1
|
Doherty DF, Roets LE, Dougan CM, Brown RR, Hawthorne IJ, O'Kane C, Krasnodembskaya AD, Mall MA, Taggart CC, Weldon S. Mesenchymal stromal cells reduce inflammation and improve lung function in a mouse model of cystic fibrosis lung disease. Sci Rep 2024; 14:30899. [PMID: 39730509 DOI: 10.1038/s41598-024-81276-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/25/2024] [Indexed: 12/29/2024] Open
Abstract
Mesenchymal stromal cells (MSCs) are multipotent adult stem cells which possess immunomodulatory and repair capabilities. In this study, we investigated whether MSC therapy could modulate inflammation and lung damage in the lungs of Scnn1b-transgenic mice overexpressing the β-subunit of the epithelial sodium channel (β-ENaC), a model with features of Cystic Fibrosis lung disease. Human bone marrow derived MSC cells were intravenously delivered to mice, prior to collection of bronchoalveolar lavage (BALF) and tissue. BALF analysis revealed a significant reduction in inflammatory cells after MSC administration, with both monocytic cells and neutrophils significantly reduced. Pro-inflammatory cytokines keratinocyte-derived chemokine (KC) and osteopontin were also significantly reduced. Histological tissue analysis revealed a reduction in emphysema in Scnn1b-TG mice treated with MSCs and consistent with these findings, improvements in lung function after MSC therapy were observed. Furthermore, MSCs enhanced Ki67 staining in alveolar cells, which may indicate regeneration of the destroyed parenchyma. Mechanistically, restoration of peroxisome proliferator-activated receptor-γ (PPARγ) expression and its transcriptional program were identified after MSC treatment. Our data demonstrate that MSC therapy can reduce inflammation, damage, and lung function decline in the chronically inflamed lung of Scnn1b-Tg mice, suggesting that MSCs may provide an effective tool in the treatment of muco-obstructive diseases such as cystic fibrosis.
Collapse
Affiliation(s)
- Declan F Doherty
- Airway Innate Immunity Research Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast, UK
| | - Lydia E Roets
- Airway Innate Immunity Research Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast, UK
| | - Caoifa M Dougan
- Airway Innate Immunity Research Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast, UK
| | - Ryan R Brown
- Airway Innate Immunity Research Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast, UK
| | - Ian J Hawthorne
- Airway Innate Immunity Research Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast, UK
| | - Cecilia O'Kane
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Anna D Krasnodembskaya
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Marcus A Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
- BerlinInstitute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Clifford C Taggart
- Airway Innate Immunity Research Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast, UK.
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson, Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| | - Sinéad Weldon
- Airway Innate Immunity Research Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast, UK
| |
Collapse
|
2
|
Khachigian LM. The MEK-ERK-Egr-1 axis and its regulation in cardiovascular disease. Vascul Pharmacol 2023; 153:107232. [PMID: 37734428 DOI: 10.1016/j.vph.2023.107232] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
Cardiovascular disease (CVD) is the primary cause of morbidity and mortality in the Western world. Multiple molecular and cellular processes underpinning the pathogenesis of CVD are regulated by the zinc finger transcription factor and product of an immediate-early gene, early growth response-1 (Egr-1). Egr-1 regulates multiple pro-inflammatory processes that underpin the manifestation of CVD. The activity of Egr-1 itself is influenced by a range of post-translational modifications including sumoylation, ubiquitination and acetylation. Egr-1 also undergoes phosphorylation by protein kinases, such as extracellular-signal regulated kinase (ERK) which is itself phosphorylated by MEK. This article reviews recent progress on the MEK-ERK-Egr-1 cascade, notably regulation in conjunction with factors and agents such as TET2, TRIB2, MIAT, SphK1, cAMP, teneligliptin, cholinergic drugs, red wine and flavonoids, wogonin, febuxostat, docosahexaenoic acid and AT1R blockade. Such insights should provide new opportunity for therapeutic intervention in CVD.
Collapse
Affiliation(s)
- Levon M Khachigian
- Vascular Biology and Translational Research, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
3
|
Yang L, Zhu Z, Zheng Y, Yang J, Liu Y, Shen T, Li M, He H, Huang H, Dai W. RAB6A functions as a critical modulator of the stem-like subsets in cholangiocarcinoma. Mol Carcinog 2023; 62:1460-1473. [PMID: 37278569 DOI: 10.1002/mc.23589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/08/2023] [Accepted: 05/25/2023] [Indexed: 06/07/2023]
Abstract
RAB6A is a member of RAB GTPase family and plays an important role in the targeted transport of neurotrophic receptors and inflammatory cytokines. RAB6A-mediated secretory pathway is involved in many physiological and pathological processes. Defects in RAB6A-mediated secretory pathway may lead to the development of many diseases, including cancer. However, its role in cholangiocarcinoma (CCA) has not yet been revealed. We explored the regulatory role of RAB6A in the stem-like subsets of CCA. We showed that RAB6A knockdown (KD) impedes cancer stem cells (CSCs) properties and epithelial-mesenchymal transition in vitro and that suppression of RAB6A inhibits tumor growth in vivo. We screened target cargos of RAB6A in CCA cells and identified a extracellular matrix component as the target cargo. RAB6A binds directly to OPN, and RAB6A KD suppressed OPN secretion and inhibited the interaction between OPN and αV integrin receptor. Moreover, RAB6A KD inhibited the AKT signaling pathway, which is a downstream effector of the integrin receptor signaling. In addition, shRNA targeting OPN blocked endogenous expression of OPN and consequently weakened CSCs properties in RAB6A-formed spheres. Similarly, inhibitor of AKT signaling, MK2206 also impedes oncogenic function of RAB6A in the stem-like subsets of CCA cells. In conclusion, our findings showed that RAB6A sustains CSCs phenotype maintenance by modulating the secretion of OPN and consequentially activating the downstream AKT signaling pathway. Targeting the RAB6A/OPN axis may be an effective strategy for CCA therapy.
Collapse
Affiliation(s)
- Liangfang Yang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhiwen Zhu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yang Zheng
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jiaqi Yang
- Institution of Plastic Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yuxin Liu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Tingyun Shen
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Mingyi Li
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Huijuan He
- Clinical Research Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Haili Huang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Institution of Plastic Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Wei Dai
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
4
|
Fibroblast-Secreted Phosphoprotein 1 Mediates Extracellular Matrix Deposition and Inhibits Smooth Muscle Cell Contractility in Marfan Syndrome Aortic Aneurysm. J Cardiovasc Transl Res 2022; 15:959-970. [PMID: 35414038 DOI: 10.1007/s12265-022-10239-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 03/17/2022] [Indexed: 12/27/2022]
Abstract
Fibrillin 1 (Fbn1) mutation causes Marfan syndrome (MFS) with thoracic aortic aneurysm (TAA) as the main complication. The mechanisms for extracellular matrix (ECM) homeostasis disruption in MFS TAA are unclear. Here, we found ECM-related gene secreted phosphoprotein 1 (Spp1) increased in Fbn1C1041G/+ mice using transcriptome sequencing and a distinct fibroblast subcluster with Spp1 as the strongest marker was identified with analysis of the MFS mouse aortic single-cell sequencing dataset. Immunostaining confirmed elevated Spp1 in adventitial fibroblasts, and Spp1 might regulate fibroblast and smooth muscle cell (SMC) communication primarily through Itga8/Itgb1. Then, we observed Spp1 reduced contractile genes Acta2 and Tagln expression in SMCs and increased collagen expression in fibroblasts, which might contribute to TAA development. Finally, we also found elevated SPP1 plasma level was associated with an increased risk of TAA in patients. Therefore, SPP1 may serve as a biomarker and therapeutic target for TAA.
