1
|
Zhang X, Wang L, Feng R, Liang G, Hou W, Zhang Y, Li X, Zhang L, Zhang S. Functional characterization of CpADF, an actin depolymerizing factor protein in Cryptosporidium parvum. Parasitol Res 2023; 122:2621-2630. [PMID: 37676305 DOI: 10.1007/s00436-023-07960-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023]
Abstract
Cryptosporidium is a highly pathogenic water and food-borne zoonotic parasitic protozoan that causes severe diarrhea in humans and animals. Apicomplexan parasites invade host cells via a unique motility process called gliding, which relies on the parasite's microfilaments. Actin depolymerizing factor (ADF) is a fibrous-actin (F-actin) and globular actin (G-actin) binding protein essential for regulating the turnover of microfilaments. However, the role of ADF in Cryptosporidium parvum (C. parvum) remains unknown. In this study, we preliminarily characterized the biological functions of ADF in C. parvum (CpADF). The CpADF was a 135-aa protein encoded by cgd5_2800 gene containing an ADF-H domain. The expression of cgd5_2800 gene peaked at 12 h post-infection, and the CpADF was located in the cytoplasm of oocysts, middle region of sporozoites, and cytoplasm of merozoites. Neutralization efficiency of anti-CpADF serum was approximately 41.30%. Actin sedimentation assay revealed that CpADF depolymerized but did not undergo cosedimentation with F-actin and its ability of F-actin depolymerization was pH independent. These results provide a basis for further investigation of the roles of CpADF in the invasion of C. parvum.
Collapse
Affiliation(s)
- Xiaotian Zhang
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, Henan, People's Republic of China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, People's Republic of China
| | - Luyang Wang
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, Henan, People's Republic of China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, People's Republic of China
| | - Ruiying Feng
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, Henan, People's Republic of China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, People's Republic of China
| | - Guanda Liang
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, Henan, People's Republic of China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, People's Republic of China
| | - Wenyan Hou
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, Henan, People's Republic of China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, People's Republic of China
| | - Yingying Zhang
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, Henan, People's Republic of China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, People's Republic of China
| | - Xiaoying Li
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, Henan, People's Republic of China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, People's Republic of China
| | - Longxian Zhang
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China.
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, Henan, People's Republic of China.
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, People's Republic of China.
| | - Sumei Zhang
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China.
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, Henan, People's Republic of China.
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, People's Republic of China.
| |
Collapse
|
2
|
5-methylcytosine modification by Plasmodium NSUN2 stabilizes mRNA and mediates the development of gametocytes. Proc Natl Acad Sci U S A 2022; 119:2110713119. [PMID: 35210361 PMCID: PMC8892369 DOI: 10.1073/pnas.2110713119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2022] [Indexed: 11/18/2022] Open
Abstract
5-methylcytosine (m5C) is an important epitranscriptomic modification involved in messenger RNA (mRNA) stability and translation efficiency in various biological processes. However, it remains unclear if m5C modification contributes to the dynamic regulation of the transcriptome during the developmental cycles of Plasmodium parasites. Here, we characterize the landscape of m5C mRNA modifications at single nucleotide resolution in the asexual replication stages and gametocyte sexual stages of rodent (Plasmodium yoelii) and human (Plasmodium falciparum) malaria parasites. While different representations of m5C-modified mRNAs are associated with the different stages, the abundance of the m5C marker is strikingly enhanced in the transcriptomes of gametocytes. Our results show that m5C modifications confer stability to the Plasmodium transcripts and that a Plasmodium ortholog of NSUN2 is a major mRNA m5C methyltransferase in malaria parasites. Upon knockout of P. yoelii nsun2 (pynsun2), marked reductions of m5C modification were observed in a panel of gametocytogenesis-associated transcripts. These reductions correlated with impaired gametocyte production in the knockout rodent malaria parasites. Restoration of the nsun2 gene in the knockout parasites rescued the gametocyte production phenotype as well as m5C modification of the gametocytogenesis-associated transcripts. Together with the mRNA m5C profiles for two species of Plasmodium, our findings demonstrate a major role for NSUN2-mediated m5C modifications in mRNA transcript stability and sexual differentiation in malaria parasites.
