1
|
Li L, Zhang N, Beati SAH, De Las Heras Chanes J, di Pietro F, Bellaiche Y, Müller HAJ, Großhans J. Kinesin-1 patterns Par-1 and Rho signaling at the cortex of syncytial embryos of Drosophila. J Cell Biol 2024; 223:e202206013. [PMID: 37955925 PMCID: PMC10641515 DOI: 10.1083/jcb.202206013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 03/23/2023] [Accepted: 10/18/2023] [Indexed: 11/14/2023] Open
Abstract
The cell cortex of syncytial Drosophila embryos is patterned into cap and intercap regions by centrosomes, specific sets of proteins that are restricted to their respective regions by unknown mechanisms. Here, we found that Kinesin-1 is required for the restriction of plus- and minus-ends of centrosomal and non-centrosomal microtubules to the cap region, marked by EB1 and Patronin/Shot, respectively. Kinesin-1 also directly or indirectly restricts proteins and Rho signaling to the intercap, including the RhoGEF Pebble, Dia, Myosin II, Capping protein-α, and the polarity protein Par-1. Furthermore, we found that Par-1 is required for cap restriction of Patronin/Shot, and vice versa Patronin, for Par-1 enrichment at the intercap. In summary, our data support a model that Kinesin-1 would mediate the restriction of centrosomal and non-centrosomal microtubules to a region close to the centrosomes and exclude Rho signaling and Par-1. In addition, mutual antagonistic interactions would refine and maintain the boundary between cap and intercap and thus generate a distinct cortical pattern.
Collapse
Affiliation(s)
- Long Li
- Department of Biology, Philipps University, Marburg, Germany
| | - Na Zhang
- Department of Biology, Philipps University, Marburg, Germany
| | - Seyed Amir Hamze Beati
- Division of Developmental Genetics, Institute for Biology, University of Kassel, Kassel, Germany
| | - Jose De Las Heras Chanes
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 3215, Inserm U934, Genetics and Developmental Biology , Paris, France
| | - Florencia di Pietro
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 3215, Inserm U934, Genetics and Developmental Biology , Paris, France
| | - Yohanns Bellaiche
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 3215, Inserm U934, Genetics and Developmental Biology , Paris, France
| | - Hans-Arno J Müller
- Division of Developmental Genetics, Institute for Biology, University of Kassel, Kassel, Germany
| | - Jörg Großhans
- Department of Biology, Philipps University, Marburg, Germany
| |
Collapse
|
2
|
Shakhov AS, Churkina AS, Kotlobay AA, Alieva IB. The Endothelial Centrosome: Specific Features and Functional Significance for Endothelial Cell Activity and Barrier Maintenance. Int J Mol Sci 2023; 24:15392. [PMID: 37895072 PMCID: PMC10607758 DOI: 10.3390/ijms242015392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
This review summarizes information about the specific features that are characteristic of the centrosome and its relationship with the cell function of highly specialized cells, such as endotheliocytes. It is based on data from other researchers and our own long-term experience. The participation of the centrosome in the functional activity of these cells, including its involvement in the performance of the main barrier function of the endothelium, is discussed. According to modern concepts, the centrosome is a multifunctional complex and an integral element of a living cell; the functions of which are not limited only to the ability to polymerize microtubules. The location of the centrosome near the center of the interphase cell, the concentration of various regulatory proteins in it, the organization of the centrosome radial system of microtubules through which intracellular transport is carried out by motor proteins and the involvement of the centrosome in the process of the perception of the external signals and their transmission make this cellular structure a universal regulatory and distribution center, controlling the entire dynamic morphology of an animal cell. Drawing from modern data on the tissue-specific features of the centrosome's structure, we discuss the direct involvement of the centrosome in the performance of functions by specialized cells.