Collapse
|
5
|
p38 MAPK priming boosts VSMC proliferation and arteriogenesis by promoting PGC1α-dependent mitochondrial dynamics. Sci Rep 2022; 12:5938. [PMID: 35396524 PMCID: PMC8994030 DOI: 10.1038/s41598-022-09757-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/28/2022] [Indexed: 12/05/2022] Open
Abstract
Vascular smooth muscle cell (VSMC) proliferation is essential for arteriogenesis to restore blood flow after artery occlusion, but the mechanisms underlying this response remain unclear. Based on our previous findings showing increased VSMC proliferation in the neonatal aorta of mice lacking the protease MT4-MMP, we aimed at discovering new players in this process. We demonstrate that MT4-MMP absence boosted VSMC proliferation in vitro in response to PDGF-BB in a cell-autonomous manner through enhanced p38 MAPK activity. Increased phospho-p38 in basal MT4-MMP-null VSMCs augmented the rate of mitochondrial degradation by promoting mitochondrial morphological changes through the co-activator PGC1α as demonstrated in PGC1α−/− VSMCs. We tested the in vivo implications of this pathway in a novel conditional mouse line for selective MT4-MMP deletion in VSMCs and in mice pre-treated with the p38 MAPK activator anisomycin. Priming of p38 MAPK activity in vivo by the absence of the protease MT4-MMP or by anisomycin treatment led to enhanced arteriogenesis and improved flow recovery after femoral artery occlusion. These findings may open new therapeutic opportunities for peripheral vascular diseases.
Collapse
|
6
|
Namiguchi K, Sakaue T, Okazaki M, Kanno K, Komoda Y, Shikata F, Kurata M, Ota N, Kubota Y, Kurobe H, Nishimura T, Masumoto J, Higashiyama S, Izutani H. Unique Angiogenesis From Cardiac Arterioles During Pericardial Adhesion Formation. Front Cardiovasc Med 2022; 8:761591. [PMID: 35187100 PMCID: PMC8852280 DOI: 10.3389/fcvm.2021.761591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/22/2021] [Indexed: 11/22/2022] Open
Abstract
Objectives The molecular mechanisms underlying post-operative pericardial adhesions remain poorly understood. We aimed to unveil the temporal molecular and cellular mechanisms underlying tissue dynamics during adhesion formation, including inflammation, angiogenesis, and fibrosis. Methods and Results We visualized cell-based tissue dynamics during pericardial adhesion using histological evaluations. To determine the molecular mechanism, RNA-seq was performed. Chemical inhibitors were administered to confirm the molecular mechanism underlying adhesion formation. A high degree of adhesion formation was observed during the stages in which collagen production was promoted. Histological analyses showed that arterioles excessively sprouted from pericardial tissues after the accumulation of neutrophils on the heart surface in mice as well as humans. The combination of RNA-seq and histological analyses revealed that hyperproliferative endothelial and smooth muscle cells with dedifferentiation appeared in cytokine-exposed sprouting vessels and adhesion tissue but not in quiescent vessels in the heart. SMAD2/3 and ERK activation was observed in sprouting vessels. The simultaneous abrogation of PI3K/ERK or TGF-β/MMP9 signaling significantly decreased angiogenic sprouting, followed by inhibition of adhesion formation. Depleting MMP9-positive neutrophils shortened mice survival and decreased angiogenic sprouting and fibrosis in the adhesion. Our data suggest that TGF-β/matrix metalloproteinase-dependent tissue remodeling and PI3K/ERK signaling activation might contribute to unique angiogenesis with dedifferentiation of vascular smooth muscle cells from the contractile to the synthetic phenotype for fibrosis in the pericardial cavity. Conclusions Our findings provide new insights in developing prevention strategies for pericardial adhesions by targeting the recruitment of vascular cells from heart tissues.
Collapse
Affiliation(s)
- Kenji Namiguchi
- Department of Cardiovascular and Thoracic Surgery, Ehime University Graduate School of Medicine, Toon, Japan
| | - Tomohisa Sakaue
- Department of Cardiovascular and Thoracic Surgery, Ehime University Graduate School of Medicine, Toon, Japan
- Department of Cell Growth and Tumor Regulation, Proteo-Science Center, Toon, Japan
- *Correspondence: Tomohisa Sakaue
| | - Mikio Okazaki
- Department of General Thoracic Surgery, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Kaho Kanno
- Department of Cardiovascular and Thoracic Surgery, Ehime University Graduate School of Medicine, Toon, Japan
| | - Yuhei Komoda
- Department of Cardiovascular and Thoracic Surgery, Ehime University Graduate School of Medicine, Toon, Japan
| | - Fumiaki Shikata
- Department of Cardiovascular and Thoracic Surgery, Ehime University Graduate School of Medicine, Toon, Japan
| | - Mie Kurata
- Department of Pathology, Division of Analytical Pathology, Ehime University Graduate School of Medicine, Toon, Japan
- Department of Pathology, Proteo-Science Center, Toon, Japan
| | - Noritaka Ota
- Department of Cardiovascular and Thoracic Surgery, Ehime University Graduate School of Medicine, Toon, Japan
| | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Hirotsugu Kurobe
- Department of Cardiovascular and Thoracic Surgery, Ehime University Graduate School of Medicine, Toon, Japan
| | - Takashi Nishimura
- Department of Cardiovascular and Thoracic Surgery, Ehime University Graduate School of Medicine, Toon, Japan
| | - Junya Masumoto
- Department of Pathology, Division of Analytical Pathology, Ehime University Graduate School of Medicine, Toon, Japan
- Department of Pathology, Proteo-Science Center, Toon, Japan
| | - Shigeki Higashiyama
- Department of Cell Growth and Tumor Regulation, Proteo-Science Center, Toon, Japan
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Japan
- Department of Molecular and Cellular Biology, Research Center, Osaka International Cancer Institute, Osaka, Japan
| | - Hironori Izutani
- Department of Cardiovascular and Thoracic Surgery, Ehime University Graduate School of Medicine, Toon, Japan
- Hironori Izutani
| |
Collapse
|
7
|
Feng YH, Su YC, Lin SF, Lin PR, Wu CL, Tung CL, Li CF, Shieh GS, Shiau AL. Oct4 upregulates osteopontin via Egr1 and is associated with poor outcome in human lung cancer. BMC Cancer 2019; 19:791. [PMID: 31399076 PMCID: PMC6688208 DOI: 10.1186/s12885-019-6014-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 08/05/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Roles of cancer stem cells and early growth response gene 1 (Egr1) in carcinogenesis have been extensively studied in lung cancer. However, the role of Egr1 in the metastasis of lung cancer remains undetermined, especially in regard to stem cell-related pathways. METHODS Egr1, osteopontin (OPN) and Oct4 expression in human lung cancer was determined by performing immunohistochemistry. Immunoblotting, ELISA, luciferase reporter assay, chromatin immunoprecipitation assay and RT-PCR were performed to validate the regulation of Oct4-Egr1-OPN axis. Moreover, the effect of Oct4-Egr1-OPN axis on lung cancer progression was evaluated by cell migration assay and mice study. RESULTS We detected Oct4, Egr1, and OPN expression in clinical specimens from 79 lung cancer patients, including 72 adenocarcinomas and 7 squamous cell carcinomas. High expression of Oct4, Egr1, and OPN accounted for 53, 51, and 57% of the patients, respectively. All of the three biomarkers were positively correlated in clinical human lung cancer. Patients with high expression of OPN were significantly associated with shorter disease-free survivals than those with low expression of OPN (p < 0.05). In lung cancer cells, Oct4 transactivated the Egr1 promoter and upregulated Egr1 expression. In a human lung cancer xenograft model, Oct4-overexpressing tumors expressed elevated levels of Egr1. Furthermore, overexpression of Oct4 in lung cancer cells increased the metastatic potential. CONCLUSIONS Egr1 exerts a promoting effect on cancer metastasis in Oct4-overexpressing lung cancer. Thus, therapeutic strategies targeting the Oct4/Egr1/OPN axis may be further explored for the treatment of lung cancer, especially when lung cancer is refractory to conventional treatment due to cancer stem cells.
