1
|
Han X, Zhou T, Hu X, Zhu Y, Shi Z, Chen S, Liu Y, Weng X, Zhang F, Wu S. Discovery and Characterization of MaK: A Novel Knottin Antimicrobial Peptide from Monochamus alternatus. Int J Mol Sci 2023; 24:17565. [PMID: 38139394 PMCID: PMC10743862 DOI: 10.3390/ijms242417565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Knottin-type antimicrobial peptides possess exceptional attributes, such as high efficacy, low vulnerability to drug resistance, minimal toxicity, and precise targeting of drug sites. These peptides play a crucial role in the innate immunity of insects, offering protection against bacteria, fungi, and parasites. Knottins have garnered considerable interest as promising contenders for drug development due to their ability to bridge the gap between small molecules and protein-based biopharmaceuticals, effectively addressing the therapeutic limitations of both modalities. This work presents the isolation and identification of a novel antimicrobial peptide derived from Monochamus alternatus. The cDNA encodes a 56-amino acid knottin propeptide, while the mature peptide comprises only 34 amino acids. We have labeled this knottin peptide as MaK. Using chemically synthesized MaK, we evaluated its hemolytic activity, thermal stability, antibacterial properties, and efficacy against nematodes. The results of this study indicate that MaK is an exceptionally effective knottin-type peptide. It demonstrates low toxicity, superior stability, potent antibacterial activity, and the ability to suppress pine wood nematodes. Consequently, these findings suggest that MaK has potential use in developing innovative therapeutic agents to prevent and manage pine wilt disease.
Collapse
Affiliation(s)
- Xiaohong Han
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.H.); (X.H.); (Y.Z.); (Z.S.); (S.C.); (Y.L.); (X.W.)
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tong Zhou
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Xinran Hu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.H.); (X.H.); (Y.Z.); (Z.S.); (S.C.); (Y.L.); (X.W.)
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yukun Zhu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.H.); (X.H.); (Y.Z.); (Z.S.); (S.C.); (Y.L.); (X.W.)
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zengzeng Shi
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.H.); (X.H.); (Y.Z.); (Z.S.); (S.C.); (Y.L.); (X.W.)
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shi Chen
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.H.); (X.H.); (Y.Z.); (Z.S.); (S.C.); (Y.L.); (X.W.)
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yunfei Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.H.); (X.H.); (Y.Z.); (Z.S.); (S.C.); (Y.L.); (X.W.)
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoqian Weng
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.H.); (X.H.); (Y.Z.); (Z.S.); (S.C.); (Y.L.); (X.W.)
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Feiping Zhang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.H.); (X.H.); (Y.Z.); (Z.S.); (S.C.); (Y.L.); (X.W.)
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Songqing Wu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.H.); (X.H.); (Y.Z.); (Z.S.); (S.C.); (Y.L.); (X.W.)
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry, Fuzhou 350002, China
| |
Collapse
|
2
|
Arguelles J, Lee J, Cardenas LV, Govind S, Singh S. In Silico Analysis of a Drosophila Parasitoid Venom Peptide Reveals Prevalence of the Cation-Polar-Cation Clip Motif in Knottin Proteins. Pathogens 2023; 12:pathogens12010143. [PMID: 36678491 PMCID: PMC9865768 DOI: 10.3390/pathogens12010143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
As generalist parasitoid wasps, Leptopilina heterotoma are highly successful on many species of fruit flies of the genus Drosophila. The parasitoids produce specialized multi-strategy extracellular vesicle (EV)-like structures in their venom. Proteomic analysis identified several immunity-associated proteins, including the knottin peptide, LhKNOT, containing the structurally conserved inhibitor cysteine knot (ICK) fold, which is present in proteins from diverse taxa. Our structural and docking analysis of LhKNOT's 36-residue core knottin fold revealed that in addition to the knottin motif itself, it also possesses a Cation-Polar-Cation (CPC) clip. The CPC clip motif is thought to facilitate antimicrobial activity in heparin-binding proteins. Surprisingly, a majority of ICKs tested also possess the CPC clip motif, including 75 bona fide plant and arthropod knottin proteins that share high sequence and/or structural similarity with LhKNOT. Like LhKNOT and these other 75 knottin proteins, even the Drosophila Drosomycin antifungal peptide, a canonical target gene of the fly's Toll-NF-kappa B immune pathway, contains this CPC clip motif. Together, our results suggest a possible defensive function for the parasitoid LhKNOT. The prevalence of the CPC clip motif, intrinsic to the cysteine knot within the knottin proteins examined here, suggests that the resultant 3D topology is important for their biochemical functions. The CPC clip is likely a highly conserved structural motif found in many diverse proteins with reported heparin binding capacity, including amyloid proteins. Knottins are targets for therapeutic drug development, and insights into their structure-function relationships will advance novel drug design.