Collapse
Affiliation(s)
- Anton Sergeevich Shakhov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1–40, Leninskye Gory, 119992 Moscow, Russia
| | - Aleksandra Sergeevna Churkina
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1–40, Leninskye Gory, 119992 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 1–73, Leninskye Gory, 119992 Moscow, Russia
| | - Anatoly Alekseevich Kotlobay
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya St., 119435 Moscow, Russia
| | - Irina Borisovna Alieva
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1–40, Leninskye Gory, 119992 Moscow, Russia
| |
Collapse
|
3
|
Huang YRJ, Chiu SC, Tseng JS, Chen JMM, Wei TYW, Chu CY, Kao HTE, Yang CYO, Shih YCE, Yang TY, Chiu KY, Teng CLJ, Yu CTR. The JMJD6/HURP axis promotes cell migration via NF-κB-dependent centrosome repositioning and Cdc42-mediated Golgi repositioning. J Cell Physiol 2022; 237:4517-4530. [PMID: 36250981 DOI: 10.1002/jcp.30900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 09/19/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
Abstract
Golgi apparatus (GA) and centrosome reposition toward cell leading end during directional cell migration in a coupling way, thereby determining cell polarity by transporting essential factors to the proximal plasma membrane. The study provides mechanistic insights into how GA repositioning (GR) is regulated, and how GR and centrosome repositioning (CR) are coupled. Our previous published works reveals that PRMT5 methylates HURP at R122 and the HURP m122 inhibits GR and cell migration by stabilizing GA-associated acetyl-tubulin and then rigidifying GA. The current study further shows that the demethylase JMJD6-guided demethylation of HURP at R122 promotes GR and cell migration. The HURP methylation mimicking mutant 122 F blocks JMJD6-induced GR and cell migration, suggesting JMJD6 relays GR stimulating signal to HURP. Mechanistic studies reveal that the HURP methylation deficiency mutant 122 K promotes GR through NF-κB-induced CR and subsequently CR-dependent Cdc42 upregulation, where Cdc42 couples CR to GR. Taken together, HURP methylation statuses provide a unique opportunity to understand how GR is regulated, and the GA intrinsic mechanism controlling Golgi rigidity and the GA extrinsic mechanism involving NF-κB-CR-Cdc42 cascade collectively dictate GR.
Collapse
Affiliation(s)
| | - Shao-Chih Chiu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Department of Medical Research, Translational Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan
| | - Jeng-Sen Tseng
- Department of Internal Medicine, Division of Chest Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Jo-Mei Maureen Chen
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Tong-You Wade Wei
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan.,Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.,Department of Medicine, Postdoctoral Scholar, University of California, San Diego, California, USA
| | - Chen-Yu Chu
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - Hsu-Ting Eric Kao
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | | | - Yong-Chun Erin Shih
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - Tsung-Ying Yang
- Department of Internal Medicine, Division of Chest Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Kun-Yuan Chiu
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan.,Department of Surgery, Division of Urology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chieh-Lin Jerry Teng
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.,Department of Medicine, Division of Hematology/Medical Oncology, Taichung Veterans General Hospital, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chang-Tze Ricky Yu
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| |
Collapse
|
4
|
Pereira SG, Dias Louro MA, Bettencourt-Dias M. Biophysical and Quantitative Principles of Centrosome Biogenesis and Structure. Annu Rev Cell Dev Biol 2021; 37:43-63. [PMID: 34314592 DOI: 10.1146/annurev-cellbio-120219-051400] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The centrosome is a main orchestrator of the animal cellular microtubule cytoskeleton. Dissecting its structure and assembly mechanisms has been a goal of cell biologists for over a century. In the last two decades, a good understanding of the molecular constituents of centrosomes has been achieved. Moreover, recent breakthroughs in electron and light microscopy techniques have enabled the inspection of the centrosome and the mapping of its components with unprecedented detail. However, we now need a profound and dynamic understanding of how these constituents interact in space and time. Here, we review the latest findings on the structural and molecular architecture of the centrosome and how its biogenesis is regulated, highlighting how biophysical techniques and principles as well as quantitative modeling are changing our understanding of this enigmatic cellular organelle. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
|
5
|
Karlsson R, Dráber P. Profilin-A master coordinator of actin and microtubule organization in mammalian cells. J Cell Physiol 2021; 236:7256-7265. [PMID: 33821475 DOI: 10.1002/jcp.30379] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 12/17/2022]
Abstract
The last two decades have witnessed a tremendous increase in cell biology data. Not least is this true for studies of the dynamic organization of the microfilament and microtubule systems in animal cells where analyses of the molecular components and their interaction patterns have deepened our understanding of these complex force-generating machineries. Previous observations of a molecular cross-talk between the two systems have now led to the realization of the existence of several intricate mechanisms operating to maintain their coordinated cellular organization. In this short review, we relate to this development by discussing new results concerning the function of the actin regulator profilin 1 as a control component of microfilament-microtubule cross-talk.