Collapse
Affiliation(s)
- Yin-Hsun Feng
- Division of Hematology and Oncology, Department of Internal Medicine, Chi-Mei Medical Center, 901 Chung-Hwa Road, Tainan, 71004 Taiwan
- Department of Nursing, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Yu-Chu Su
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Otolaryngology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shuo-Fu Lin
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, 1 University Road, Tainan, 70101 Taiwan
| | - Pey-Ru Lin
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, 1 University Road, Tainan, 70101 Taiwan
| | - Chao-Liang Wu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chao-Ling Tung
- Division of Hematology and Oncology, Department of Internal Medicine, Chi-Mei Medical Center, 901 Chung-Hwa Road, Tainan, 71004 Taiwan
| | - Chien-Feng Li
- Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan
| | - Gia-Shing Shieh
- Department of Urology, Tainan Hospital, Ministry of Health and Welfare, Executive Yuan, Tainan, Taiwan
| | - Ai-Li Shiau
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, 1 University Road, Tainan, 70101 Taiwan
| |
Collapse
|
8
|
Jiang X. Silencing of heart and neural crest derivatives expressed transcript 2 attenuates transforming growth factor-β1-enhanced apoptosis of human bronchial epithelial cells. Oncol Lett 2018; 16:4997-5005. [PMID: 30250565 PMCID: PMC6144912 DOI: 10.3892/ol.2018.9299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/22/2018] [Indexed: 01/10/2023] Open
Abstract
Human bronchial epithelial (HBE) cells form the first protective barrier of the airway to protect patients from pulmonary diseases. The present study was performed to illustrate the mechanism underlying the effect of silencing heart and neural crest derivatives expressed transcript 2 (HAND2) on attenuating the transforming growth factor (TGF)-β1-enhanced apoptosis of HBE cells. TGF-β1 (10 µg/ml) was applied to HBE cells, and the HBE cells were transfected with small interfering RNA targeting HAND2 or were transfected with non-specific sequence. Subsequently, cell proliferation was measured using a Cell Counting kit-8 assay, whereas cell cycle and apoptosis status were measured using a flow cytometer. Reverse transcription-quantitative polymerase chain reaction and western blot analyses were performed to detect the expression levels of cell cycle- and apoptosis-related factors. Western blot analysis was also used to detect the phosphorylation levels of extracellular signal-regulated kinase (ERK), P38 and c-Jun-N-terminal kinase (JNK) of mitogen-activated protein kinase (MAPK) pathways. The results showed that TGF-β1 decreased HBE cell proliferation ability, arrested cell cycle at the G2 phase and promoted cell apoptosis with statistical significance. The expression levels of P21 and Cyclin D1 were inhibited, and those of caspase-3, caspase-8 and caspase-9 were promoted by TGF-β1. The phosphorylation levels of ERK, P38 and JNK were increased by TGF-β1. HAND2-silencing significantly alleviated the above functions of TGF-β1 on the HBE cells. In conclusion, the silencing of HAND2 attenuated the TGF-β1-stimulated apoptosis of HBE cells through regulating cell cycle, apoptosis-related factors and ERK/P38/JNK MAPK pathways. This may provide a novel treatment strategy for pulmonary disease, with HAND2 as the novel gene target.
Collapse
Affiliation(s)
- Xiaohui Jiang
- Intensive Care Unit, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
9
|
Jiao Y, Huang B, Chen Y, Hong G, Xu J, Hu C, Wang C. Integrated Analyses Reveal Overexpressed Notch1 Promoting Porcine Satellite Cells' Proliferation through Regulating the Cell Cycle. Int J Mol Sci 2018; 19:ijms19010271. [PMID: 29337929 PMCID: PMC5796217 DOI: 10.3390/ijms19010271] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/09/2018] [Accepted: 01/10/2018] [Indexed: 12/19/2022] Open
Abstract
Notch signaling as a conserved cell fate regulator is involved in the regulation of cell quiescence, proliferation, differentiation and postnatal tissue regeneration. However, how Notch signaling regulates porcine satellite cells (PSCs) has not been elucidated. We stably transfected Notch1 intracellular domain (N1ICD) into PSCs to analyze the gene expression profile and miRNA-seq. The analysis of the gene expression profile identified 295 differentially-expressed genes (DEGs) in proliferating-N1ICD PSCs (P-N1ICD) and nine DEGs on differentiating-N1ICD PSCs (D-N1ICD), compared with that in control groups (P-Control and D-Control, respectively). Analyzing the underlying function of DEGs showed that most of the upregulated DEGs enriched in P-N1ICD PSCs are related to the cell cycle. Forty-four and 12 known differentially-expressed miRNAs (DEMs) were identified in the P-N1ICD PSCs and D-N1ICD PSCs group, respectively. Furthermore, we constructed the gene-miRNA network of the DEGs and DEMs. In P-N1ICD PSCs, miR-125a, miR-125b, miR-10a-5p, ssc-miR-214, miR-423 and miR-149 are downregulated hub miRNAs, whose corresponding hub genes are marker of proliferation Ki-67 (MKI67) and nuclear receptor binding SET domain protein 2 (WHSC1). By contrast, miR-27a, miR-146a-5p and miR-221-3p are upregulated hub miRNAs, whose hub genes are RUNX1 translocation partner 1 (RUNX1T1) and fibroblast growth factor 2 (FGF2). All the hub miRNAs and genes are associated with cell proliferation. Quantitative RT-PCR results are consistent with the gene expression profile and miRNA-seq results. The results of our study provide valuable information for understanding the molecular mechanisms underlying Notch signaling in PSCs and skeletal muscle development.
Collapse
Affiliation(s)
- Yiren Jiao
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Bo Huang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Yu Chen
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Guangliang Hong
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Jian Xu
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Chingyuan Hu
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, 1955 East-West Road, AgSci. 415J, Honolulu, HI 96822, USA.
| | - Chong Wang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
10
|
Liu QF, Yu HW, Sun LL, You L, Tao GZ, Qu BZ. Apelin-13 upregulates Egr-1 expression in rat vascular smooth muscle cells through the PI3K/Akt and PKC signaling pathways. Biochem Biophys Res Commun 2015; 468:617-21. [DOI: 10.1016/j.bbrc.2015.10.171] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 10/31/2015] [Indexed: 11/25/2022]
|
11
|
Martín-Alonso M, García-Redondo AB, Guo D, Camafeita E, Martínez F, Alfranca A, Méndez-Barbero N, Pollán Á, Sánchez-Camacho C, Denhardt DT, Seiki M, Vázquez J, Salaices M, Redondo JM, Milewicz D, Arroyo AG. Deficiency of MMP17/MT4-MMP proteolytic activity predisposes to aortic aneurysm in mice. Circ Res 2015; 117:e13-26. [PMID: 25963716 DOI: 10.1161/circresaha.117.305108] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 05/08/2015] [Indexed: 11/16/2022]
Abstract
RATIONALE Aortic dissection or rupture resulting from aneurysm causes 1% to 2% of deaths in developed countries. These disorders are associated with mutations in genes that affect vascular smooth muscle cell differentiation and contractility or extracellular matrix composition and assembly. However, as many as 75% of patients with a family history of aortic aneurysms do not have an identified genetic syndrome. OBJECTIVE To determine the role of the protease MMP17/MT4-MMP in the arterial wall and its possible relevance in human aortic pathology. METHODS AND RESULTS Screening of patients with inherited thoracic aortic aneurysms and dissections identified a missense mutation (R373H) in the MMP17 gene that prevented the expression of the protease in human transfected cells. Using a loss-of-function genetic mouse model, we demonstrated that the lack of Mmp17 resulted in the presence of dysfunctional vascular smooth muscle cells and altered extracellular matrix in the vessel wall; and it led to increased susceptibility to angiotensin-II-induced thoracic aortic aneurysm. We also showed that Mmp17-mediated osteopontin cleavage regulated vascular smooth muscle cell maturation via c-Jun N-terminal kinase signaling during aorta wall development. Some features of the arterial phenotype were prevented by re-expression of catalytically active Mmp17 or the N-terminal osteopontin fragment in Mmp17-null neonates. CONCLUSIONS Mmp17 proteolytic activity regulates vascular smooth muscle cell phenotype in the arterial vessel wall, and its absence predisposes to thoracic aortic aneurysm in mice. The rescue of part of the vessel-wall phenotype by a lentiviral strategy opens avenues for therapeutic intervention in these life-threatening disorders.