Collapse
Affiliation(s)
- Joseph Arguelles
- Department of Biology, Brooklyn College, Brooklyn, NY 11210, USA
| | - Jenny Lee
- Department of Biology, Brooklyn College, Brooklyn, NY 11210, USA
| | - Lady V. Cardenas
- Department of Biology, The City College of New York, New York, NY 10031, USA
| | - Shubha Govind
- Department of Biology, The City College of New York, New York, NY 10031, USA
- PhD Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
- PhD Program in Biology, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Shaneen Singh
- Department of Biology, Brooklyn College, Brooklyn, NY 11210, USA
- PhD Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
- PhD Program in Biology, The Graduate Center of the City University of New York, New York, NY 10016, USA
- Correspondence:
| |
Collapse
|
3
|
Akbarzadeh-Khiavi M, Torabi M, Olfati AH, Rahbarnia L, Safary A. Bio-nano scale modifications of melittin for improving therapeutic efficacy. Expert Opin Biol Ther 2022; 22:895-909. [PMID: 35687355 DOI: 10.1080/14712598.2022.2088277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Melittin (MLT), a natural membrane-active component, is the most prominent cytolytic peptide from bee venom. Remarkable biological properties of MLT, including anti-inflammatory, antimicrobial, anticancer, anti-protozoan, and antiarthritic activities, make it an up-and-coming therapeutic candidate for a wide variety of human diseases. Therapeutic applications of MLT may be hindered due to low stability, high toxicity, and weak tissue penetration. Different bio-nano scale modifications hold promise for improving its functionality and therapeutic efficacy. AREAS COVERED In the current review, we aimed to provide a comprehensive insight into strategies used for MLT conjugations and modifications, cellular delivery of modified forms, and their clinical perspectives by reviewing the published literature on PubMed, Scopus, and Google Scholar databases. We also emphasized the MLT structure modifications, mechanism of action, and cellular toxicity. EXPERT OPINION Developing new analogs and conjugates of MLT as a natural drug with improved functions and fewer side effects is crucial for the clinical translation of this approach worldwide, especially where the chemicals and synthetic drugs are more expensive or unavailable in the healthcare system. MLT-nanoconjugation may be one of the best-optimized strategies for improving peptide delivery, increasing its therapeutic efficacy, and providing minimal nonspecific cellular lytic activity. [Figure: see text].
Collapse
Affiliation(s)
- Mostafa Akbarzadeh-Khiavi
- Liver and Gastrointestinal Diseases Research Center Tabriz University of Medical Sciences, Tabriz, Iran.,Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mitra Torabi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir-Hossein Olfati
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Rahbarnia
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azam Safary
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Li Y, Cai J, Du C, Lin Y, Li S, Ma A, Qin Y. Bioinformatic analysis and antiviral effect of Periplaneta americana defensins. Virus Res 2021; 308:198627. [PMID: 34785275 DOI: 10.1016/j.virusres.2021.198627] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/01/2021] [Accepted: 11/06/2021] [Indexed: 01/08/2023]
Abstract
Due to the lack of an adaptive immune system, insects rely on innate immune mechanisms to fight against pathogenic infections. Two major innate immune pathways, Toll and IMD, orchestrate anti-pathogen responses by regulating the expression of antimicrobial peptide (AMP) genes. Although the antifungal or antibacterial function of AMPs has been well characterized, the antiviral role of AMPs in insects remains largely unclear. Periplaneta americana (P. americana), or the American cockroach, is used in traditional Chinese medicine as an antiviral agent; however, the underlying mechanism of action of P. americana extracts is unclear. Our previous study showed that the P. americana genome encodes multiple antimicrobial peptide genes. Based on these data, we predicted five novel P. americana defensins (PaDefensins) and analyzed their primary structure, secondary structure, and physicochemical properties. The putative antiviral, antifungal, antibacterial, and anticancer activities suggested that PaDefensin5 is a desirable therapeutic candidate against viral diseases. As the first experimental evidence of the antiviral effects of insect defensins, we also showed the antiviral effect of PaDefensin5 in Drosophila Kc cells and Drosophila embryos in vivo . In conclusion, results of both in silico predictions and subsequent antiviral experiments suggested PaDefensin5 a promising antiviral drug.
Collapse
Affiliation(s)
- Ying Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China; Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, China
| | - Jie Cai
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China; Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, China
| | - Chunyu Du
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China; Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, China
| | - Yuhua Lin
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China; Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, China
| | - Anping Ma
- Insititution of chemical surveillance, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, Guangdong, China
| | - Yiru Qin
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China; Insititution of chemical surveillance, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, Guangdong, China.
| |
Collapse
|
5
|
Li J, Hu S, Jian W, Xie C, Yang X. Plant antimicrobial peptides: structures, functions, and applications. BOTANICAL STUDIES 2021; 62:5. [PMID: 33914180 PMCID: PMC8085091 DOI: 10.1186/s40529-021-00312-x] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/13/2021] [Indexed: 05/20/2023]
Abstract
Antimicrobial peptides (AMPs) are a class of short, usually positively charged polypeptides that exist in humans, animals, and plants. Considering the increasing number of drug-resistant pathogens, the antimicrobial activity of AMPs has attracted much attention. AMPs with broad-spectrum antimicrobial activity against many gram-positive bacteria, gram-negative bacteria, and fungi are an important defensive barrier against pathogens for many organisms. With continuing research, many other physiological functions of plant AMPs have been found in addition to their antimicrobial roles, such as regulating plant growth and development and treating many diseases with high efficacy. The potential applicability of plant AMPs in agricultural production, as food additives and disease treatments, has garnered much interest. This review focuses on the types of plant AMPs, their mechanisms of action, the parameters affecting the antimicrobial activities of AMPs, and their potential applications in agricultural production, the food industry, breeding industry, and medical field.