Collapse
Affiliation(s)
- Roger Karlsson
- Department of Molecular Biosciences, WGI, Stockholm University, Stockholm, Sweden
| | - Pavel Dráber
- Department of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
6
|
Nejedlá M, Klebanovych A, Sulimenko V, Sulimenko T, Dráberová E, Dráber P, Karlsson R. The actin regulator profilin 1 is functionally associated with the mammalian centrosome. Life Sci Alliance 2020; 4:4/1/e202000655. [PMID: 33184056 PMCID: PMC7668531 DOI: 10.26508/lsa.202000655] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 12/16/2022] Open
Abstract
The actin regulator profilin 1 recently shown to control microtubule elongation at the cell periphery is found to interact with the γ-tubulin ring complex and tune centrosomal microtubule nucleation. Profilin 1 is a crucial actin regulator, interacting with monomeric actin and several actin-binding proteins controlling actin polymerization. Recently, it has become evident that this profilin isoform associates with microtubules via formins and interferes with microtubule elongation at the cell periphery. Recruitment of microtubule-associated profilin upon extensive actin polymerizations, for example, at the cell edge, enhances microtubule growth, indicating that profilin contributes to the coordination of actin and microtubule organization. Here, we provide further evidence for the profilin-microtubule connection by demonstrating that it also functions in centrosomes where it impacts on microtubule nucleation.
Collapse
Affiliation(s)
- Michaela Nejedlá
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Anastasiya Klebanovych
- Department of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Vadym Sulimenko
- Department of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tetyana Sulimenko
- Department of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Eduarda Dráberová
- Department of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Pavel Dráber
- Department of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Roger Karlsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
7
|
Biber G, Ben-Shmuel A, Sabag B, Barda-Saad M. Actin regulators in cancer progression and metastases: From structure and function to cytoskeletal dynamics. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 356:131-196. [PMID: 33066873 DOI: 10.1016/bs.ircmb.2020.05.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cytoskeleton is a central factor contributing to various hallmarks of cancer. In recent years, there has been increasing evidence demonstrating the involvement of actin regulatory proteins in malignancy, and their dysregulation was shown to predict poor clinical prognosis. Although enhanced cytoskeletal activity is often associated with cancer progression, the expression of several inducers of actin polymerization is remarkably reduced in certain malignancies, and it is not completely clear how these changes promote tumorigenesis and metastases. The complexities involved in cytoskeletal induction of cancer progression therefore pose considerable difficulties for therapeutic intervention; it is not always clear which cytoskeletal regulator should be targeted in order to impede cancer progression, and whether this targeting may inadvertently enhance alternative invasive pathways which can aggravate tumor growth. The entire constellation of cytoskeletal machineries in eukaryotic cells are numerous and complex; the system is comprised of and regulated by hundreds of proteins, which could not be covered in a single review. Therefore, we will focus here on the actin cytoskeleton, which encompasses the biological machinery behind most of the key cellular functions altered in cancer, with specific emphasis on actin nucleating factors and nucleation-promoting factors. Finally, we discuss current therapeutic strategies for cancer which aim to target the cytoskeleton.
