant fish species. Our data suggest that in salmonids, pattern recognition receptors such as TLR5 may be involved in the stimulation of cathelicidin expression and that the signalling cascade can include PI3-kinase and cellular trafficking compartments. A detailed knowledge of the regulating factors involved in AMP-related defence responses, including cathelicidin, could help in developing strategies to enhance the immune defence of fish.
Collapse
Affiliation(s)
- Daniela C Broekman
- Institute of Biology, University of Iceland, Sturlagata 7, 101 Reykjavik, Iceland
| | | | | |
Collapse
|
13
|
Thornton KA, Marín C, Mora-Plazas M, Villamor E. Vitamin D deficiency associated with increased incidence of gastrointestinal and ear infections in school-age children. Pediatr Infect Dis J 2013; 32:585-93. [PMID: 23340562 DOI: 10.1097/inf.0b013e3182868989] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Vitamin D deficiency (VDD) is highly prevalent among children worldwide. The effects of VDD include alterations of the immune response and increased risk of infection but little evidence exists in school-age children. We investigated the association of vitamin D status with morbidity in a prospective study of school-age children from Bogotá, Colombia. METHODS We measured plasma 25-hydroxyvitamin D (25(OH)D) concentrations in a random sample of 475 children (mean ± standard deviation age: 8.9 ± 1.6 years) and followed them for an academic year. Caregivers were asked to record daily information on the incidence of morbidity episodes using pictorial diaries. Baseline vitamin D status was classified according to 25(OH)D concentrations as deficient (<50 nmol/L), insufficient (≥50 and <75 nmol/L) or sufficient (≥75 nmol/L). We used Poisson regression to estimate incidence rate ratios and 95% confidence intervals for days with diarrhea, vomiting, diarrhea with vomiting, cough with fever and earache or discharge with fever, comparing vitamin D-deficient with vitamin D-sufficient children. Estimates were adjusted for child's age, sex and household socioeconomic status. RESULTS The prevalence of VDD was 10%; an additional 47% of children were vitamin D-insufficient. VDD was associated with increased rates of diarrhea with vomiting (adjusted incidence rate ratio: 2.05; 95% confidence interval: 1.19, 3.53) and earache/discharge with fever (adjusted incidence rate ratio: 2.36; 95% confidence interval: 1.26, 4.44). VDD was not significantly related to cough with fever. CONCLUSIONS These results suggest that VDD is related to increased incidence of gastrointestinal and ear infections in school-age children. The effect of correcting VDD on reducing risk of these infections needs to be tested in supplementation trials.
Collapse
Affiliation(s)
- Kathryn A Thornton
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA.
| | | | | | | |
Collapse
|
14
|
Abstract
Synthesis and large-scale manufacturing technologies are now available for the commercial production of even the most complex peptide anti-infectives. Married with the potential of this class of molecule as the next generation of effective, resistance-free and safe antimicrobials, and a much better understanding of their biology, pharmacology and pharmacodynamics, the first regulatory approvals and introduction into clinical practice of these promising drug candidates will likely be soon. This is a key juncture in the history/life cycle of peptide anti-infectives and, perhaps, their commercial and therapeutic potential is about to be realized. This review highlights the promise of these agents as the next generation of therapeutics and summarizes the challenges faced in, and lessons learned from, the past.
Collapse
|
15
|
A comprehensive summary of LL-37, the factotum human cathelicidin peptide. Cell Immunol 2012; 280:22-35. [PMID: 23246832 DOI: 10.1016/j.cellimm.2012.11.009] [Citation(s) in RCA: 419] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 11/09/2012] [Accepted: 11/15/2012] [Indexed: 01/01/2023]
Abstract
Cathelicidins are a group of antimicrobial peptides. Since their discovery, it has become clear that they are an exceptional class of peptides, with some members having pleiotropic effects. Not only do they possess an antibacterial, antifungal and antiviral function, they also show a chemotactic and immunostimulatory/-modulatory effect. Moreover, they are capable of inducing wound healing, angiogenesis and modulating apoptosis. Recent insights even indicate for a role of these peptides in cancer. This review provides a comprehensive summary of the most recent and relevant insights concerning the human cathelicidin LL-37.