Collapse
Affiliation(s)
- Junpeng Li
- College of Life Science, Chongqing Normal University, Chongqing, 401331, China
| | - Shuping Hu
- College of Life Science, Chongqing Normal University, Chongqing, 401331, China
| | - Wei Jian
- College of Life Science, Chongqing Normal University, Chongqing, 401331, China
| | - Chengjian Xie
- College of Life Science, Chongqing Normal University, Chongqing, 401331, China.
| | - Xingyong Yang
- College of Life Science, Chongqing Normal University, Chongqing, 401331, China.
| |
Collapse
|
6
|
Transcriptome Analysis of Psacothea hilaris: De Novo Assembly and Antimicrobial Peptide Prediction. INSECTS 2020; 11:insects11100676. [PMID: 33027983 PMCID: PMC7601695 DOI: 10.3390/insects11100676] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 11/16/2022]
Abstract
Antimicrobial peptides (AMPs) are the frontline innate defense system evolutionarily preserved in insects to combat invading pathogens. These AMPs could serve as an alternative to classical antibiotics to overcome the burden of treating multidrug resistant bacteria. Psacotheasin, a knottin type AMP was isolated from Psacothea hilaris and shown to exhibit antimicrobial activity, especially against fungi through apoptosis mediated cell death. In this study, we aimed to identify novel probable AMPs from Psacothea hilaris, the yellow spotted longicorn beetle. The beetle was immunized with the two bacterial strains (E. coli and S. aureus), and the yeast strain C. albicans. After immunization, total RNA was isolated and sequenced in Illumina platform. Then, beetle transcriptome was de novo assembled and searched for putative AMPs with the known physiochemical features of the AMPs. A selection of AMP candidates were synthesized and tested for antimicrobial activity. Four peptides showed stronger activity against E. coli than the control AMP, melittin while one peptide showed similar activity against S. aureus. Moreover, four peptides and two peptides showed antifungal activity stronger than and similar to melittin, respectively. Collectively one peptide showed both antibacterial and antifungal activity superior to melittin; thus, it provides a potent antimicrobial peptide. All the peptides showed no hemolysis in all the tested concentrations. These results suggest that in silico mining of insects' transcriptome could be a promising tool to obtain and optimize novel AMPs for human needs.
Collapse
|
7
|
Anti-fungal properties and mechanisms of melittin. Appl Microbiol Biotechnol 2020; 104:6513-6526. [PMID: 32500268 DOI: 10.1007/s00253-020-10701-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/15/2020] [Accepted: 05/24/2020] [Indexed: 12/17/2022]
Abstract
Many fungal diseases remain poorly addressed by public health authorities, despite posing a substantial threat to humans, animals, and plants. More worryingly, few classes of anti-fungals have been developed to combat fungal infections thus far. These medications also have certain drawbacks in terms of toxicity, spectrum of activity, and pharmacokinetic properties. Hence, there is a dire need for discovery of novel anti-fungal agents. Melittin, the main constituent in the venom of European honeybee Apis mellifera, has attracted considerable attention among researchers owing to its potential therapeutic applications. To our knowledge, there has been no review pertinent to anti-fungal properties of melittin, prompting us to synopsize the results of experimental investigations with a special emphasis upon underlying mechanisms. In this respect, melittin inhibits a broad spectrum of fungal genera including Aspergillus, Botrytis, Candida, Colletotrichum, Fusarium, Malassezia, Neurospora, Penicillium, Saccharomyces, Trichoderma, Trichophyton, and Trichosporon. Melittin hinders fungal growth by several mechanisms such as membrane permeabilization, apoptosis induction by reactive oxygen species-mediated mitochondria/caspase-dependent pathway, inhibition of (1,3)-β-D-glucan synthase, and alterations in fungal gene expression. Overall, melittin will definitely open up new avenues for various biomedical applications, from medicine to agriculture. KEYPOINTS: • Venom-derived peptides have potential for development of anti-microbial agents. • Many fungal pathogens are susceptible to melittin at micromolar concentrations. • Melittin possesses multi-target mechanism of action against fungal cells.