Collapse
Affiliation(s)
- G Biber
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - A Ben-Shmuel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - B Sabag
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - M Barda-Saad
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.
| |
Collapse
|
8
|
Helassa N, Nugues C, Rajamanoharan D, Burgoyne RD, Haynes LP. A centrosome-localized calcium signal is essential for mammalian cell mitosis. FASEB J 2019; 33:14602-14610. [PMID: 31682764 PMCID: PMC6910830 DOI: 10.1096/fj.201901662r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/23/2019] [Indexed: 02/02/2023]
Abstract
Mitosis defects can lead to premature ageing and cancer. Understanding mitosis regulation therefore has important implications for human disease. Early data suggested that calcium (Ca2+) signals could influence mitosis, but these have hitherto not been observed in mammalian cells. Here, we reveal a prolonged yet spatially restricted Ca2+ signal at the centrosomes of actively dividing cells. Local buffering of the centrosomal Ca2+ signals, by flash photolysis of the caged Ca2+ chelator diazo-2-acetoxymethyl ester, arrests mitosis. We also provide evidence that this Ca2+ signal emanates from the endoplasmic reticulum. In summary, we characterize a unique centrosomal Ca2+ signal as a functionally essential input into mitosis.-Helassa, N., Nugues, C., Rajamanoharan, D., Burgoyne, R. D., Haynes, L. P. A centrosome-localized calcium signal is essential for mammalian cell mitosis.
Collapse
Affiliation(s)
- Nordine Helassa
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Charlotte Nugues
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Dayani Rajamanoharan
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Robert D. Burgoyne
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Lee P. Haynes
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
9
|
Yamagishi Y, Oya K, Matsuura A, Abe H. Use of CK-548 and CK-869 as Arp2/3 complex inhibitors directly suppresses microtubule assembly both in vitro and in vivo. Biochem Biophys Res Commun 2018; 496:834-839. [PMID: 29395083 DOI: 10.1016/j.bbrc.2018.01.143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 01/23/2018] [Indexed: 11/28/2022]
Abstract
Two types of Arp2/3 complex inhibitors, CK-666/636 and CK-548/869, are commonly used to study Arp2/3 complex-dependent actin assembly both in vitro and in vivo. However, we found that CK-548 and CK-869 directly suppress microtubule (MT) assembly independent of the actin cytoskeleton. Treatment of cultured mammalian cells with 50 μM CK-869 dramatically decreased MT networks and, instead, accumulated tubulin at the cell periphery, as did nocodazole that inhibits MT assembly. An in vitro MT-sedimentation assay revealed that CK-548 and CK-869 significantly suppressed MT polymerization. In budding yeast, although CK-548 and CK-869 are reported to lack binding abilities in the yeast Arp3, CK-548 treatment decreased cytoplasmic MT at several tens of micromolar concentrations. In addition, we found that the effects of CK-548 and CK-869 on MT assembly varied according to species. We propose that CK-548 and CK-869 are not suitable for studying the cytoskeleton in living cells.
Collapse
Affiliation(s)
- Yuka Yamagishi
- Department of Nanobiology, Graduate School of Advanced Integration Science, Chiba University, Chiba 263-8522, Japan.
| | - Kazumasa Oya
- Department of Biology, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
| | - Akira Matsuura
- Department of Nanobiology, Graduate School of Advanced Integration Science, Chiba University, Chiba 263-8522, Japan; Department of Biology, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
| | - Hiroshi Abe
- Department of Nanobiology, Graduate School of Advanced Integration Science, Chiba University, Chiba 263-8522, Japan; Department of Biology, Graduate School of Science, Chiba University, Chiba 263-8522, Japan.
| |
Collapse
|
10
|
Abstract
Proteins of the Wiskott-Aldrich syndrome protein (WASP) family function as nucleation-promoting factors for the ubiquitously expressed Arp2/3 complex, which drives the generation of branched actin filaments. Arp2/3-generated actin regulates diverse cellular processes, including the formation of lamellipodia and filopodia, endocytosis and/or phagocytosis at the plasma membrane, and the generation of cargo-laden vesicles from organelles including the Golgi, endoplasmic reticulum (ER) and the endo-lysosomal network. Recent studies have also identified roles for WASP family members in promoting actin dynamics at the centrosome, influencing nuclear shape and membrane remodeling events leading to the generation of autophagosomes. Interestingly, several WASP family members have also been observed in the nucleus where they directly influence gene expression by serving as molecular platforms for the assembly of epigenetic and transcriptional machinery. In this Cell Science at a Glance article and accompanying poster, we provide an update on the subcellular roles of WHAMM, JMY and WASH (also known as WASHC1), as well as their mechanisms of regulation and emerging functions within the cell.