Collapse
MESH Headings
- Adult
- Amino Acid Substitution
- Aortic Dissection/genetics
- Angiotensin II
- Animals
- Aorta/embryology
- Aorta/pathology
- Aortic Aneurysm, Thoracic/genetics
- Aortic Aneurysm, Thoracic/pathology
- Aortic Aneurysm, Thoracic/therapy
- Aortic Rupture/etiology
- Extracellular Matrix/pathology
- Extracellular Matrix Proteins/metabolism
- Genetic Predisposition to Disease
- Genetic Therapy
- Genetic Vectors/therapeutic use
- HEK293 Cells
- Humans
- Lentivirus/genetics
- Male
- Matrix Metalloproteinases, Membrane-Associated/chemistry
- Matrix Metalloproteinases, Membrane-Associated/deficiency
- Matrix Metalloproteinases, Membrane-Associated/genetics
- Matrix Metalloproteinases, Membrane-Associated/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/pathology
- Mutation, Missense
- Osteopontin/metabolism
- Protein Conformation
Collapse
Affiliation(s)
- Mara Martín-Alonso
- From the Department of Vascular Biology and Inflammation (M.M.-A., A.A., N.M.-B., A.P., J.M.R., A.G.A.), Proteomics Unit (E.C., J.V.) and Bioinformatics Unit (F.M.), Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Department of Pharmacology/Nephrology, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain (A.B.G.-R., M.S.); Department of Internal Medicine, University of Texas Health Science Center at Houston, TX (D.G., D.M.); Department of Basic Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain (C.S.-C.); Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ (D.T.D.); and Division of Cancer Cell Research, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan (M.S.)
| | - Ana B García-Redondo
- From the Department of Vascular Biology and Inflammation (M.M.-A., A.A., N.M.-B., A.P., J.M.R., A.G.A.), Proteomics Unit (E.C., J.V.) and Bioinformatics Unit (F.M.), Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Department of Pharmacology/Nephrology, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain (A.B.G.-R., M.S.); Department of Internal Medicine, University of Texas Health Science Center at Houston, TX (D.G., D.M.); Department of Basic Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain (C.S.-C.); Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ (D.T.D.); and Division of Cancer Cell Research, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan (M.S.)
| | - Dongchuan Guo
- From the Department of Vascular Biology and Inflammation (M.M.-A., A.A., N.M.-B., A.P., J.M.R., A.G.A.), Proteomics Unit (E.C., J.V.) and Bioinformatics Unit (F.M.), Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Department of Pharmacology/Nephrology, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain (A.B.G.-R., M.S.); Department of Internal Medicine, University of Texas Health Science Center at Houston, TX (D.G., D.M.); Department of Basic Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain (C.S.-C.); Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ (D.T.D.); and Division of Cancer Cell Research, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan (M.S.)
| | - Emilio Camafeita
- From the Department of Vascular Biology and Inflammation (M.M.-A., A.A., N.M.-B., A.P., J.M.R., A.G.A.), Proteomics Unit (E.C., J.V.) and Bioinformatics Unit (F.M.), Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Department of Pharmacology/Nephrology, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain (A.B.G.-R., M.S.); Department of Internal Medicine, University of Texas Health Science Center at Houston, TX (D.G., D.M.); Department of Basic Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain (C.S.-C.); Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ (D.T.D.); and Division of Cancer Cell Research, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan (M.S.)
| | - Fernando Martínez
- From the Department of Vascular Biology and Inflammation (M.M.-A., A.A., N.M.-B., A.P., J.M.R., A.G.A.), Proteomics Unit (E.C., J.V.) and Bioinformatics Unit (F.M.), Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Department of Pharmacology/Nephrology, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain (A.B.G.-R., M.S.); Department of Internal Medicine, University of Texas Health Science Center at Houston, TX (D.G., D.M.); Department of Basic Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain (C.S.-C.); Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ (D.T.D.); and Division of Cancer Cell Research, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan (M.S.)
| | - Arántzazu Alfranca
- From the Department of Vascular Biology and Inflammation (M.M.-A., A.A., N.M.-B., A.P., J.M.R., A.G.A.), Proteomics Unit (E.C., J.V.) and Bioinformatics Unit (F.M.), Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Department of Pharmacology/Nephrology, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain (A.B.G.-R., M.S.); Department of Internal Medicine, University of Texas Health Science Center at Houston, TX (D.G., D.M.); Department of Basic Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain (C.S.-C.); Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ (D.T.D.); and Division of Cancer Cell Research, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan (M.S.)
| | - Nerea Méndez-Barbero
- From the Department of Vascular Biology and Inflammation (M.M.-A., A.A., N.M.-B., A.P., J.M.R., A.G.A.), Proteomics Unit (E.C., J.V.) and Bioinformatics Unit (F.M.), Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Department of Pharmacology/Nephrology, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain (A.B.G.-R., M.S.); Department of Internal Medicine, University of Texas Health Science Center at Houston, TX (D.G., D.M.); Department of Basic Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain (C.S.-C.); Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ (D.T.D.); and Division of Cancer Cell Research, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan (M.S.)
| | - Ángela Pollán
- From the Department of Vascular Biology and Inflammation (M.M.-A., A.A., N.M.-B., A.P., J.M.R., A.G.A.), Proteomics Unit (E.C., J.V.) and Bioinformatics Unit (F.M.), Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Department of Pharmacology/Nephrology, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain (A.B.G.-R., M.S.); Department of Internal Medicine, University of Texas Health Science Center at Houston, TX (D.G., D.M.); Department of Basic Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain (C.S.-C.); Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ (D.T.D.); and Division of Cancer Cell Research, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan (M.S.)
| | - Cristina Sánchez-Camacho
- From the Department of Vascular Biology and Inflammation (M.M.-A., A.A., N.M.-B., A.P., J.M.R., A.G.A.), Proteomics Unit (E.C., J.V.) and Bioinformatics Unit (F.M.), Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Department of Pharmacology/Nephrology, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain (A.B.G.-R., M.S.); Department of Internal Medicine, University of Texas Health Science Center at Houston, TX (D.G., D.M.); Department of Basic Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain (C.S.-C.); Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ (D.T.D.); and Division of Cancer Cell Research, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan (M.S.)
| | - David T Denhardt
- From the Department of Vascular Biology and Inflammation (M.M.-A., A.A., N.M.-B., A.P., J.M.R., A.G.A.), Proteomics Unit (E.C., J.V.) and Bioinformatics Unit (F.M.), Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Department of Pharmacology/Nephrology, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain (A.B.G.-R., M.S.); Department of Internal Medicine, University of Texas Health Science Center at Houston, TX (D.G., D.M.); Department of Basic Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain (C.S.-C.); Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ (D.T.D.); and Division of Cancer Cell Research, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan (M.S.)
| | - Motoharu Seiki
- From the Department of Vascular Biology and Inflammation (M.M.-A., A.A., N.M.-B., A.P., J.M.R., A.G.A.), Proteomics Unit (E.C., J.V.) and Bioinformatics Unit (F.M.), Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Department of Pharmacology/Nephrology, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain (A.B.G.-R., M.S.); Department of Internal Medicine, University of Texas Health Science Center at Houston, TX (D.G., D.M.); Department of Basic Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain (C.S.-C.); Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ (D.T.D.); and Division of Cancer Cell Research, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan (M.S.)
| | - Jesús Vázquez
- From the Department of Vascular Biology and Inflammation (M.M.-A., A.A., N.M.-B., A.P., J.M.R., A.G.A.), Proteomics Unit (E.C., J.V.) and Bioinformatics Unit (F.M.), Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Department of Pharmacology/Nephrology, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain (A.B.G.-R., M.S.); Department of Internal Medicine, University of Texas Health Science Center at Houston, TX (D.G., D.M.); Department of Basic Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain (C.S.-C.); Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ (D.T.D.); and Division of Cancer Cell Research, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan (M.S.)