Collapse
|
8
|
Das K, Datta K, Karmakar S, Datta SK. Antimicrobial Peptides - Small but Mighty Weapons for Plants to Fight Phytopathogens. Protein Pept Lett 2019; 26:720-742. [PMID: 31215363 DOI: 10.2174/0929866526666190619112438] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/27/2019] [Accepted: 04/25/2019] [Indexed: 11/22/2022]
Abstract
Antimicrobial Peptides (AMPs) have diverse structures, varied modes of actions, and can inhibit the growth of a wide range of pathogens at low concentrations. Plants are constantly under attack by a wide range of phytopathogens causing massive yield losses worldwide. To combat these pathogens, nature has armed plants with a battery of defense responses including Antimicrobial Peptides (AMPs). These peptides form a vital component of the two-tier plant defense system. They are constitutively expressed as part of the pre-existing first line of defense against pathogen entry. When a pathogen overcomes this barrier, it faces the inducible defense system, which responds to specific molecular or effector patterns by launching an arsenal of defense responses including the production of AMPs. This review emphasizes the structural and functional aspects of different plant-derived AMPs, their homology with AMPs from other organisms, and how their biotechnological potential could generate durable resistance in a wide range of crops against different classes of phytopathogens in an environmentally friendly way without phenotypic cost.
Collapse
Affiliation(s)
- Kaushik Das
- Laboratory of Translational Research on Transgenic Crops, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Karabi Datta
- Laboratory of Translational Research on Transgenic Crops, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Subhasis Karmakar
- Laboratory of Translational Research on Transgenic Crops, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Swapan K Datta
- Laboratory of Translational Research on Transgenic Crops, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| |
Collapse
|
9
|
C16-Fengycin A affect the growth of Candida albicans by destroying its cell wall and accumulating reactive oxygen species. Appl Microbiol Biotechnol 2019; 103:8963-8975. [PMID: 31630240 DOI: 10.1007/s00253-019-10117-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/19/2019] [Accepted: 09/03/2019] [Indexed: 12/14/2022]
Abstract
Candida albicans is the most common clinical pathogenic fungus, which is highly susceptible to immunodeficiency. Development of novel antifungal agents has become a growing trend in the treatment of Candida infections. C16-Fengycin A, a lipopeptide isolated from Bacillus amyloliquefaciens fmb60 showed significant fungicidal activity against C. albicans. In the study, we explored the possible antifungal mode of C16-Fengycin A. It was predicted that C16-Fengycin A had the ability to disrupt the cell wall due to its alterations of cell ultrastructure, and reduction of cell wall hydrophobicity. This was further confirmed by the changes in the exposure of the cell wall components and down-regulation of the genes related in the cell wall synthesis. Meanwhile, with the treatment of C16-Fengycin A, the levels of reactive oxygen species (ROS) increased, resulting in mitochondrial dysfunction in the cells. We hypothesized that the antifungal mechanism of C16-Fengycin A might be via the destruction of the cell wall and the accumulation of ROS, which could activate the High-Osmolarity Glycerol Mitogen-Activated Protein Kinase (HOG-MAPK) pathway. Our findings indicated that C16-Fengycin A could be a potential antifungal agent that could be used to treat candida infections.
Collapse
|
10
|
Luo H, Qing Z, Deng Y, Deng Z, Tang X, Feng B, Lin W. Two Polyketides Produced by Endophytic Penicillium citrinum DBR-9 From Medicinal Plant Stephania kwangsiensis and Their Antifungal Activity Against Plant Pathogenic Fungi. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19846795] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Endophytic fungi, especially those found in medicinal plants, are widely studied as producers of secondary metabolites of biotechnological interest. In this study, on the basis of an activity-directed isolation method and spectroscopic analysis, two active polyketides, citrinin (1) and emodin (2), were isolated and identified from the fermentation of the endophytic fungus Penicillium citrinum DBR-9. This fungus was isolated from the root tubers of the traditional Chinese medicinal plant Stephania kwangsiensis. In vitro antifungal assay showed that the two polyketides displayed significant inhibition on hypha growth of tested plant pathogenic fungi with IC50 values ranging from 3.1 to 123.1 μg/mL and 3.0 to 141.0 μg/mL, respectively. In addition, the mechanism of the effects of emodin (2) on the pathogen revealed it could affect the colony morphology, destroy cell membrane integrity, and influence the protein synthesis of the tested fungal cell. This work is the first report of two polyketides-producing endophytic P. citrinum DBR-9 from the medicinal plant S. kwangsiensis. Our results present new opportunities to deeply understand the potential of these two polyketides as natural antifungal agents to control phytopathogens in agriculture.