Collapse
Affiliation(s)
- Olga Alekhina
- Division of Oncology Research, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Ezra Burstein
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390-9151, USA.,Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390-9151, USA
| | - Daniel D Billadeau
- Division of Oncology Research, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA .,Department of Biochemistry and Molecular Biology, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA.,Department of Immunology, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
11
|
Shakhov AS, Alieva IB. The Centrosome as the Main Integrator of Endothelial Cell Functional Activity. BIOCHEMISTRY (MOSCOW) 2017; 82:663-677. [PMID: 28601076 DOI: 10.1134/s0006297917060037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The centrosome is an intracellular structure of the animal cell responsible for organization of cytoplasmic microtubules. According to modern concepts, the centrosome is a very important integral element of the living cell whose functions are not limited to its ability to polymerize microtubules. The centrosome localization in the geometric center of the interphase cell, the high concentration of various regulatory proteins in this area, the centrosome-organized radial system of microtubules for intracellular transport by motor proteins, the centrosome involvement in the perception of external signals and their transmission - all these features make this cellular structure a unique regulation and distribution center managing dynamic morphology of the animal cell. In conjunction with the tissue-specific features of the centrosome structure, this suggests the direct involvement of the centrosome in execution of cell functions. This review discusses the involvement of the centrosome in the vital activity of endothelial cells, as well as its possible participation in the implementation of barrier function, the major function of endothelium.
Collapse
Affiliation(s)
- A S Shakhov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | | |
Collapse
|
12
|
Obino D, Farina F, Malbec O, Sáez PJ, Maurin M, Gaillard J, Dingli F, Loew D, Gautreau A, Yuseff MI, Blanchoin L, Théry M, Lennon-Duménil AM. Actin nucleation at the centrosome controls lymphocyte polarity. Nat Commun 2016; 7:10969. [PMID: 26987298 PMCID: PMC4802043 DOI: 10.1038/ncomms10969] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/05/2016] [Indexed: 01/01/2023] Open
Abstract
Cell polarity is required for the functional specialization of many cell types including lymphocytes. A hallmark of cell polarity is the reorientation of the centrosome that allows repositioning of organelles and vesicles in an asymmetric fashion. The mechanisms underlying centrosome polarization are not fully understood. Here we found that in resting lymphocytes, centrosome-associated Arp2/3 locally nucleates F-actin, which is needed for centrosome tethering to the nucleus via the LINC complex. Upon lymphocyte activation, Arp2/3 is partially depleted from the centrosome as a result of its recruitment to the immune synapse. This leads to a reduction in F-actin nucleation at the centrosome and thereby allows its detachment from the nucleus and polarization to the synapse. Therefore, F-actin nucleation at the centrosome—regulated by the availability of the Arp2/3 complex—determines its capacity to polarize in response to external stimuli. Cell polarity is marked by re-orientation of the centrosome, but the mechanisms governing centrosome polarization are poorly understood. Here Obino et al. show that in lymphocytes centrosome-associated Arp2/3 nucleates actin that tethers the centrosome to the nucleus; activation depletes Arp2/3 from the centrosome and frees it from the nucleus.