Collapse
|
3
|
Structure and function of an atypical homodimeric actin capping protein from the malaria parasite. Cell Mol Life Sci 2022; 79:125. [PMID: 35132495 PMCID: PMC8821504 DOI: 10.1007/s00018-021-04032-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/28/2021] [Accepted: 11/09/2021] [Indexed: 11/27/2022]
Abstract
Apicomplexan parasites, such as Plasmodium spp., rely on an unusual actomyosin motor, termed glideosome, for motility and host cell invasion. The actin filaments are maintained by a small set of essential regulators, which provide control over actin dynamics in the different stages of the parasite life cycle. Actin filament capping proteins (CPs) are indispensable heterodimeric regulators of actin dynamics. CPs have been extensively characterized in higher eukaryotes, but their role and functional mechanism in Apicomplexa remain enigmatic. Here, we present the first crystal structure of a homodimeric CP from the malaria parasite and compare the homo- and heterodimeric CP structures in detail. Despite retaining several characteristics of a canonical CP, the homodimeric Plasmodium berghei (Pb)CP exhibits crucial differences to the canonical heterodimers. Both homo- and heterodimeric PbCPs regulate actin dynamics in an atypical manner, facilitating rapid turnover of parasite actin, without affecting its critical concentration. Homo- and heterodimeric PbCPs show partially redundant activities, possibly to rescue actin filament capping in life cycle stages where the β-subunit is downregulated. Our data suggest that the homodimeric PbCP also influences actin kinetics by recruiting lateral actin dimers. This unusual function could arise from the absence of a β-subunit, as the asymmetric PbCP homodimer lacks structural elements essential for canonical barbed end interactions suggesting a novel CP binding mode. These findings will facilitate further studies aimed at elucidating the precise actin filament capping mechanism in Plasmodium.
Collapse
|
4
|
Baroni L, Pereira LM, Maciver SK, Yatsuda AP. Functional characterisation of the actin-depolymerising factor from the apicomplexan Neospora caninum (NcADF). Mol Biochem Parasitol 2018; 224:26-36. [PMID: 30040977 DOI: 10.1016/j.molbiopara.2018.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/15/2018] [Accepted: 07/15/2018] [Indexed: 01/20/2023]
Abstract
Neospora caninum is an apicomplexan parasite that causes infectious abortion in cows. As an obligate intracellular parasite, N. caninum requires a host cell environment to survive and replicate. The locomotion and invasion mechanisms of apicomplexan parasites are centred on the actin-myosin system to propel the parasite forwards and into the host cell. The functions of actin, an intrinsically dynamic protein, are modulated by actin-binding proteins (ABPs). Actin-depolymerising factor (ADF) is a ubiquitous ABP responsible for accelerating actin turnover in eukaryotic cells and is one of the few known conserved ABPs from apicomplexan parasites. Apicomplexan ADFs have nonconventional properties compared with ADF/cofilins from higher eukaryotes. In the present paper, we characterised the ADF from N. caninum (NcADF) using computational and in vitro biochemical approaches to investigate its function in rabbit muscle actin dynamics. Our predicted computational tertiary structure of NcADF demonstrated a conserved structure and phylogeny with respect to other ADF/cofilins, although certain differences in filamentous actin (F-actin) binding sites were present. The activity of recombinant NcADF on heterologous actin was regulated in part by pH and the presence of inorganic phosphate. In addition, our data suggest a comparatively weak disassembly of F-actin by NcADF. Taken together, the data presented herein represent a contribution to the field towards the understanding of the role of ADF in N. caninum and a comparative analysis of ABPs in the phylum Apicomplexa.