Collapse
Affiliation(s)
- Haiyu Luo
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- College of Life Science, Guangxi Normal University, Guilin, China
| | - Zhen Qing
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- College of Life Science, Guangxi Normal University, Guilin, China
| | - Yecheng Deng
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- College of Life Science, Guangxi Normal University, Guilin, China
| | - Zhiyong Deng
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- College of Life Science, Guangxi Normal University, Guilin, China
| | - Xia’an Tang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- College of Life Science, Guangxi Normal University, Guilin, China
| | - Beibei Feng
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- College of Life Science, Guangxi Normal University, Guilin, China
| | - Wei Lin
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- College of Life Science, Guangxi Normal University, Guilin, China
| |
Collapse
|
11
|
Lee W, Lee DG. A novel mechanism of fluconazole: fungicidal activity through dose-dependent apoptotic responses in Candida albicans. Microbiology (Reading) 2018; 164:194-204. [DOI: 10.1099/mic.0.000589] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Wonjong Lee
- School of Life Sciences, BK 21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea
| | - Dong Gun Lee
- School of Life Sciences, BK 21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea
| |
Collapse
|
12
|
Lee W, Lee DG. Reactive oxygen species modulate itraconazole-induced apoptosis via mitochondrial disruption in Candida albicans. Free Radic Res 2017; 52:39-50. [PMID: 29157011 DOI: 10.1080/10715762.2017.1407412] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Itraconazole (ITC), a well-known fungistatic agent, has potent fungicidal activity against Candida albicans. However, its mechanism of fungicidal activity has not been elucidated yet, and we aimed to identify the mechanism of ITC against C. albicans. ITC caused cell shrinkage via potassium leakage through the ion channel. Since shrunken cells could indicate apoptosis, we investigated apoptotic features. Annexin V-FITC and TUNEL assays indicated that fungicidal activity of ITC was involved in apoptosis. Subsequently, we confirmed an intracellular factor that could cause apoptosis. ITC treatment caused reactive oxygen species (ROS) accumulation. To confirm whether ROS is related with ITC-triggered cell death, cell viability was examined using the ROS scavenger N-acetylcysteine (NAC). NAC pretreatment recovered ITC-induced cell death, indicating that antifungal activity of ITC is associated with ROS, which is also confirmed by impaired glutathione-related antioxidant system and oxidized intracellular lipids. Moreover, ITC-induced mitochondrial dysfunction, in turn, triggered cytochrome c release and metacaspase activation, leading to apoptosis. Unlike the only ITC-treatment group, cells with NAC pretreatment did not show significant damage to mitochondria, and attenuated apoptotic features. Therefore, our results suggest that ITC induces apoptosis as fungicidal mechanism, and intracellular ROS is major factor to trigger the apoptosis by ITC in C. albicans.
Collapse
Affiliation(s)
- Wonjong Lee
- a School of Life Sciences, BK 21 Plus KNU Creative BioResearch Group, College of Natural Sciences , Kyungpook National University , Daegu , Republic of Korea
| | - Dong Gun Lee
- a School of Life Sciences, BK 21 Plus KNU Creative BioResearch Group, College of Natural Sciences , Kyungpook National University , Daegu , Republic of Korea
| |
Collapse
|
13
|
Han J, Wang F, Gao P, Ma Z, Zhao S, Lu Z, Lv F, Bie X. Mechanism of action of AMP-jsa9, a LI-F-type antimicrobial peptide produced by Paenibacillus polymyxa JSa-9, against Fusarium moniliforme. Fungal Genet Biol 2017; 104:45-55. [PMID: 28512016 DOI: 10.1016/j.fgb.2017.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 04/28/2017] [Accepted: 05/11/2017] [Indexed: 12/21/2022]
Abstract
LI-F type peptides (AMP-jsa9) are a group of cyclic lipodepsipeptides that exhibit broad antimicrobial spectrum against Gram-positive bacteria and filamentous fungi. We sought to assess the toxicity of AMP-jsa9 and the mechanism of AMP-jsa9 action against Fusarium moniliforme. AMP-jsa9 exhibited weak hemolytic activity and weak cytotoxicity at antimicrobial concentrations (32μg/ml). Confocal laser microscopy, SEM, and TEM indicated that AMP-jsa9 primarily targets the cell wall, plasma membrane, and cytoskeleton, increases membranepermeability, and enhances cytoplasm leakage (e.g., K+, protein). Quantitative proteomic analysis using isobaric tags for relative and absolute quantitation (iTRAQ) detected a total of 162 differentially expressed proteins (59 up-regulated and 103 down-regulated) following treatment of F. moniliforme with AMP-jsa9. AMP-jsa9 treatment also led to reductions in chitin, ergosterol, NADH, NADPH, and ATP levels. Moreover, fumonisin B1 expression and biosynthesis was suppressed in AMP-jsa9-treated F. moniliforme. Our results provide a theoretical basis for the application of AMP-jsa9 as a natural and effective antifungal agent in the agricultural, food, and animal feed industries.
Collapse
Affiliation(s)
- Jinzhi Han
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Nanjing 210095, People's Republic of China
| | - Fang Wang
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Nanjing 210095, People's Republic of China
| | - Peng Gao
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Nanjing 210095, People's Republic of China
| | - Zhi Ma
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Nanjing 210095, People's Republic of China
| | - Shengming Zhao
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Nanjing 210095, People's Republic of China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Nanjing 210095, People's Republic of China
| | - Fengxia Lv
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Nanjing 210095, People's Republic of China
| | - Xiaomei Bie
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Nanjing 210095, People's Republic of China.