| | - Mercedes Salaices
- From the Department of Vascular Biology and Inflammation (M.M.-A., A.A., N.M.-B., A.P., J.M.R., A.G.A.), Proteomics Unit (E.C., J.V.) and Bioinformatics Unit (F.M.), Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Department of Pharmacology/Nephrology, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain (A.B.G.-R., M.S.); Department of Internal Medicine, University of Texas Health Science Center at Houston, TX (D.G., D.M.); Department of Basic Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain (C.S.-C.); Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ (D.T.D.); and Division of Cancer Cell Research, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan (M.S.)
| | - Juan Miguel Redondo
- From the Department of Vascular Biology and Inflammation (M.M.-A., A.A., N.M.-B., A.P., J.M.R., A.G.A.), Proteomics Unit (E.C., J.V.) and Bioinformatics Unit (F.M.), Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Department of Pharmacology/Nephrology, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain (A.B.G.-R., M.S.); Department of Internal Medicine, University of Texas Health Science Center at Houston, TX (D.G., D.M.); Department of Basic Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain (C.S.-C.); Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ (D.T.D.); and Division of Cancer Cell Research, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan (M.S.)
| | - Dianna Milewicz
- From the Department of Vascular Biology and Inflammation (M.M.-A., A.A., N.M.-B., A.P., J.M.R., A.G.A.), Proteomics Unit (E.C., J.V.) and Bioinformatics Unit (F.M.), Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Department of Pharmacology/Nephrology, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain (A.B.G.-R., M.S.); Department of Internal Medicine, University of Texas Health Science Center at Houston, TX (D.G., D.M.); Department of Basic Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain (C.S.-C.); Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ (D.T.D.); and Division of Cancer Cell Research, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan (M.S.)
| | - Alicia G Arroyo
- From the Department of Vascular Biology and Inflammation (M.M.-A., A.A., N.M.-B., A.P., J.M.R., A.G.A.), Proteomics Unit (E.C., J.V.) and Bioinformatics Unit (F.M.), Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Department of Pharmacology/Nephrology, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain (A.B.G.-R., M.S.); Department of Internal Medicine, University of Texas Health Science Center at Houston, TX (D.G., D.M.); Department of Basic Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain (C.S.-C.); Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ (D.T.D.); and Division of Cancer Cell Research, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan (M.S.).
| |
Collapse
|
12
|
Atorvastatin inhibits hyperglycemia-induced expression of osteopontin in the diabetic rat kidney via the p38 MAPK pathway. Mol Biol Rep 2014; 41:2551-8. [PMID: 24452713 DOI: 10.1007/s11033-014-3113-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 01/10/2014] [Indexed: 01/13/2023]
Abstract
Osteopontin (OPN), a large phosphoglycoprotein adhesion molecule, which is up-regulated in the kidneys of humans and mice with diabetes, has emerged as a potentially key pathophysiological contributor in diabetic nephropathy. Here, we investigated the role of OPN in kidney injury caused by diabetic nephropathy and the effect of atorvastatin on the expression of OPN and on diabetic nephropathy. Diabetes was induced with streptozotocin in rats, and atorvastatin (5 mg/kg) was orally administered once a day for 8 weeks. We analyzed the expression and regulation of OPN in the kidneys of streptozotocin-induced diabetic Sprague-Dawley albino rats by immunohistochemistry and western blot analysis. The expression of OPN was increased in diabetic rat kidney, and atorvastatin inhibited this process. Atorvastatin also decreased the expression and phosphorylation of p38. In vitro, atorvastatin inhibited the high glucose-induced OPN expression in Madin-Darby canine kidney epithelial cells through the p38 MAPK signaling pathway. These results suggested that atorvastatin reduced the expression of OPN through inhibition of the p38 MAPK pathway. The expression of OPN was associated with kidney injury. These molecules may represent therapeutic targets for the prevention of acute kidney injury induced by diabetes.
Collapse
|
13
|
He Q, Wang M, Harris N, Han X. Tafazzin knockdown interrupts cell cycle progression in cultured neonatal ventricular fibroblasts. Am J Physiol Heart Circ Physiol 2013; 305:H1332-43. [PMID: 23997105 DOI: 10.1152/ajpheart.00084.2013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mutation of the mitochondrial protein tafazzin causes dilated cardiomyopathy in Barth syndrome. Previous studies have shown that tafazzin knockdown promotes hypertrophy of neonatal cardiac myocytes. The current investigation was designed to show whether tafazzin knockdown affects cardiac fibroblast proliferation and collagen secretion, which contribute to fibrosis in dilated cardiomyopathy. In primary cultures of neonatal ventricular fibroblasts (NVFs) transduced with a tafazzin short hairpin RNA adenovirus, tafazzin knockdown increased production of reactive oxygen species and activation of mitogen-activated protein kinases and induced protein and DNA synthesis via cell cycle regulators. It also reduced intracellular ATP, activated AMPK, and caused multinucleation, hypertrophy, and enhanced collagen secretion. We concluded that tafazzin knockdown interrupts the NVF cell cycle and this in turn may contribute to fibrosis and dilated cardiomyopathy in Barth syndrome.
Collapse
Affiliation(s)
- Quan He
- Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Orlando, Florida; and
| | | | | | | |
Collapse
|
14
|
Liu QF, Yu HW, You L, Liu MX, Li KY, Tao GZ. Apelin-13-induced proliferation and migration induced of rat vascular smooth muscle cells is mediated by the upregulation of Egr-1. Biochem Biophys Res Commun 2013; 439:235-40. [PMID: 23973488 DOI: 10.1016/j.bbrc.2013.08.051] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 08/15/2013] [Indexed: 10/26/2022]
Abstract
Apelin-13 plays an important role in the migration and proliferation of vascular smooth muscle cells (VSMCs); however, the underlying mechanisms are still unclear. Egr-1 is a nuclear transcription factor, which is considered to be the critical initiating factor of the processes of VSMC proliferation and migration. Egr-1 is known to regulate the expression of osteopontin (OPN), which is a marker of the phenotypic modulation that is a necessary condition of VSMC proliferation and migration. We hypothesized that the role of Apelin-13 is mediated via upregulation of Egr-1. To test this hypothesis, we analyzed the effects of Apelin-13 treatment on Egr-1 mRNA and protein expression in A10 rat aortic VSMCs by RT-PCR and Western blotting, respectively. Results showed that, Apelin-13 upregulated the expression of Egr-1. Furthermore, treatment with the extracellular-regulated protein kinase (ERK) inhibitor, PD98059, inhibited the upregulation of Egr-1 by Apelin-13. In addition, this upregulation was inhibited by treatment of VSMCs with the Egr-1 specific deoxyribozyme ED5 (DNAenzyme/10-23 DRz). Furthermore, ED5 treatment was found to significantly inhibit Apelin-13-induced migration and proliferation of VSMCs using transwell and MTT assays, respectively. The evaluation of OPN mRNA and protein expression levels by RT-PCR and Western blot analyses revealed that ED5 treatment also inhibited Apelin-13-induced OPN upregulation. The results of this study indicated that Apelin-13 upregulates Egr-1 via ERK. Furthermore, Apelin-13 induced the proliferation and migration of VSMCs as well as the upregulation of OPN via the upregulation of Egr-1. These results will provide an important theoretical and experimental basis for the control of inappropriate remodeling of vessel walls, and will hopefully lead to the prevention and treatment of vascular remodeling diseases.