Collapse
Affiliation(s)
- Luciana Baroni
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/n, 14040-930, Ribeirão Preto, SP, Brazil
| | - Luiz M Pereira
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/n, 14040-930, Ribeirão Preto, SP, Brazil
| | - Sutherland K Maciver
- Centre for Discovery Brain Sciences, Biomedical Sciences, Edinburgh Medical School, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, Scotland, United Kingdom
| | - Ana P Yatsuda
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/n, 14040-930, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
5
|
Douglas RG, Nandekar P, Aktories JE, Kumar H, Weber R, Sattler JM, Singer M, Lepper S, Sadiq SK, Wade RC, Frischknecht F. Inter-subunit interactions drive divergent dynamics in mammalian and Plasmodium actin filaments. PLoS Biol 2018; 16:e2005345. [PMID: 30011270 PMCID: PMC6055528 DOI: 10.1371/journal.pbio.2005345] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 06/13/2018] [Indexed: 01/01/2023] Open
Abstract
Cell motility is essential for protozoan and metazoan organisms and typically relies on the dynamic turnover of actin filaments. In metazoans, monomeric actin polymerises into usually long and stable filaments, while some protozoans form only short and highly dynamic actin filaments. These different dynamics are partly due to the different sets of actin regulatory proteins and partly due to the sequence of actin itself. Here we probe the interactions of actin subunits within divergent actin filaments using a comparative dynamic molecular model and explore their functions using Plasmodium, the protozoan causing malaria, and mouse melanoma derived B16-F1 cells as model systems. Parasite actin tagged to a fluorescent protein (FP) did not incorporate into mammalian actin filaments, and rabbit actin-FP did not incorporate into parasite actin filaments. However, exchanging the most divergent region of actin subdomain 3 allowed such reciprocal incorporation. The exchange of a single amino acid residue in subdomain 2 (N41H) of Plasmodium actin markedly improved incorporation into mammalian filaments. In the parasite, modification of most subunit–subunit interaction sites was lethal, whereas changes in actin subdomains 1 and 4 reduced efficient parasite motility and hence mosquito organ penetration. The strong penetration defects could be rescued by overexpression of the actin filament regulator coronin. Through these comparative approaches we identified an essential and common contributor, subdomain 3, which drives the differential dynamic behaviour of two highly divergent eukaryotic actins in motile cells. Actin is one of the most abundant and conserved proteins across eukaryotes. Its ability to assemble from individual monomers into dynamic polymers is essential for many cellular functions, including division and motility. In most cells, actin is able to form long and stable filaments. However, an actin of the malaria-causing parasite Plasmodium, while having a very similar monomer structure to actins from other eukaryotes, forms only short and unstable filaments. These short and dynamic filaments are crucial in allowing the parasite to move very rapidly in tissue. Here we investigated the basis of these differences. We used molecular dynamics simulations of actin filaments to investigate the actin–actin interfaces in filaments from Plasmodium and rabbit. We next engineered parasites to express chimeric actins that contained different parts of rabbit and parasite actin and thereby identified actin residues important for parasite viability and progression across the life cycle. We could rescue the most prominent defect specifically with overexpression of the actin binding protein coronin. This suggests that the more stable actin harms the parasite and that coronin helps in recycling filaments. By screening the effects of actin chimeras in mammalian cells, we also identified regions that allow these different actins to efficiently interact with each other. Taken together, our results improve our understanding of the interactions required for actin to incorporate into filaments across divergent eukaryotes.