| |
Collapse
|
14
|
Lali Raveendran R, Kumar Sasidharan N, Devaki SJ. Design of Macroscopically Ordered Liquid Crystalline Hydrogel Columns Knitted with Nanosilver for Topical Applications. Bioconjug Chem 2017; 28:1005-1015. [DOI: 10.1021/acs.bioconjchem.6b00706] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Reshma Lali Raveendran
- Chemical Sciences and Technology Division and ‡Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, India
| | - Nishanth Kumar Sasidharan
- Chemical Sciences and Technology Division and ‡Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, India
| | - Sudha J. Devaki
- Chemical Sciences and Technology Division and ‡Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, India
| |
Collapse
|
15
|
2,3-Dideoxyglucosides of selected terpene phenols and alcohols as potent antifungal compounds. Food Chem 2016; 210:371-80. [DOI: 10.1016/j.foodchem.2016.04.127] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/27/2016] [Accepted: 04/27/2016] [Indexed: 01/14/2023]
|
16
|
Yan J, Yuan SS, Jiang LL, Ye XJ, Ng TB, Wu ZJ. Plant antifungal proteins and their applications in agriculture. Appl Microbiol Biotechnol 2015; 99:4961-81. [PMID: 25971197 DOI: 10.1007/s00253-015-6654-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 04/26/2015] [Accepted: 04/27/2015] [Indexed: 11/24/2022]
Abstract
Fungi are far more complex organisms than viruses or bacteria and can develop numerous diseases in plants that cause loss of a substantial portion of the crop every year. Plants have developed various mechanisms to defend themselves against these fungi which include the production of low-molecular-weight secondary metabolites and proteins and peptides with antifungal activity. In this review, families of plant antifungal proteins (AFPs) including defensins, lectins, and several others will be summarized. Moreover, the application of AFPs in agriculture will also be analyzed.
Collapse
Affiliation(s)
- Juan Yan
- Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China,
| | | | | | | | | | | |
Collapse
|
17
|
Candidacidal mechanism of the arenicin-3-derived peptide NZ17074 from Arenicola marina. Appl Microbiol Biotechnol 2014; 98:7387-98. [DOI: 10.1007/s00253-014-5784-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 04/05/2014] [Accepted: 04/23/2014] [Indexed: 01/22/2023]
|
18
|
Qin Y, Xing R, Liu S, Yu H, Li K, Hu L, Li P. Synthesis and antifungal properties of (4-tolyloxy)-pyrimidyl-α-aminophosphonates chitosan derivatives. Int J Biol Macromol 2013; 63:83-91. [PMID: 24183805 DOI: 10.1016/j.ijbiomac.2013.10.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 10/17/2013] [Accepted: 10/21/2013] [Indexed: 12/16/2022]
Abstract
A novel class of α-aminophosphonate chitosan derivatives was investigated. These chitosan derivatives consist of (4-tolyloxy)-pyrimidyl-dimethyl-α-amino-phosphonate chitosan (α-ATPMCS) and (4-tolyloxy)-pyrimidyl-diethyl-α-aminophosphonate chitosan (α-ATPECS). Their structures were well defined. Antifungal activity of them against some crop-threatening pathogenic fungi was tested in vitro. The derivatives were found to have a broad-spectrum antifungal activity that was obviously enhanced compared with chitosan. At 250 mg/L, both α-ATPMCS and α-ATPECS even inhibited growth of Phomopsis asparagi (Sacc.) (P. asparagi) and Fusarium oxysporum (F. oxysporum) at 100%, which was even stronger than polyoxin whose antifungal index was 37.2% and 32.1%, respectively. Additionally, the initial mechanism of the chitosan derivatives in F. oxysporum model was studied. It was found that the derivatives may have an effect on membrane permeability of the fungi. The results demonstrated the derivatives may serve as attractive candidates in crop protection.
Collapse
Affiliation(s)
- Yukun Qin
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Ronge Xing
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Song Liu
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Huahua Yu
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Kecheng Li
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Linfeng Hu
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; School of Chemistry & Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Pengcheng Li
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
19
|
Hwang JH, Jin Q, Woo ER, Lee DG. Antifungal property of hibicuslide C and its membrane-active mechanism in Candida albicans. Biochimie 2013; 95:1917-22. [DOI: 10.1016/j.biochi.2013.06.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Accepted: 06/20/2013] [Indexed: 01/08/2023]
|
20
|
Abstract
Synthesis and large-scale manufacturing technologies are now available for the commercial production of even the most complex peptide anti-infectives. Married with the potential of this class of molecule as the next generation of effective, resistance-free and safe antimicrobials, and a much better understanding of their biology, pharmacology and pharmacodynamics, the first regulatory approvals and introduction into clinical practice of these promising drug candidates will likely be soon. This is a key juncture in the history/life cycle of peptide anti-infectives and, perhaps, their commercial and therapeutic potential is about to be realized. This review highlights the promise of these agents as the next generation of therapeutics and summarizes the challenges faced in, and lessons learned from, the past.
