1
|
Jo MY, Jeong YJ, Song KH, Choi YH, Kwon TK, Chang YC. 4-O-Methylascochlorin Synergistically Enhances 5-Fluorouracil-Induced Apoptosis by Inhibiting the Wnt/β-Catenin Signaling Pathway in Colorectal Cancer Cells. Int J Mol Sci 2024; 25:5746. [PMID: 38891932 PMCID: PMC11172374 DOI: 10.3390/ijms25115746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
4-O-Methyl-ascochlorin (MAC), a derivative of the prenyl-phenol antibiotic ascochlorin extracted from the fungus Ascochyta viciae, shows anticarcinogenic effects on various cancer cells. 5-Fluorouracil (5-FU) is used to treat colorectal cancer (CRC); however, its efficacy must be enhanced. In this study, we investigated the molecular mechanisms by which MAC acts synergistically with 5-FU to inhibit cell proliferation and induce apoptosis in CRC cells. MAC enhanced the cytotoxic effects of 5-FU by suppressing the Akt/mTOR/p70S6K and Wnt/β-catenin signaling pathways. It also reduced the viability of 5-FU-resistant (5-FU-R) cells. Furthermore, expression of anti-apoptosis-related proteins and cancer stem-like cell (CSC) markers by 5-FU-R cells decreased in response to MAC. Similar to MAC, the knockdown of CTNNB1 induced apoptosis and reduced expression of mRNA encoding CRC markers in 5-FU-R cells. In summary, these results suggest that MAC and other β-catenin modulators may be useful in overcoming the 5-FU resistance of CRC cells.
Collapse
Affiliation(s)
- Min-Young Jo
- Research Institute of Biomedical Engineering and Department of Cell Biology, Daegu Catholic University School of Medicine, Daegu 42472, Republic of Korea
| | - Yun-Jeong Jeong
- Research Institute of Biomedical Engineering and Department of Cell Biology, Daegu Catholic University School of Medicine, Daegu 42472, Republic of Korea
| | - Kwon-Ho Song
- Research Institute of Biomedical Engineering and Department of Cell Biology, Daegu Catholic University School of Medicine, Daegu 42472, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Korean Medicine, Dong-Eui University, Busan 47227, Republic of Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Young-Chae Chang
- Research Institute of Biomedical Engineering and Department of Cell Biology, Daegu Catholic University School of Medicine, Daegu 42472, Republic of Korea
| |
Collapse
|
2
|
Cho Y, Jeong YJ, Song KH, Chung IK, Magae J, Kwon TK, Choi YH, Kwak JY, Chang YC. 4-O-Methylascochlorin-Mediated BNIP-3 Expression Controls the Balance of Apoptosis and Autophagy in Cervical Carcinoma Cells. Int J Mol Sci 2022; 23:ijms232315138. [PMID: 36499465 PMCID: PMC9736141 DOI: 10.3390/ijms232315138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
4-O-methylascochlorin (MAC) is a 4-fourth carbon-substituted derivative of ascochlorin, a compound extracted from a phytopathogenic fungus Ascochyta viciae. MAC induces apoptosis and autophagy in various cancer cells, but the effects of MAC on apoptosis and autophagy in cervical cancer cells, as well as how the interaction between apoptosis and autophagy mediates the cellular anticancer effects are not known. Here, we investigated that MAC induced apoptotic cell death of cervical cancer cells without regulating the cell cycle and promoted autophagy by inhibiting the phosphorylation of serine-threonine kinase B (Akt), mammalian target of rapamycin (mTOR), and 70-kDa ribosomal protein S6 kinase (p70S6K). Additional investigations suggested that Bcl-2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP-3), but not Hypoxia-inducible factor 1 alpha (HIF-1α), is a key regulator of MAC-induced apoptosis and autophagy. BNIP-3 siRNA suppressed MAC-induced increases in cleaved- poly (ADP-ribose) polymerase (PARP) and LC3II expression. The pan-caspase inhibitor Z-VAD-FMK suppressed MAC-induced cell death and enhanced MAC-induced autophagy. The autophagy inhibitor chloroquine (CQ) enhanced MAC-mediated cell death by increasing BNIP-3 expression. These results indicate that MAC induces apoptosis to promote cell death and stimulates autophagy to promote cell survival by increasing BNIP-3 expression. This study also showed that co-treatment of cells with MAC and CQ further enhanced the death of cervical cancer cells.