Collapse
Affiliation(s)
- Ross G. Douglas
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
| | - Prajwal Nandekar
- Molecular and Cellular Modeling, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Julia-Elisabeth Aktories
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
| | - Hirdesh Kumar
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
- Molecular and Cellular Modeling, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
| | - Rebekka Weber
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
| | - Julia M. Sattler
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
| | - Mirko Singer
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
| | - Simone Lepper
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
| | - S. Kashif Sadiq
- Molecular and Cellular Modeling, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
| | - Rebecca C. Wade
- Molecular and Cellular Modeling, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg, Germany
- * E-mail: (FF); (RCW)
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
- * E-mail: (FF); (RCW)
| |
Collapse
|
6
|
Sato Y, Hliscs M, Dunst J, Goosmann C, Brinkmann V, Montagna GN, Matuschewski K. Comparative Plasmodium gene overexpression reveals distinct perturbation of sporozoite transmission by profilin. Mol Biol Cell 2016; 27:2234-44. [PMID: 27226484 PMCID: PMC4945141 DOI: 10.1091/mbc.e15-10-0734] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 05/16/2016] [Indexed: 12/27/2022] Open
Abstract
The roles of vital genes, such as those of G-actin–binding proteins, in malaria parasites are underexplored. Overexpression of Plasmodium profilin perturbs actin dynamics only in sporozoites. Strict actin regulation is particularly important for malaria transmission. Mapping of phenotypes can be done by comparative Plasmodium gene overexpression. Plasmodium relies on actin-based motility to migrate from the site of infection and invade target cells. Using a substrate-dependent gliding locomotion, sporozoites are able to move at fast speed (1–3 μm/s). This motility relies on a minimal set of actin regulatory proteins and occurs in the absence of detectable filamentous actin (F-actin). Here we report an overexpression strategy to investigate whether perturbations of F-actin steady-state levels affect gliding locomotion and host invasion. We selected two vital Plasmodium berghei G-actin–binding proteins, C-CAP and profilin, in combination with three stage-specific promoters and mapped the phenotypes afforded by overexpression in all three extracellular motile stages. We show that in merozoites and ookinetes, additional expression does not impair life cycle progression. In marked contrast, overexpression of C-CAP and profilin in sporozoites impairs circular gliding motility and salivary gland invasion. The propensity for productive motility correlates with actin accumulation at the parasite tip, as revealed by combinations of an actin-stabilizing drug and transgenic parasites. Strong expression of profilin, but not C-CAP, resulted in complete life cycle arrest. Comparative overexpression is an alternative experimental genetic strategy to study essential genes and reveals effects of regulatory imbalances that are not uncovered from deletion-mutant phenotyping.
Collapse
Affiliation(s)
- Yuko Sato
- Parasitology Unit, Max Planck Institute for Infection Biology, 10117 Berlin, Germany Infectious Diseases Interdisciplinary Research Group, Singapore-Massachusetts Institute of Technology Alliance for Research and Technology, 138602 Singapore
| | - Marion Hliscs
- Parasitology Unit, Max Planck Institute for Infection Biology, 10117 Berlin, Germany School of BioSciences, University of Melbourne, Parkville, 3010 Victoria, Australia
| | - Josefine Dunst
- Parasitology Unit, Max Planck Institute for Infection Biology, 10117 Berlin, Germany Institute for Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Christian Goosmann
- Imaging Unit, Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | - Volker Brinkmann
- Imaging Unit, Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | - Georgina N Montagna
- Parasitology Unit, Max Planck Institute for Infection Biology, 10117 Berlin, Germany Departamento de Microbiologia, Immunologia e Parasitologia, Universidade Federal de São Paulo, 04039-032 São Paulo, Brazil
| | - Kai Matuschewski
- Parasitology Unit, Max Planck Institute for Infection Biology, 10117 Berlin, Germany Institute of Biology, Humboldt University, 10117 Berlin, Germany
| |
Collapse
|
7
|
Zheng Y, He R, He M, Gu X, Wang T, Lai W, Peng X, Yang G. Characterization of Sarcoptes scabiei cofilin gene and assessment of recombinant cofilin protein as an antigen in indirect-ELISA for diagnosis. BMC Infect Dis 2016; 16:21. [PMID: 26801761 PMCID: PMC4724102 DOI: 10.1186/s12879-016-1353-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 01/18/2016] [Indexed: 01/20/2023] Open
Abstract
Background Scabies impairs the health of humans and animals and causes heavy economic losses. Traditional diagnostic methods for scabies are inefficient and ineffective, and so far there is no commercial immunodiagnostic or molecular based test for scabies. Methods Here, we used recombinant Sarcoptes scabiei cofilin protein as an antigen to establish indirect ELISA. S. scabiei cofilin is highly homologous to Dermatophagoides farinae Der f 31 allergen (90 % identity). The S. scabiei cofilin gene was cloned and expressed in Escherichia coli to obtain recombinant protein. Western blotting and fluorescence immunohistochemistry were carried out, and we established an indirect ELISA method and detected 33 serum samples from scabies infected rabbits and 30 serum samples from naïve rabbits. Results Western blotting demonstrated that S. scabiei cofilin possessed good immunogenicity and fluorescence immunohistochemistry showed the S. scabiei cofilin is widespread in the splanchnic area of mites. In ELISA, a cut-off value of 0.188 was determined to judge experimental positive and negative serum values. Specificity and sensitivity of the ELISA were 87.9 and 83.33 %, respectively. Conclusions Recombinant S. scabiei cofilin showed potential value as a diagnostic antigen. The ELISA method established could be used in clinical diagnosis and provide experimental information in minimal or asymptomatic infection.