Collapse
Affiliation(s)
- Dorian Obino
- INSERM-U932 Immunité et Cancer, Institut Curie, PSL Research University, 75248 Paris Cedex 05, France
| | - Francesca Farina
- CytoMorpho Lab, Biosciences &Biotechnology Institute of Grenoble, UMR5168, CEA/INRA/CNRS/Université Grenoble-Alpes, Grenoble 38054, France
| | - Odile Malbec
- INSERM-U932 Immunité et Cancer, Institut Curie, PSL Research University, 75248 Paris Cedex 05, France
| | - Pablo J Sáez
- INSERM-U932 Immunité et Cancer, Institut Curie, PSL Research University, 75248 Paris Cedex 05, France
| | - Mathieu Maurin
- INSERM-U932 Immunité et Cancer, Institut Curie, PSL Research University, 75248 Paris Cedex 05, France
| | - Jérémie Gaillard
- CytoMorpho Lab, Biosciences &Biotechnology Institute of Grenoble, UMR5168, CEA/INRA/CNRS/Université Grenoble-Alpes, Grenoble 38054, France
| | - Florent Dingli
- Laboratoire de Spectrométrie de Masse Protéomique, Institut Curie, PSL Research University, 75248 Paris Cedex 05, France
| | - Damarys Loew
- Laboratoire de Spectrométrie de Masse Protéomique, Institut Curie, PSL Research University, 75248 Paris Cedex 05, France
| | | | - Maria-Isabel Yuseff
- Departamento de Biologia Celular y Molecular, Pontificia Universidad Catolica de Chile, Santiago 6513677, Chile
| | - Laurent Blanchoin
- CytoMorpho Lab, Biosciences &Biotechnology Institute of Grenoble, UMR5168, CEA/INRA/CNRS/Université Grenoble-Alpes, Grenoble 38054, France
| | - Manuel Théry
- CytoMorpho Lab, Biosciences &Biotechnology Institute of Grenoble, UMR5168, CEA/INRA/CNRS/Université Grenoble-Alpes, Grenoble 38054, France.,CytoMorpho Lab, Hopital Saint Louis, Institut Universitaire d'Hematologie, UMRS1160, CEA/INSERM/Université Paris Diderot, Paris 75010, France
| | - Ana-Maria Lennon-Duménil
- INSERM-U932 Immunité et Cancer, Institut Curie, PSL Research University, 75248 Paris Cedex 05, France
| |
Collapse
|
13
|
Farina F, Gaillard J, Guérin C, Couté Y, Sillibourne J, Blanchoin L, Théry M. The centrosome is an actin-organizing centre. Nat Cell Biol 2016; 18:65-75. [PMID: 26655833 PMCID: PMC4880044 DOI: 10.1038/ncb3285] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 11/09/2015] [Indexed: 12/15/2022]
Abstract
Microtubules and actin filaments are the two main cytoskeleton networks supporting intracellular architecture and cell polarity. The centrosome nucleates and anchors microtubules and is therefore considered to be the main microtubule-organizing centre. However, recurring, yet unexplained, observations have pointed towards a connection between the centrosome and actin filaments. Here we have used isolated centrosomes to demonstrate that the centrosome can directly promote actin-filament assembly. A cloud of centrosome-associated actin filaments could be identified in living cells as well. Actin-filament nucleation at the centrosome was mediated by the nucleation-promoting factor WASH in combination with the Arp2/3 complex. Pericentriolar material 1 (PCM1) seemed to modulate the centrosomal actin network by regulating Arp2/3 complex and WASH recruitment to the centrosome. Hence, our results reveal an additional facet of the centrosome as an intracellular organizer and provide mechanistic insights into how the centrosome can function as an actin-filament-organizing centre.