Collapse
|
21
|
|
22
|
Antifungal activity and action mode of pinocembrin from propolis against Penicillium italicum. Food Sci Biotechnol 2012. [DOI: 10.1007/s10068-012-0204-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
23
|
(+)-Medioresinol leads to intracellular ROS accumulation and mitochondria-mediated apoptotic cell death in Candida albicans. Biochimie 2012; 94:1784-93. [DOI: 10.1016/j.biochi.2012.04.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 04/07/2012] [Indexed: 12/16/2022]
|
24
|
Choi H, Cho J, Jin Q, Woo ER, Lee DG. Antifungal property of dihydrodehydrodiconiferyl alcohol 9′-O-β-d-glucoside and its pore-forming action in plasma membrane of Candida albicans. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:1648-55. [DOI: 10.1016/j.bbamem.2012.02.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Revised: 02/10/2012] [Accepted: 02/22/2012] [Indexed: 11/29/2022]
|
25
|
Ntwasa M, Goto A, Kurata S. Coleopteran antimicrobial peptides: prospects for clinical applications. Int J Microbiol 2012; 2012:101989. [PMID: 22500175 PMCID: PMC3303552 DOI: 10.1155/2012/101989] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 11/02/2011] [Accepted: 12/05/2011] [Indexed: 12/20/2022] Open
Abstract
Antimicrobial peptides (AMPs) are activated in response to septic injury and have important roles in vertebrate and invertebrate immune systems. AMPs act directly against pathogens and have both wound healing and antitumor activities. Although coleopterans comprise the largest and most diverse order of eukaryotes and occupy an earlier branch than Drosophila in the holometabolous lineage of insects, their immune system has not been studied extensively. Initial research reports, however, indicate that coleopterans possess unique immune response mechanisms, and studies of these novel mechanisms may help to further elucidate innate immunity. Recently, the complete genome sequence of Tribolium was published, boosting research on coleopteran immunity and leading to the identification of Tribolium AMPs that are shared by Drosophila and mammals, as well as other AMPs that are unique. AMPs have potential applicability in the development of vaccines. Here, we review coleopteran AMPs, their potential impact on clinical medicine, and the molecular basis of immune defense.
Collapse
Affiliation(s)
- Monde Ntwasa
- School of Molecular and Cell Biology, University of the Witwatersrand, Wits 2050, South Africa
| | - Akira Goto
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba 6-3, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Shoichiro Kurata
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba 6-3, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
26
|
Perez Espitia PJ, de Fátima Ferreira Soares N, Dos Reis Coimbra JS, de Andrade NJ, Souza Cruz R, Alves Medeiros EA. Bioactive Peptides: Synthesis, Properties, and Applications in the Packaging and Preservation of Food. Compr Rev Food Sci Food Saf 2012; 11:187-204. [PMID: 32368201 PMCID: PMC7194098 DOI: 10.1111/j.1541-4337.2011.00179.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bioactive peptides are protein fragments which have a positive impact on the functions and conditions of living beings. Peptides have shown several useful properties for human health, including antimicrobial, antifungal, antiviral, and antitumor activities. These compounds are produced by almost all species of life. However, they are produced in limited quantities in nature. As a result, researchers have tried to synthesize bioactive peptides to study their properties and applications in various areas. Among their applications in food preservation, peptides have been incorporated into packaging materials. This review begins with a brief description of the methods used for the synthesis, purification, and characterization of peptides. Also, the main bioproperties and mechanisms of action of peptides are discussed. Finally, some applications of peptides are presented, especially their use in active packaging, their effects on the polymeric matrix, and peptide migration.
Collapse
Affiliation(s)
- Paula Judith Perez Espitia
- Authors Espitia, Soares, Coimbra, de Andrade, and Medeiros are with Food Technology Dept., Federal Univ. of Viçosa, Av. P. H. Rolfs, s/n, Campus Univ., 36570-000. Viçosa, Minas Gerais, Brazil. Author Cruz is with Food Technology Dept., State Univ. of Feira de Santana, Av. Transnordestina, s/n, Campus Univ., 44036-900. Feira de Santana, Bahía, Brazil. Direct inquiries to author Soares (E-mail: )
| | - Nilda de Fátima Ferreira Soares
- Authors Espitia, Soares, Coimbra, de Andrade, and Medeiros are with Food Technology Dept., Federal Univ. of Viçosa, Av. P. H. Rolfs, s/n, Campus Univ., 36570-000. Viçosa, Minas Gerais, Brazil. Author Cruz is with Food Technology Dept., State Univ. of Feira de Santana, Av. Transnordestina, s/n, Campus Univ., 44036-900. Feira de Santana, Bahía, Brazil. Direct inquiries to author Soares (E-mail: )
| | - Jane Sélia Dos Reis Coimbra
- Authors Espitia, Soares, Coimbra, de Andrade, and Medeiros are with Food Technology Dept., Federal Univ. of Viçosa, Av. P. H. Rolfs, s/n, Campus Univ., 36570-000. Viçosa, Minas Gerais, Brazil. Author Cruz is with Food Technology Dept., State Univ. of Feira de Santana, Av. Transnordestina, s/n, Campus Univ., 44036-900. Feira de Santana, Bahía, Brazil. Direct inquiries to author Soares (E-mail: )
| | - Nélio José de Andrade