Collapse
Affiliation(s)
- Yu Zheng
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China.
| | - Ran He
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China.
| | - Manli He
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China.
| | - Xiaobin Gu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China.
| | - Tao Wang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China.
| | - Weimin Lai
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China.
| | - Xuerong Peng
- Department of Chemistry, College of Life and Basic Science, Sichuan Agricultural University, Wenjiang, China.
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China.
| |
Collapse
|
8
|
Haase S, Zimmermann D, Olshina MA, Wilkinson M, Fisher F, Tan YH, Stewart RJ, Tonkin CJ, Wong W, Kovar DR, Baum J. Disassembly activity of actin-depolymerizing factor (ADF) is associated with distinct cellular processes in apicomplexan parasites. Mol Biol Cell 2015; 26:3001-12. [PMID: 26157165 PMCID: PMC4551315 DOI: 10.1091/mbc.e14-10-1427] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 06/30/2015] [Indexed: 12/15/2022] Open
Abstract
Complementation of a conditional KO of actin-depolymerizing factor (ADF) in Toxoplasma gondii demonstrates that ADF-dependent actin filament disassembly is essential for parasite development but not for cell motility. Furthermore, trans-genera complementation highlights genus-specific coevolution between ADF proteins and their native actins. Proteins of the actin-depolymerizing factor (ADF)/cofilin family have been shown to be crucial for the motility and survival of apicomplexan parasites. However, the mechanisms by which ADF proteins fulfill their function remain poorly understood. In this study, we investigate the comparative activities of ADF proteins from Toxoplasma gondii and Plasmodium falciparum, the human malaria parasite, using a conditional T. gondii ADF-knockout line complemented with ADF variants from either species. We show that P. falciparum ADF1 can fully restore native TgADF activity, demonstrating functional conservation between parasites. Strikingly, mutation of a key basic residue (Lys-72), previously implicated in disassembly in PfADF1, had no detectable phenotypic effect on parasite growth, motility, or development. In contrast, organelle segregation was severely impaired when complementing with a TgADF mutant lacking the corresponding residue (Lys-68). Biochemical analyses of each ADF protein confirmed the reduced ability of lysine mutants to mediate actin depolymerization via filament disassembly although not severing, in contrast to previous reports. These data suggest that actin filament disassembly is essential for apicomplexan parasite development but not for motility, as well as pointing to genus-specific coevolution between ADF proteins and their native actin.
Collapse
Affiliation(s)
- Silvia Haase
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Dennis Zimmermann
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Maya A Olshina
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Mark Wilkinson
- Department of Life Sciences, Imperial College, London SW7 2AZ, United Kingdom
| | - Fabio Fisher
- Department of Life Sciences, Imperial College, London SW7 2AZ, United Kingdom
| | - Yan Hong Tan
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Rebecca J Stewart
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Christopher J Tonkin
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Wilson Wong
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - David R Kovar
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Jake Baum
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia Department of Life Sciences, Imperial College, London SW7 2AZ, United Kingdom
| |
Collapse
|
9
|
Kumpula EP, Kursula I. Towards a molecular understanding of the apicomplexan actin motor: on a road to novel targets for malaria remedies? Acta Crystallogr F Struct Biol Commun 2015; 71:500-13. [PMID: 25945702 PMCID: PMC4427158 DOI: 10.1107/s2053230x1500391x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 02/25/2015] [Indexed: 11/10/2022] Open
Abstract
Apicomplexan parasites are the causative agents of notorious human and animal diseases that give rise to considerable human suffering and economic losses worldwide. The most prominent parasites of this phylum are the malaria-causing Plasmodium species, which are widespread in tropical and subtropical regions, and Toxoplasma gondii, which infects one third of the world's population. These parasites share a common form of gliding motility which relies on an actin-myosin motor. The components of this motor and the actin-regulatory proteins in Apicomplexa have unique features compared with all other eukaryotes. This, together with the crucial roles of these proteins, makes them attractive targets for structure-based drug design. In recent years, several structures of glideosome components, in particular of actins and actin regulators from apicomplexan parasites, have been determined, which will hopefully soon allow the creation of a complete molecular picture of the parasite actin-myosin motor and its regulatory machinery. Here, current knowledge of the function of this motor is reviewed from a structural perspective.