Collapse
|
16
|
van der Does AM, Bergman P, Agerberth B, Lindbom L. Induction of the human cathelicidin LL-37 as a novel treatment against bacterial infections. J Leukoc Biol 2012; 92:735-42. [DOI: 10.1189/jlb.0412178] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
17
|
Yount NY, Yeaman MR. Emerging themes and therapeutic prospects for anti-infective peptides. Annu Rev Pharmacol Toxicol 2012; 52:337-60. [PMID: 22235859 DOI: 10.1146/annurev-pharmtox-010611-134535] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pathogens resistant to most conventional anti-infectives are a harbinger of the need to discover and develop novel anti-infective agents and strategies. Endogenous host defense peptides (HDPs) have retained evolution-tested efficacy against pathogens that have become refractory to traditional antibiotics. Evidence indicates that HDPs target membrane integrity, bioenergetics, and other essential features of microbes that may be less mutable than conventional antibiotic targets. For these reasons, HDPs have received increasing attention as templates for development of potential anti-infective therapeutics. Unfortunately, advances toward this goal have proven disappointing, in part owing to limited understanding of relevant structure-activity and selective toxicity relationships in vivo, a limited number of reports and overall understanding of HDP pharmacology, and the difficulty of cost-effective production of such peptides on a commodity scale. However, recent molecular insights and technology innovations have led to novel HDP-based and mimetic anti-infective peptide candidates designed to overcome these limitations. Although initial setbacks have presented challenges to therapeutic development, emerging themes continue to highlight the potential of HDP-based anti-infectives as a platform for next-generation therapeutics that will help address the growing threat of multidrug-resistant infections.
Collapse
Affiliation(s)
- Nannette Y Yount
- Divisions of Infectious Diseases and Molecular Medicine, Los Angeles County Harbor-UCLA Medical Center, Torrance, California 90509, USA
| | | |
Collapse
|
18
|
Carvalho FA, Aitken JD, Vijay-Kumar M, Gewirtz AT. Toll-like receptor-gut microbiota interactions: perturb at your own risk! Annu Rev Physiol 2011; 74:177-98. [PMID: 22035346 DOI: 10.1146/annurev-physiol-020911-153330] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The well-being of the intestine and its host requires that this organ execute its complex function amid colonization by a large and diverse microbial community referred to as the gut microbiota. A myriad of interacting mechanisms of mucosal immunity permit the gut to corral the microbiota in such a way as to maximize the benefits and to minimize the danger of living in close proximity to this large microbial biomass. Toll-like receptors and Nod-like receptors, collectively referred to as pattern recognition receptors (PRRs), recognize a variety of microbial components and, hence, play a central role in governing the interface between host and microbiota. This review examines mechanisms by which PRR-microbiota interactions are regulated so as to allow activation of host defense when necessary while preventing excessive inflammation, which can have a myriad of negative consequences for the host. Analysis of published studies performed in human subjects and a variety of murine disease models reveals the central theme that PRRs play a key role in maintaining a healthful stable relationship between the intestine and its microbiota. In contrast, although select genetic ablations of PRR signaling may protect against some chronic diseases, the overriding theme of studies performed to date is that perturbations of PRR-microbiota interactions are more likely to promote disease states associated with inflammation.
Collapse
Affiliation(s)
- Frederic A Carvalho
- Pharmacologie Fondamentale et Clinique de la Douleur, Clermont Université, Université d'Auvergne, F-63000 Clermont-Ferrand, France
| | | | | | | |
Collapse
|
19
|
Youssef DA, Miller CW, El-Abbassi AM, Cutchins DC, Cutchins C, Grant WB, Peiris AN. Antimicrobial implications of vitamin D. DERMATO-ENDOCRINOLOGY 2011; 3:220-9. [PMID: 22259647 DOI: 10.4161/derm.3.4.15027] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Revised: 01/12/2011] [Accepted: 01/24/2011] [Indexed: 12/14/2022]
Abstract
Evidence exists that vitamin D has a potential antimicrobial activity and its deficiency has deleterious effects on general well-being and longevity. Vitamin D may reduce the risk of infection through multiple mechanisms. Vitamin D boosts innate immunity by modulating production of anti-microbial peptides (AMPs) and cytokine response. Vitamin D and its analogues via these mechanisms are playing an increasing role in the management of atopic dermatitis, psoriasis, vitiligo, acne and rosacea. Vitamin D may reduce susceptibility to infection in patients with atopic dermatitis and the ability to regulate local immune and inflammatory responses offers exciting potential for understanding and treating chronic inflammatory dermatitides. Moreover, B and T cell activation as well as boosting the activity of monocytes and macrophages also contribute to a potent systemic anti-microbial effect. The direct invasion by pathogenic organisms may be minimized at sites such as the respiratory tract by enhancing clearance of invading organisms. A vitamin D replete state appears to benefit most infections, with the possible noteworthy exception of Leishmaniasis. Antibiotics remain an expensive option and misuse of these agents results in significant antibiotic resistance and contributes to escalating health care costs. Vitamin D constitutes an inexpensive prophylactic option and possibly therapeutic product either by itself or as a synergistic agent to traditional antimicrobial agents. This review outlines the specific antimicrobial properties of vitamin D in combating a wide range of organisms. We discuss the possible mechanisms by which vitamin D may have a therapeutic role in managing a variety of infections.