Collapse
Affiliation(s)
- Qi-Feng Liu
- Department of Cardiology, The First Affiliated Hospital of Liaoning Medical University, Jinzhou 121001, China
| | | | | | | | | | | |
Collapse
|
15
|
Chu L, Wang T, Hu Y, Gu Y, Su Z, Jiang H. Activation of Egr-1 in human lung epithelial cells exposed to silica through MAPKs signaling pathways. PLoS One 2013; 8:e68943. [PMID: 23874821 PMCID: PMC3715534 DOI: 10.1371/journal.pone.0068943] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Accepted: 05/26/2013] [Indexed: 12/19/2022] Open
Abstract
The alveolar type II epithelial cell, regarded historically as a key target cell in initial injury by silica, now appears to be important in both defense from lung damage as well as elaboration of chemokines and cytokines. The molecular basis for silica-induced epithelial cell injury is poorly understood. In this study we explored the activation of nuclear factor Egr-1 and related signal pathway. Human II alveolar epithelial line A549 cells were exposed to silica for indicated time to assay the expression and activation of Egr-1 and upstream MAPKs. Immunofluorescence, western-blot techniques, RT-PCR, Electrophoretic mobility shift assay (EMSA), transient transfection assay, kinase inhibitor experiments were performed. It was found that the expression of Egr-1 at mRNA and protein level was significantly increased in A549 cells after administration with silica and the activity of Egr-1 peaked by silica treatment for 60 minutes. Furthermore, phosphorylated-ERK1/2, P38 MAPKs (the upstream kinase of Egr-1) ballooned during 15-30minutes, 30-60minutes respectively after silica exposure in A549 cells. By administration of ERK1/2, P38 inhibitor, the expression and transcription of Egr-1 were both markedly decreased. But PKC inhibitor did not prevent the increase of Egr-1. These results indicated Egr-1 played a critical role in silica-induced pulmonary fibrosis in an ERK1/2, P38 MAPKs-dependent manner, which suggests Egr-1 is an essential regulator in silicosis, and underlines a new molecular mechanism for fibrosis induced by silica.
Collapse
Affiliation(s)
- Ling Chu
- Department of Pathology, Third Xiangya hospital, Central South University, Changsha, Hunan, PR China
| | - Tiansheng Wang
- Department of Otolaryngology, Third Xiangya hospital, Central South University, Changsha, Hunan, PR China
- * E-mail:
| | - Yongbin Hu
- Department of Pathology, Xiangya hospital, Central South University, Changsha, Hunan, PR China
| | - Yonghong Gu
- Department of Pathology, Third Xiangya hospital, Central South University, Changsha, Hunan, PR China
| | - Zanshan Su
- Department of Pathology, Third Xiangya hospital, Central South University, Changsha, Hunan, PR China
| | - Haiying Jiang
- Department of Pathology, Xiangya hospital, Central South University, Changsha, Hunan, PR China
| |
Collapse
|
16
|
Transfected early growth response gene-1 DNA enzyme prevents stenosis and occlusion of autogenous vein graft in vivo. BIOMED RESEARCH INTERNATIONAL 2013; 2013:310406. [PMID: 23586030 PMCID: PMC3613055 DOI: 10.1155/2013/310406] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 10/20/2012] [Accepted: 11/02/2012] [Indexed: 01/14/2023]
Abstract
The aim of this study was to detect the inhibitory action of the early growth response gene-1 DNA enzyme (EDRz) as a carrying agent by liposomes on vascular smooth muscle cell proliferation and intimal hyperplasia. An autogenous vein graft model was established. EDRz was transfected to the graft vein. The vein graft samples were obtained on each time point after surgery. The expression of the EDRz transfected in the vein graft was detected using a fluorescent microscope. Early growth response gene-1 (Egr-1) mRNA was measured using reverse transcription-PCR and in situ hybridization. And the protein expression of Egr-1 was detected by using western blot and immunohistochemistry analyses. EDRz was located at the media of the vein graft from 2 to 24 h, 7 h after grafting. The Egr-1 protein was mainly located in the medial VSMCs, monocytes, and endothelium cells during the early phase of the vein graft. The degree of VSMC proliferation and thickness of intima were obviously relieved compared with the no-gene therapy group. EDRz can reduce Egr-1 expression in autogenous vein grafts, effectively restrain VSMC proliferation and intimal hyperplasia, and prevent vascular stenosis and occlusion after vein graft.
Collapse
|
17
|
Bhattacharyya S, Fang F, Tourtellotte W, Varga J. Egr-1: new conductor for the tissue repair orchestra directs harmony (regeneration) or cacophony (fibrosis). J Pathol 2012; 229:286-97. [PMID: 23132749 DOI: 10.1002/path.4131] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 09/24/2012] [Accepted: 10/05/2012] [Indexed: 12/13/2022]
Abstract
Fibroblasts and myofibroblasts are the key effector cells executing physiological tissue repair leading to regeneration on the one hand, and pathological fibrogenesis leading to chronic fibrosing conditions on the other. Recent studies identify the multifunctional transcription factor early growth response-1(Egr-1) as an important mediator of fibroblast activation triggered by diverse stimuli. Egr-1 has potent stimulatory effects on fibrotic gene expression, and aberrant Egr-1 expression or function is associated with animal models of fibrosis and human fibrotic disorders, including emphysema, pulmonary fibrosis, pulmonary hypertension and systemic sclerosis. Pharmacological suppression or genetic targeting of Egr-1 blocks fibrotic responses in vitro and ameliorates experimental fibrosis in the skin and lung. In contrast, Egr-1 appears to act as a negative regulator of hepatic fibrosis in mouse models, suggesting a context-dependent role in fibrosis. The Egr-1-binding protein Nab2 is an endogenous inhibitor of Egr-1-mediated signalling and abrogates the stimulation of fibrotic responses induced by transforming growth factor-β (TGFβ). Moreover, mice deficient in Nab2 show excessive collagen accumulation in the skin. These observations highlight a previously unsuspected fundamental physiological function for the Egr-1-Nab2 signalling axis in regulating fibrogenesis, and suggest that Egr-1 may be a potential novel therapeutic target in human diseases complicated by fibrosis. This review summarizes recent advances in understanding the regulation and complex functional role of Egr-1 and its related proteins and inhibitors in pathological fibrosis.
Collapse
Affiliation(s)
- Swati Bhattacharyya
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | | | | |
Collapse
|
18
|
Yuan L, Sakamoto N, Song G, Sato M. Migration of human mesenchymal stem cells under low shear stress mediated by mitogen-activated protein kinase signaling. Stem Cells Dev 2012; 21:2520-30. [PMID: 22375921 DOI: 10.1089/scd.2012.0010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Human mesenchymal stem cells (hMSCs) are attractive candidates for cell-based tissue repair approaches and have been used as vectors for delivering therapeutic genes to sites of injury. It is believed that hMSCs are able to detect and respond to shear stress due to blood and interstitial fluid flow through mechanotransduction pathways after transplantation. However, information regarding hMSC migration under shear stress and its mechanism is still limited. In this study, we examined the effect of shear stress on hMSC migration and the role of mitogen-activated protein kinases (MAPKs) in their migration. Shear stress between 0.2 and 10 Pa, which was produced by the flow medium, was exerted on fluorescently labeled hMSCs. Cell migration was evaluated using the scratch wound assay, and images were captured using a microscope equipped with a digital 3CCD camera. The results showed that hMSCs subjected to a shear stress of 0.2 Pa caused notably faster wound closure than statically cultured hMSCs, while migration in the 0.5- and 1-Pa shear stress group did not differ significantly from that in the control group. Shear stress >2 Pa markedly inhibited hMSC migration. hMSCs subjected to a shear stress of 0.2 Pa displayed an increase in extracellular signal-regulated kinases 1/2 (ERK1/2), c-Jun N-terminal kinases (JNK), and p38 MAPK activation for up to 60 min, while a shear stress of 2 Pa abrogated the activation. JNK and p38 MAPK inhibitors completely abolished the effect of shear stress on hMSC migration, while significant differences were observed between the ERK1/2 inhibitor-treated static control and shear stress groups. Taken together, these results demonstrate that low shear stress effectively induces hMSC migration and that JNK and p38 MAPK play more prominent roles in shear stress-induced migration than ERK1/2.