Collapse
Affiliation(s)
- Francesca Farina
- Laboratoire de Physiologie Cellulaire et Végétale, Institut de Recherche en Technologie et Science pour le Vivant, UMR5168, CEA/INRA/CNRS/Université Grenoble Alpes, Grenoble, France
| | - Jérémie Gaillard
- Laboratoire de Physiologie Cellulaire et Végétale, Institut de Recherche en Technologie et Science pour le Vivant, UMR5168, CEA/INRA/CNRS/Université Grenoble Alpes, Grenoble, France
| | - Christophe Guérin
- Laboratoire de Physiologie Cellulaire et Végétale, Institut de Recherche en Technologie et Science pour le Vivant, UMR5168, CEA/INRA/CNRS/Université Grenoble Alpes, Grenoble, France
| | - Yohann Couté
- Laboratoire Biologie à Grande Echelle, Institut de Recherche en Technologie et Science pour le Vivant, UMRS1038, INSERM/CEA/ Université Grenoble Alpes, Grenoble, France
| | - James Sillibourne
- Laboratoire de Physiologie Cellulaire et Végétale, Institut de Recherche en Technologie et Science pour le Vivant, UMR5168, CEA/INRA/CNRS/Université Grenoble Alpes, Grenoble, France
- Unité de Thérapie Cellulaire, Hôpital Saint Louis, Institut Universitaire d’Hematologie, UMRS1160, INSERM/AP-HP/Université Paris Diderot, Paris, France
| | - Laurent Blanchoin
- Laboratoire de Physiologie Cellulaire et Végétale, Institut de Recherche en Technologie et Science pour le Vivant, UMR5168, CEA/INRA/CNRS/Université Grenoble Alpes, Grenoble, France
| | - Manuel Théry
- Laboratoire de Physiologie Cellulaire et Végétale, Institut de Recherche en Technologie et Science pour le Vivant, UMR5168, CEA/INRA/CNRS/Université Grenoble Alpes, Grenoble, France
- Unité de Thérapie Cellulaire, Hôpital Saint Louis, Institut Universitaire d’Hematologie, UMRS1160, INSERM/AP-HP/Université Paris Diderot, Paris, France
| |
Collapse
|
14
|
Tonucci FM, Hidalgo F, Ferretti A, Almada E, Favre C, Goldenring JR, Kaverina I, Kierbel A, Larocca MC. Centrosomal AKAP350 and CIP4 act in concert to define the polarized localization of the centrosome and Golgi in migratory cells. J Cell Sci 2015. [PMID: 26208639 DOI: 10.1242/jcs.170878] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The acquisition of a migratory phenotype is central in processes as diverse as embryo differentiation and tumor metastasis. An early event in this phenomenon is the generation of a nucleus-centrosome-Golgi back-to-front axis. AKAP350 (also known as AKAP9) is a Golgi and centrosome scaffold protein that is involved in microtubule nucleation. AKAP350 interacts with CIP4 (also known as TRIP10), a cdc42 effector that regulates actin dynamics. The present study aimed to characterize the participation of centrosomal AKAP350 in the acquisition of migratory polarity, and the involvement of CIP4 in the pathway. The decrease in total or in centrosomal AKAP350 led to decreased formation of the nucleus-centrosome-Golgi axis and defective cell migration. CIP4 localized at the centrosome, which was enhanced in migratory cells, but inhibited in cells with decreased centrosomal AKAP350. A decrease in the CIP4 expression or inhibition of the CIP4-AKAP350 interaction also led to defective cell polarization. Centrosome positioning, but not nuclear movement, was affected by loss of CIP4 or AKAP350 function. Our results support a model in which AKAP350 recruits CIP4 to the centrosome, providing a centrosomal scaffold to integrate microtubule and actin dynamics, thus enabling centrosome polarization and ensuring cell migration directionality.
Collapse
Affiliation(s)
- Facundo M Tonucci
- Instituto de Fisiología Experimental, Consejo de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Florencia Hidalgo
- Instituto de Fisiología Experimental, Consejo de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Anabela Ferretti
- Instituto de Fisiología Experimental, Consejo de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Evangelina Almada
- Instituto de Fisiología Experimental, Consejo de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Cristián Favre
- Instituto de Fisiología Experimental, Consejo de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - James R Goldenring
- Department of Surgery, Epithelial Biology Center, Vanderbilt University School of Medicine, Vanderbilt-Ingram Cancer Center and the Nashville VA Medical Center, Nashville, TN 37232, USA Department of Cell and Developmental Biology, Epithelial Biology Center, Vanderbilt University School of Medicine, Vanderbilt-Ingram Cancer Center and the Nashville VA Medical Center, Nashville, TN 37232, USA
| | - Irina Kaverina