- Authors Espitia, Soares, Coimbra, de Andrade, and Medeiros are with Food Technology Dept., Federal Univ. of Viçosa, Av. P. H. Rolfs, s/n, Campus Univ., 36570-000. Viçosa, Minas Gerais, Brazil. Author Cruz is with Food Technology Dept., State Univ. of Feira de Santana, Av. Transnordestina, s/n, Campus Univ., 44036-900. Feira de Santana, Bahía, Brazil. Direct inquiries to author Soares (E-mail: )
| | - Renato Souza Cruz
- Authors Espitia, Soares, Coimbra, de Andrade, and Medeiros are with Food Technology Dept., Federal Univ. of Viçosa, Av. P. H. Rolfs, s/n, Campus Univ., 36570-000. Viçosa, Minas Gerais, Brazil. Author Cruz is with Food Technology Dept., State Univ. of Feira de Santana, Av. Transnordestina, s/n, Campus Univ., 44036-900. Feira de Santana, Bahía, Brazil. Direct inquiries to author Soares (E-mail: )
| | - Eber Antonio Alves Medeiros
- Authors Espitia, Soares, Coimbra, de Andrade, and Medeiros are with Food Technology Dept., Federal Univ. of Viçosa, Av. P. H. Rolfs, s/n, Campus Univ., 36570-000. Viçosa, Minas Gerais, Brazil. Author Cruz is with Food Technology Dept., State Univ. of Feira de Santana, Av. Transnordestina, s/n, Campus Univ., 44036-900. Feira de Santana, Bahía, Brazil. Direct inquiries to author Soares (E-mail: )
| |
Collapse
|
27
|
Abstract
Despite the availability of various classes of antimycotics, the treatment of patients with systemic fungal infections is challenging. Therefore the development of new antifungals is urgently required. Promising new antifungal candidates are antimicrobial peptides. In the present review, we provide an overview of antifungal peptides isolated from plants, insects, amphibians and mammals that induce apoptosis. Their antifungal spectrum, mode of action and toxicity are discussed in more detail.
Collapse
|
28
|
Diz MS, Carvalho AO, Ribeiro SFF, Da Cunha M, Beltramini L, Rodrigues R, Nascimento VV, Machado OLT, Gomes VM. Characterisation, immunolocalisation and antifungal activity of a lipid transfer protein from chili pepper (Capsicum annuum) seeds with novel α-amylase inhibitory properties. PHYSIOLOGIA PLANTARUM 2011; 142:233-246. [PMID: 21382036 DOI: 10.1111/j.1399-3054.2011.01464.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Lipid transfer proteins (LTPs) were thus named because they facilitate the transfer of lipids between membranes in vitro. This study was triggered by the characterization of a 9-kDa LTP from Capsicum annuum seeds that we call Ca-LTP(1) . Ca-LTP(1) was repurified, and in the last chromatographic purification step, propanol was used as the solvent in place of acetonitrile to maintain the protein's biological activity. Bidimensional electrophoresis of the 9-kDa band, which corresponds to the purified Ca-LTP(1) , showed the presence of three isoforms with isoelectric points (pIs) of 6.0, 8.5 and 9.5. Circular dichroism (CD) analysis suggested a predominance of α-helices, as expected for the structure of an LTP family member. LTPs immunorelated to Ca-LTP(1) from C. annuum were also detected by western blotting in exudates released from C. annuum seeds and also in other Capsicum species. The tissue and subcellular localization of Ca-LTP(1) indicated that it was mainly localized within dense vesicles. In addition, isolated Ca-LTP(1) exhibited antifungal activity against Colletotrichum lindemunthianum, and especially against Candida tropicalis, causing several morphological changes to the cells including the formation of pseudohyphae. Ca-LTP(1) also caused the yeast plasma membrane to be permeable to the dye SYTOX green, as verified by fluorescence microscopy. We also found that Ca-LTP(1) is able to inhibit mammalian α-amylase activity in vitro.
Collapse
Affiliation(s)
- Mariângela S Diz
- Laboratório de Fisiologia e Bioquímica de Microorganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, Rio de Janeiro, Brasil
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Hwang B, Hwang JS, Lee J, Lee DG. The antimicrobial peptide, psacotheasin induces reactive oxygen species and triggers apoptosis in Candida albicans. Biochem Biophys Res Commun 2011; 405:267-71. [PMID: 21219857 DOI: 10.1016/j.bbrc.2011.01.026] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 01/05/2011] [Indexed: 11/15/2022]
Abstract
Previously, the antimicrobial effects and membrane-active action of psacotheasin in Candida albicans were investigated. In this study, we have further found that a series of characteristic cellular changes of apoptosis in C. albicans can be induced by the accumulation of intracellular reactive oxygen species, specifically hydroxyl radicals, the well-known important regulators of apoptosis. Cells treated with psacotheasin showed diagnostic markers in yeast apoptosis at early stages: phosphatidylserine externalization from the inner to the outer membrane surface, visualized by Annexin V-staining; mitochondrial membrane depolarization, observed by DiOC6(3) staining; and increase of metacaspase activity, measured using the CaspACE FITC-VAD-FMK. Moreover, DNA fragmentation and condensation also revealed apoptotic phenomena at late stages through the TUNEL assay staining and DAPI staining, respectively. Taken together, our findings suggest that psacotheasin possess an antifungal property in C. albicans via apoptosis as another mode of action.
Collapse
Affiliation(s)
- Bomi Hwang
- School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu 702-701, Republic of Korea
| | | | | | | |
Collapse
|