Collapse
Affiliation(s)
- Lin Yuan
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | | | | | | |
Collapse
|
19
|
Sue M, Hayashi M, Kawashima A, Akama T, Tanigawa K, Yoshihara A, Hara T, Ishido Y, Ito T, Takahashi SI, Ishii N, Suzuki K. Thyroglobulin (Tg) activates MAPK pathway to induce thyroid cell growth in the absence of TSH, insulin and serum. Biochem Biophys Res Commun 2012; 420:611-5. [PMID: 22445893 DOI: 10.1016/j.bbrc.2012.03.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 03/09/2012] [Indexed: 12/31/2022]
Abstract
The growth of thyroid cells is tightly regulated by thyroid stimulating hormone (TSH) through the cyclic adenosine 3', 5'-monophosphate (cAMP) signaling pathway by potentiating the mitogenic activity of insulin and insulin-like growth factors (IGFs). However, we recently reported that thyroglobulin (Tg), a major product of the thyroid, also induces the growth of thyroid cells cultured in 0.2% serum in the absence of TSH and insulin. In this report, we demonstrate that Tg induced phosphorylation of molecules of the c-Raf/MEK/ERK pathway of the mitogen-activated protein kinase (MAPK). The MEK-1/2 inhibitor PD98059 suppressed Tg-induced phosphorylation of ERK1/2 and reduced bromodeoxyuridine (BrdU) incorporation. Tg also induced expression of the essential transcriptional factors c-Myc, c-Fos and c-Jun and phosphorylation of the retinoblastoma (Rb) protein. The present results, together with the previous report, suggest that Tg utilizes multiple signaling cascades to induce thyroid cell growth independent of TSH/cAMP stimulation.
Collapse
Affiliation(s)
- Mariko Sue
- Laboratory of Molecular Diagnostics, Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo 189-0002, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Dyson OF, Walker LR, Whitehouse A, Cook PP, Akula SM. Resveratrol inhibits KSHV reactivation by lowering the levels of cellular EGR-1. PLoS One 2012; 7:e33364. [PMID: 22428032 PMCID: PMC3299779 DOI: 10.1371/journal.pone.0033364] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 02/12/2012] [Indexed: 12/22/2022] Open
Abstract
In the field of herpesvirus research, the exact molecular mechanism by which such viruses reactivate from latency remains elusive. Kaposi's sarcoma-associated herpesvirus (KSHV) primarily exists in a latent state, while only 1–3% of cells support lytic infection at any specific time. KSHV reactivation from latency is an exceedingly intricate process mediated by the integration of viral and cellular factors. Previously, our lab has described early growth response-1 (Egr-1) as an essential component for the KSHV reactivation process via its ability to mediate transcription of KSHV ORF50, the gene encoding for replication and transcription activator (RTA), a viral component known to control the switch from latent to lytic infection. In here, electrophoretic mobility shift assays (EMSA) and chromatin immunoprecipitation (ChIP) experiments revealed that Egr-1 binds KSHV ORF50 promoter (ORF50P) in at least two different GC-rich binding domains. Expression profiles of cellular egr-1 and KSHV-encoded ORF50 follow a similar pattern during de novo KSHV infection. Over-expressing Egr-1, a signaling component downstream of Raf>MEK>ERK1/2, in KSHV-infected cells activates KSHV lytic replication. Through performing more physiologically relevant experiments, we analyzed the effect of a dietary supplement containing resveratrol on KSHV-infected cells. Our results, for the first time, demonstrate resveratrol to act in lowering ERK1/2 activity and expression of Egr-1 in KSHV-infected cells, resulting in the suppression of virus reactivation from latency. Taken together, these findings will undoubtedly contribute to future studies on not only combating KSHV related disease conditions, but also on other herpesviruses-induced pathogenesis.
Collapse
Affiliation(s)
- Ossie F. Dyson
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
| | - Lia R. Walker
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
| | - Adrian Whitehouse
- Faculty of Biological Sciences, Institute of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Paul P. Cook
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
| | - Shaw M. Akula
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
21
|
Hartney T, Birari R, Venkataraman S, Villegas L, Martinez M, Black SM, Stenmark KR, Nozik-Grayck E. Xanthine oxidase-derived ROS upregulate Egr-1 via ERK1/2 in PA smooth muscle cells; model to test impact of extracellular ROS in chronic hypoxia. PLoS One 2011; 6:e27531. [PMID: 22140445 PMCID: PMC3225357 DOI: 10.1371/journal.pone.0027531] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 10/19/2011] [Indexed: 11/25/2022] Open
Abstract
Exposure of newborn calves to chronic hypoxia causes pulmonary artery (PA) hypertension and remodeling. Previous studies showed that the redox-sensitive transcription factor, early growth response-1 (Egr-1), is upregulated in the PA of chronically hypoxic calves and regulates cell proliferation. Furthermore, we established in mice a correlation between hypoxic induction of Egr-1 and reduced activity of extracellular superoxide dismutase (EC-SOD), an antioxidant that scavenges extracellular superoxide. We now hypothesize that loss of EC-SOD in chronically hypoxic calves leads to extracellular superoxide-mediated upregulation of Egr-1. To validate our hypothesis and identify the signaling pathways involved, we utilized PA tissue from normoxic and chronically hypoxic calves and cultured calf and human PA smooth muscle cells (PASMC). Total SOD activity was low in the PA tissue, and only the extracellular SOD component decreased with hypoxia. PA tissue of hypoxic calves showed increased oxidative stress and increased Egr-1 mRNA. To mimic the in vivo hypoxia-induced extracellular oxidant imbalance, cultured calf PASMC were treated with xanthine oxidase (XO), which generates extracellular superoxide and hydrogen peroxide. We found that 1) XO increased Egr-1 mRNA and protein, 2) XO induced the phosphorylation of ERK1/2 and, 3) pretreatment with an ERK1/2 inhibitor prevented induction of Egr-1 by XO. siRNA knock-down of EC-SOD in human PASMC also upregulated Egr-1 mRNA and protein, activated ERK1/2, and enhanced SMC proliferation and reduced apoptosis. We conclude that an oxidant/antioxidant imbalance arising from loss of EC-SOD in the PA with chronic hypoxia induces Egr-1 via activation of ERK1/2 and contributes to pulmonary vascular remodeling.
Collapse
Affiliation(s)
- Tanya Hartney
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Rahul Birari
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Sujatha Venkataraman
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Leah Villegas
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado, United States of America
- Cardiovascular Pulmonary Research Laboratory, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Maylyn Martinez
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Stephen M. Black
- Georgia Health Sciences University, Augusta, Georgia, United States of America
| | - Kurt R. Stenmark
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado, United States of America
- Cardiovascular Pulmonary Research Laboratory, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Eva Nozik-Grayck
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado, United States of America
- Cardiovascular Pulmonary Research Laboratory, University of Colorado Denver, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
22
|
Zheng YH, Tian C, Meng Y, Qin YW, Du YH, Du J, Li HH. Osteopontin stimulates autophagy via integrin/CD44 and p38 MAPK signaling pathways in vascular smooth muscle cells. J Cell Physiol 2011; 227:127-35. [PMID: 21374592 DOI: 10.1002/jcp.22709] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Osteopontin (OPN) exerts pro-inflammatory effect and is associated with the development of abdominal aortic aneurysm (AAA). However, the molecular mechanism underlying this association remains obscure. In the present study, we compared gene expression profiles of AAA tissues using microarray assay, and found that OPN was the highest expressed gene (>125-fold). Furthermore, the expression of LC3 protein and autophagy-related genes including Atg4b, Beclin1/Atg6, Bnip3, and Vps34 was markedly upregulated in AAA tissues. To investigate the ability of OPN to stimulate autophagy as a potential mechanism involved in the pathogenesis of this disease, we treated vascular smooth muscle cells (SMCs) with OPN, and found that OPN significantly increased the formation of autophagosomes, expression of autophagy-related genes and cell death, whereas blocking the signal by anti-OPN antibody markedly inhibited OPN-induced autophagy and SMC death. Furthermore, inhibition of integrin/CD44 and p38 MAPK signaling pathways markedly abrogated the biological effects of OPN on SMCs. These data for the first time demonstrate that OPN sitmulates autophagy directly through integrin/CD44 and p38 MAPK-mediated pathways in SMCs. Thus, inhibition of OPN-induced autophagy might be a potential therapeutic target in the treatment of AAA disease. J. Cell. Physiol. 227: 127-135, 2012. © 2011 Wiley Periodicals, Inc.