- Department of Cell and Developmental Biology, Epithelial Biology Center, Vanderbilt University School of Medicine, Vanderbilt-Ingram Cancer Center and the Nashville VA Medical Center, Nashville, TN 37232, USA
| | - Arlinet Kierbel
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde (IIB-INTECH), Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), San Martín 1650, Buenos Aires, Argentina
| | - M Cecilia Larocca
- Instituto de Fisiología Experimental, Consejo de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario 2000, Argentina
| |
Collapse
|
15
|
Burakov AV, Nadezhdina ES. Association of nucleus and centrosome: magnet or velcro? Cell Biol Int 2013; 37:95-104. [DOI: 10.1002/cbin.10016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 11/12/2012] [Indexed: 12/20/2022]
Affiliation(s)
- Anton V. Burakov
- A.N.Belozersky Institute of Physico-Chemical Biology of Lomonosov Moscow State University; Vorobjevy Gory, 1/40, Moscow 119992 Russia
| | - Elena S. Nadezhdina
- A.N.Belozersky Institute of Physico-Chemical Biology of Lomonosov Moscow State University; Vorobjevy Gory, 1/40, Moscow 119992 Russia
- Institute of Protein Research of Russian Academy of Science; Vavilova ul., 34, Moscow 119333 Russia
| |
Collapse
|
16
|
Yang Q, Zhang XF, Pollard TD, Forscher P. Arp2/3 complex-dependent actin networks constrain myosin II function in driving retrograde actin flow. ACTA ACUST UNITED AC 2012; 197:939-56. [PMID: 22711700 PMCID: PMC3384413 DOI: 10.1083/jcb.201111052] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Arp2/3 complex nucleates actin filaments to generate networks at the leading edge of motile cells. Nonmuscle myosin II produces contractile forces involved in driving actin network translocation. We inhibited the Arp2/3 complex and/or myosin II with small molecules to investigate their respective functions in neuronal growth cone actin dynamics. Inhibition of the Arp2/3 complex with CK666 reduced barbed end actin assembly site density at the leading edge, disrupted actin veils, and resulted in veil retraction. Strikingly, retrograde actin flow rates increased with Arp2/3 complex inhibition; however, when myosin II activity was blocked, Arp2/3 complex inhibition now resulted in slowing of retrograde actin flow and veils no longer retracted. Retrograde flow rate increases induced by Arp2/3 complex inhibition were independent of Rho kinase activity. These results provide evidence that, although the Arp2/3 complex and myosin II are spatially segregated, actin networks assembled by the Arp2/3 complex can restrict myosin II-dependent contractility with consequent effects on growth cone motility.
Collapse
Affiliation(s)
- Qing Yang
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | | | | | | |
Collapse
|
17
|
Hubert T, Perdu S, Vandekerckhove J, Gettemans J. γ-Tubulin localizes at actin-based membrane protrusions and inhibits formation of stress-fibers. Biochem Biophys Res Commun 2011; 408:248-52. [DOI: 10.1016/j.bbrc.2011.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 04/01/2011] [Indexed: 01/06/2023]
|
18
|
Hubert T, Vandekerckhove J, Gettemans J. Unconventional actin conformations localize on intermediate filaments in mitosis. Biochem Biophys Res Commun 2011; 406:101-6. [PMID: 21295548 DOI: 10.1016/j.bbrc.2011.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 02/01/2011] [Indexed: 11/26/2022]
Abstract
Different structural conformations of actin have been identified in cells and shown to reside in distinct subcellular locations of cells. In this report, we describe the localization of actin on a cage-like structure in metaphase HEK 293T cells. Actin was detected with the anti-actin antibodies 1C7 and 2G2, but not with the anti-actin antibody C4. Actin contained in this structure is independent of microtubules and actin filaments, and colocalizes with vimentin. Taking advantage of intermediate filament collapse into a perinuclear dense mass of cables when microtubules are depolymerized, we were able to relocalize actin to such structures. We hypothesize that phosphorylation of intermediate filaments at mitosis entry triggers the recruitment of different actin conformations to mitotic intermediate filaments. Storage and partition of the nuclear actin and antiparallel "lower dimer" actin conformations between daughter cells possibly contribute to gene transcription and transient actin filament dynamics at G1 entry.
Collapse
Affiliation(s)
- Thomas Hubert
- Department of Medical Protein Research, VIB, Ghent University, Faculty of Medicine and Health Sciences, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium
| | | | | |
Collapse
|