Collapse
Affiliation(s)
- Esa-Pekka Kumpula
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, PO Box 3000, 90014 Oulu, Finland
- Helmholtz Centre for Infection Research, Notkestrasse 85, 22607 Hamburg, Germany
- German Electron Synchrotron, Notkestrasse 85, 22607 Hamburg, Germany
| | - Inari Kursula
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, PO Box 3000, 90014 Oulu, Finland
- Helmholtz Centre for Infection Research, Notkestrasse 85, 22607 Hamburg, Germany
- German Electron Synchrotron, Notkestrasse 85, 22607 Hamburg, Germany
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| |
Collapse
|
10
|
Molecular characterization of an actin depolymerizing factor from Cryptocaryon irritans. Parasitology 2013; 140:561-8. [DOI: 10.1017/s0031182012001977] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
SUMMARYActin depolymerizing factors regulate actin dynamics involved in cellular processes such as morphogenesis, motility, development and infection. Here, a novel actin depolymerizing factor gene (CiADF2) was cloned from the cDNA library of Cryptocaryon irritans, a parasitic ciliate causing cryptocaryonosis. The full-length cDNA of CiADF2 was 531 bp. Its open reading frame (ORF) was 417 bp, encoding a polypeptide of 138 aa with typical features of the ADF/cofilin family. Reverse transcription-PCR suggested that CiADF2 is expressed in all stages of the life cycle. After site-directed mutagenesis of a non-universal genetic code, the ORF was subcloned in Escherichia coli. The bacteria were induced with the addition of isopropylthio-β-D-galactoside to express a fusion protein of recombinant CiADF2 (rCiADF2) with glutathione S transferase. Sodium dodecyl sulfate polyacrylamide gel electrophoresis and Western blot confirmed the predicted molecular mass of rCiADF2 of 16·2 kDa. A mouse antibody against rCiADF2 recognized native CiADF2, and rCiADF2 reacted with mouse antisera against C. irritans trophonts. CiADF2 was abundant in the plasma around cytostomes, suggesting that CiADF2 is involved in ciliate movement. Moreover, rCiADF2 showed F-actin binding and depolymerizing activity. This study will help to clarify the pathogenic biology of the parasite and develop effective control measures for cryptocaryonosis.
Collapse
|
11
|
Singh BK, Sattler JM, Chatterjee M, Huttu J, Schüler H, Kursula I. Crystal structures explain functional differences in the two actin depolymerization factors of the malaria parasite. J Biol Chem 2012; 286:28256-64. [PMID: 21832095 DOI: 10.1074/jbc.m111.211730] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Apicomplexan parasites, such as the malaria-causing Plasmodium, utilize an actin-based motor for motility and host cell invasion. The actin filaments of these parasites are unusually short, and actin polymerization is under strict control of a small set of regulatory proteins, which are poorly conserved with their mammalian orthologs. Actin depolymerization factors (ADFs) are among the most important actin regulators, affecting the rates of filament turnover in a multifaceted manner. Plasmodium has two ADFs that display low sequence homology with each other and with the higher eukaryotic family members. Here, we show that ADF2, like canonical ADF proteins but unlike ADF1, binds to both globular and filamentous actin, severing filaments and inducing nucleotide exchange on the actin monomer. The crystal structure of Plasmodium ADF1 shows major differences from the ADF consensus, explaining the lack of F-actin binding. Plasmodium ADF2 structurally resembles the canonical members of the ADF/cofilin family.