Collapse
|
23
|
Qi H, Xue B. Role of early growth response 1 in liver injury. Shijie Huaren Xiaohua Zazhi 2011; 19:1914-1921. [DOI: 10.11569/wcjd.v19.i18.1914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Liver injury is a sophisticated pathophysiological process caused by many factors. Currently, the role of early growth response 1 (EGR1) in liver injury is still controversial. Some studies show that EGR1 can amplify the systemic inflammatory response and promote apoptosis in galactosamine/lipopolysaccharide-induced acute liver injury and alpha-naphthylisothiocyanate (ANIT)-induced intrahepatic cholestasis as well as other non-liver injuries, while some other studies indicate that EGR1 protects the liver from CCl4 exposure by regulating the expression of inducible nitric oxide synthase, cyclooxygenase-2, and tumor necrosis factor-α-regulated genes that have hepatoprotective function.
Collapse
|
24
|
Walshe TE, Leach LL, D'Amore PA. TGF-β signaling is required for maintenance of retinal ganglion cell differentiation and survival. Neuroscience 2011; 189:123-31. [PMID: 21664439 DOI: 10.1016/j.neuroscience.2011.05.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 04/11/2011] [Accepted: 05/11/2011] [Indexed: 10/18/2022]
Abstract
PURPOSE To determine the role of TGF-β1 in the maintenance of retinal ganglion cell line (RGC-5) differentiation and integrity. METHODS RGC-5 cells were differentiated in media conditioned by human non-pigmented ciliary epithelial cells (HNPE) for 4 days before treatment with TGF-β1 for 24 h. Cells were examined for morphological changes and harvested for western blot and real-time PCR analysis. For study of apoptosis, differentiated RGC-5 cells were grown in serum-free medium for 24 h in the presence or absence of TGF-β1 and collected for Annexin V/Propidium iodide FACs analysis. The role of MAPK pathways in TGF-β1-dependent signaling was determined by treatment with specific inhibitors of ERK, JNK and p38. RESULTS Differentiation of RGC-5 cells in HNPE-conditioned media (CM) increased the neural cell markers, Brn-3c, NF-160, Thy1.2, Tau and PGP9.5. Treatment with TGF-β1 significantly increased the length of neurites extended by differentiated RGC-5s, concomitant with increased expression of NF-160 and PGP9.5, but not Brn-3c, Thy1.2 or Tau. TGF-β1 also decreased RGC-5 cell apoptosis in serum-free medium. p38 phosphorylation, but not smad2/3, JNK or ERK phosphorylation, was increased in TGF-β1 treated cells. Specific inhibition of p38 signaling reversed TGF-β1 induced neurite growth. CONCLUSIONS These findings demonstrate the induction of RGC-5 cell differentiation by HNPE-derived CM and illustrate a role for TGF-β1 in maintaining RGC-5 cell survival and promoting neurite outgrowth through p38 MAPK.
Collapse
Affiliation(s)
- T E Walshe
- Department of Ophthalmology, Harvard Medical School, Schepens Eye Research Institute, 20 Staniford Street, Boston, MA 02114, USA
| | | | | |
Collapse
|
25
|
Bhattacharyya S, Wu M, Fang F, Tourtellotte W, Feghali-Bostwick C, Varga J. Early growth response transcription factors: key mediators of fibrosis and novel targets for anti-fibrotic therapy. Matrix Biol 2011; 30:235-42. [PMID: 21511034 DOI: 10.1016/j.matbio.2011.03.005] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 03/11/2011] [Accepted: 03/15/2011] [Indexed: 02/06/2023]
Abstract
Fibrosis is a deregulated and ultimately defective form of tissue repair that underlies a large number of chronic human diseases, as well as obesity and aging. The pathogenesis of fibrosis involves multiple cell types and extracellular signals, of which transforming growth factor-ß (TGF-ß) is pre-eminent. The prevalence of fibrosis is rising worldwide, and to date no agents has shown clinical efficacy in the attenuating or reversing the process. Recent studies implicate the immediate-early response transcription factor Egr-1 in the pathogenesis of fibrosis. Egr-1 couples acute changes in the cellular environment to sustained alterations in gene expression, and mediates a broad spectrum of biological responses to injury and stress. In contrast to other ligand-activated transcription factors such as NF-κB, c-jun and Smad2/3 that undergo post-translational modification such as phosphorylation and nuclear translocation, Egr-1 activity is regulated via its biosynthesis. Aberrant Egr-1 expression or activity is implicated in cancer, inflammation, atherosclerosis, and ischemic injury and recent studies now indicate an important role for Egr-1 in TGF-ß-dependent profibrotic responses. Fibrosis in various animal models and human diseases such as scleroderma (SSc) and idiopathic pulmonary fibrosis (IPF) is accompanied by aberrant Egr-1 expression. Moreover Egr-1 appears to be required for physiologic and pathological connective tissue remodeling, and Egr-1-null mice are protected from fibrosis. As a novel profibrotic mediator, Egr-1 thus appears to be a promising potential target for the development of anti-fibrotic therapies.
Collapse
Affiliation(s)
- Swati Bhattacharyya
- Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, USA
| | | | | | | | | | | |
Collapse
|
26
|
Shen N, Gong T, Wang JD, Meng FL, Qiao L, Yang RL, Xue B, Pan FY, Zhou XJ, Chen HQ, Ning W, Li CJ. Cigarette smoke-induced pulmonary inflammatory responses are mediated by EGR-1/GGPPS/MAPK signaling. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:110-8. [PMID: 21224049 PMCID: PMC3069843 DOI: 10.1016/j.ajpath.2010.11.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2009] [Revised: 08/28/2010] [Accepted: 09/23/2010] [Indexed: 11/24/2022]
Abstract
Early growth response 1 (EGR-1) contributes to the development of chronic obstructive pulmonary disease in the lungs of smokers by mediating pulmonary inflammatory responses, but the direct downstream genes of EGR-1 that regulate this process remain unknown. We show that a new EGR-1 target gene, geranylgeranyl diphosphate synthase (GGPPS), which controls protein prenylation, can regulate the proinflammatory function of EGR-1 by activating MAPK signaling. When C57BL/6 mice were exposed to cigarette smoke, EGR-1 and GGPPS levels increased in their lungs, and the inflammatory responses were augmented, whereas these effects could be reversed by the down-regulation of EGR-1 transcription activity. The accumulation of EGR-1 and GGPPS was induced by MAPK/ERK pathway activation when Beas-2B human bronchial epithelial cells were exposed to cigarette smoke extract (CSE). Further examination showed that EGR-1 in turn regulated Erk1/2 activity because inhibition of EGR-1 transcription activity decreased CSE-induced Erk1/2 phosphorylation. Furthermore, EGR-1-promoted Erk1/2 activation was dependent on GGPPS transcription. Knockdown of GGPPS expression with small-interfering RNA abolished the EGR-1-activated Erk1/2 activity. Both EGR-1 transcription inhibition and GGPPS expression knockdown decreased the inflammatory response induced by CSE in Beas-2B cells. Our results reveal a new EGR-1/GGPPS/MAPK signaling pathway that controls cigarette smoke-induced pulmonary inflammation, and this may shed light on our understanding of the mechanism of cigarette smoke-related pulmonary diseases such as chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Ning Shen
- Model Animal Research Center and the School of Medicine, MOE Key Laboratory of Model Animal for Disease Studies, Nanjing University of Nanjing, Nanjing, China
| | - Tao Gong
- The Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jian-Dong Wang
- Affiliated Jinling Hospital of Medical School of Nanjing University, Nanjing, China
| | - Fan-Li Meng
- The Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Long Qiao
- The Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Run-Lin Yang
- The Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Bin Xue
- Model Animal Research Center and the School of Medicine, MOE Key Laboratory of Model Animal for Disease Studies, Nanjing University of Nanjing, Nanjing, China
| | - Fei-Yan Pan
- The Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiao-Jun Zhou
- Affiliated Jinling Hospital of Medical School of Nanjing University, Nanjing, China
| | - Hua-Qun Chen
- The Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Wen Ning
- Model Animal Research Center and the School of Medicine, MOE Key Laboratory of Model Animal for Disease Studies, Nanjing University of Nanjing, Nanjing, China
| | - Chao-Jun Li
- Model Animal Research Center and the School of Medicine, MOE Key Laboratory of Model Animal for Disease Studies, Nanjing University of Nanjing, Nanjing, China
- The Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|