Collapse
Affiliation(s)
- Dima A Youssef
- Mountain Home VAMC Medicine Service; Mountain Home; TN USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
AIMS The goal of this review is to identify the antimicrobial proteins in the oral fluids, saliva and gingival crevicular fluid and identify functional families and candidates for antibacterial treatment. RESULTS Periodontal biofilms initiate a cascade of inflammatory and immune processes that lead to the destruction of gingival tissues and ultimately alveolar bone loss and tooth loss. Treatment of periodontal disease with conventional antibiotics does not appear to be effective in the absence of mechanical debridement. An alternative treatment may be found in antimicrobial peptides and proteins, which can be bactericidal and anti-inflammatory and block the inflammatory effects of bacterial toxins. The peptides have co-evolved with oral bacteria, which have not developed significant peptide resistance. Over 45 antibacterial proteins are found in human saliva and gingival crevicular fluid. The proteins and peptides belong to several different functional families and offer broad protection from invading microbes. Several antimicrobial peptides and proteins (AMPs) serve as templates for the development of therapeutic peptides and peptide mimetics, although to date none have demonstrated efficacy in human trials. CONCLUSIONS Existing and newly identified AMPs may be developed for therapeutic use in periodontal disease or can serve as templates for peptide and peptide mimetics with improved therapeutic indices.
Collapse
Affiliation(s)
- Sven-Ulrik Gorr
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA.
| | | |
Collapse
|
21
|
Chui KKH, Jagai JS, Griffiths JK, Naumova EN. Hospitalization of the elderly in the United States for nonspecific gastrointestinal diseases: a search for etiological clues. Am J Public Health 2011; 101:2082-6. [PMID: 21653903 DOI: 10.2105/ajph.2010.300096] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The frequency of hospitalization among the elderly in the United States caused by gastrointestinal diseases between 1991 and 2004 increased dramatically, especially hospitalization of elderly individuals with nonspecific diagnoses. We analyzed 6 640 304 gastrointestinal disease-associated hospitalization records in this 14-year period by comparing the peak times of nonspecific gastrointestinal diseases with those of specific diseases. We found that most nonspecific gastrointestinal diseases peak concurrently with viral enteritis, suggesting a lack of diagnostic testing for viruses, which may adversely affect the efficiency of prevention, surveillance, and treatment efforts.
Collapse
Affiliation(s)
- Kenneth K H Chui
- Department of Public Health and Community Medicine, Tufts University School of Medicine Boston, MA 02111, USA.
| | | | | | | |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Significant advances have been made in the characterization of Vitamin D and the Vitamin D receptor (VDR) in immune function. The studies of signaling pathways involved in the response to infection and inflammation have led to a more detailed understanding of the cellular response to Vitamin D through VDR. This review summarizes recent progress in understanding how Vitamin D contributes to mucosal immune function, particularly in relation to the molecular mechanisms by which Vitamin D and VDR influence mucosal immunity, bacterial infection, and inflammation. RECENT FINDINGS Recently, it was shown that Vitamin D modulates the T cell antigen receptor, further demonstrating that Vitamin D has a nonclassical role in immunoregulation. The anti-inflammation and anti-infection functions for Vitamin D are newly identified and highly significant activities. Vitamin D/VDR have multiple critical functions in regulating the response to intestinal homeostasis, tight junctions, pathogen invasion, commensal bacterial colonization, antimicrobe peptide secretion, and mucosal defense. Interestingly, microorganisms modulate the VDR signaling pathway. SUMMARY Vitamin D is known as a key player in calcium homeostasis and electrolyte and blood pressure regulation. Recently, important progress has been made in understanding how the noncanonical activities of Vitamin D influence the pathogenesis and prevention of human disease. Vitamin D and VDR are directly involved in T cell antigen receptor signaling. The involvement of Vitamin D/VDR in anti-inflammation and anti-infection represents a newly identified and highly significant activity for VDR. Studies have indicated that the dysregulation of VDR may lead to exaggerated inflammatory responses, raising the possibility that defects in Vitamin D and VDR signaling transduction may be linked to bacterial infection and chronic inflammation. Further characterization of Vitamin D/VDR will help elucidate the pathogenesis of various human diseases and in the design of new approaches for prevention and treatment.
Collapse
|