Collapse
Affiliation(s)
- Bishal K Singh
- Department of Biochemistry, University of Oulu, PO Box 3000, 90014 Oulu, Finland
| | | | | | | | | | | |
Collapse
|
12
|
Sattler JM, Ganter M, Hliscs M, Matuschewski K, Schüler H. Actin regulation in the malaria parasite. Eur J Cell Biol 2011; 90:966-71. [DOI: 10.1016/j.ejcb.2010.11.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 11/22/2010] [Accepted: 11/23/2010] [Indexed: 10/18/2022] Open
|
13
|
Singh BK, Sattler JM, Chatterjee M, Huttu J, Schüler H, Kursula I. Crystal Structures Explain Functional Differences in the Two Actin Depolymerization Factors of the Malaria Parasite. J Biol Chem 2011. [DOI: 10.1074/jbc.m110.211730] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
14
|
Minimal requirements for actin filament disassembly revealed by structural analysis of malaria parasite actin-depolymerizing factor 1. Proc Natl Acad Sci U S A 2011; 108:9869-74. [PMID: 21628589 PMCID: PMC3116436 DOI: 10.1073/pnas.1018927108] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Malaria parasite cell motility is a process that is dependent on the dynamic turnover of parasite-derived actin filaments. Despite its central role, actin's polymerization state is controlled by a set of identifiable regulators that is markedly reduced compared with those of other eukaryotic cells. In Plasmodium falciparum, the most virulent species that affects humans, this minimal repertoire includes two members of the actin-depolymerizing factor/cofilin (AC) family of proteins, P. falciparum actin-depolymerizing factor 1 (PfADF1) and P. falciparum actin-depolymerizing factor 2. This essential class of actin regulator is involved in the control of filament dynamics at multiple levels, from monomer binding through to filament depolymerization and severing. Previous biochemical analyses have suggested that PfADF1 sequesters monomeric actin but, unlike most eukaryotic counterparts, has limited potential to bind or depolymerize filaments. The molecular basis for these unusual properties and implications for parasite cell motility have not been established. Here we present the crystal structure of an apicomplexan AC protein, PfADF1. We show that PfADF1 lacks critical residues previously implicated as essential for AC-mediated actin filament binding and disassembly, having a substantially reduced filament-binding loop and C-terminal α4 helix. Despite this divergence in structure, we demonstrate that PfADF1 is capable of efficient actin filament severing. Furthermore, this severing occurs despite PfADF1's low binding affinity for filaments. Comparative structural analysis along with biochemical and microscopy evidence establishes that severing is reliant on the availability of an exposed basic residue in the filament-binding loop, a conserved minimal requirement that defines AC-mediated filament disassembly across eukaryotic cells.
Collapse
|
15
|
Mehta S, Sibley LD. Actin depolymerizing factor controls actin turnover and gliding motility in Toxoplasma gondii. Mol Biol Cell 2011; 22:1290-9. [PMID: 21346192 PMCID: PMC3078074 DOI: 10.1091/mbc.e10-12-0939] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Actin-based motility is vital for host cell invasion by protozoan parasites such as Toxoplasma, which provides a model for studying actin-based motility in parasites. Our study reveals that, in addition to intrinsic differences in actin dynamics, regulatory proteins like actin depolymerizing factor are required to regulate this process in vivo. Apicomplexan parasites rely on actin-based gliding motility to move across the substratum, cross biological barriers, and invade their host cells. Gliding motility depends on polymerization of parasite actin filaments, yet ∼98% of actin is nonfilamentous in resting parasites. Previous studies suggest that the lack of actin filaments in the parasite is due to inherent instability, leaving uncertain the role of actin-binding proteins in controlling dynamics. We have previously shown that the single allele of Toxoplasma gondii actin depolymerizing factor (TgADF) has strong actin monomer–sequestering and weak filament-severing activities in vitro. Here we used a conditional knockout strategy to investigate the role of TgADF in vivo. Suppression of TgADF led to accumulation of actin-rich filaments that were detected by immunofluorescence and electron microscopy. Parasites deficient in TgADF showed reduced speed of motility, increased aberrant patterns of motion, and inhibition of sustained helical gliding. Lack of TgADF also led to severe defects in entry and egress from host cells, thus blocking infection in vitro. These studies establish that the absence of stable actin structures in the parasite are not simply the result of intrinsic instability, but that TgADF is required for the rapid turnover of parasite actin filaments, gliding motility, and cell invasion.
Collapse
Affiliation(s)
- Simren Mehta
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|