Collapse
Affiliation(s)
- Yuna Cho
- Research Institute of Biomedical Engineering and Department of Cell Biology, School of Medicine, Catholic University of Daegu, Daegu 42472, Republic of Korea
| | - Yun-Jeong Jeong
- Research Institute of Biomedical Engineering and Department of Cell Biology, School of Medicine, Catholic University of Daegu, Daegu 42472, Republic of Korea
| | - Kwon-Ho Song
- Research Institute of Biomedical Engineering and Department of Cell Biology, School of Medicine, Catholic University of Daegu, Daegu 42472, Republic of Korea
| | - Il-Kyung Chung
- Department of Biotechnology, Catholic University of Daegu, Gyeongsan-Si 38430, Republic of Korea
| | - Junji Magae
- Magae Bioscience Institute, 49-4 Fujimidai, Tsukuba 300-1263, Japan
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Yung-Hyun Choi
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Jong-Young Kwak
- Department of Pharmacology, School of Medicine, Ajou University, Suwon 16499, Republic of Korea
| | - Young-Chae Chang
- Research Institute of Biomedical Engineering and Department of Cell Biology, School of Medicine, Catholic University of Daegu, Daegu 42472, Republic of Korea
- Correspondence:
| |
Collapse
|
3
|
Arif T. Lysosomes and Their Role in Regulating the Metabolism of Hematopoietic Stem Cells. BIOLOGY 2022; 11:1410. [PMID: 36290314 PMCID: PMC9598322 DOI: 10.3390/biology11101410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/26/2022]
Abstract
Hematopoietic stem cells (HSCs) have the capacity to renew blood cells at all stages of life and are largely quiescent at a steady state. It is essential to understand the processes that govern quiescence in HSCs to enhance bone marrow transplantation. It is hypothesized that in their quiescent state, HSCs primarily use glycolysis for energy production rather than mitochondrial oxidative phosphorylation (OXPHOS). In addition, the HSC switch from quiescence to activation occurs along a continuous developmental path that is driven by metabolism. Specifying the metabolic regulation pathway of HSC quiescence will provide insights into HSC homeostasis for therapeutic application. Therefore, understanding the metabolic demands of HSCs at a steady state is key to developing innovative hematological therapeutics. Lysosomes are the major degradative organelle in eukaryotic cells. Catabolic, anabolic, and lysosomal function abnormalities are connected to an expanding list of diseases. In recent years, lysosomes have emerged as control centers of cellular metabolism, particularly in HSC quiescence, and essential regulators of cell signaling have been found on the lysosomal membrane. In addition to autophagic processes, lysosomal activities have been shown to be crucial in sustaining quiescence by restricting HSCs access to a nutritional reserve essential for their activation into the cell cycle. Lysosomal activity may preserve HSC quiescence by altering glycolysis-mitochondrial biogenesis. The understanding of HSC metabolism has significantly expanded over the decade, revealing previously unknown requirements of HSCs in both their dividing (active) and quiescent states. Therefore, understanding the role of lysosomes in HSCs will allow for the development of innovative treatment methods based on HSCs to fight clonal hematopoiesis and HSC aging.
Collapse
Affiliation(s)
- Tasleem Arif
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
4
|
4-O-methylascochlorin-stimulated HIF-1α expression induces the epithelial mesenchymal transition and cell survival in breast cancer cells. Toxicol In Vitro 2022; 81:105342. [DOI: 10.1016/j.tiv.2022.105342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/14/2022] [Accepted: 02/26/2022] [Indexed: 11/24/2022]
|
5
|
Hypoxia-Induced Suppression of Antiapoptotic Bcl-2 Expression in Human Bladder Tumor Cells Is Regulated by Caveolin-1-Dependent Adenosine Monophosphate-Activated Protein Kinase Activity. Int Neurourol J 2021; 25:137-149. [PMID: 33752282 PMCID: PMC8255828 DOI: 10.5213/inj.2040444.222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/28/2021] [Indexed: 11/08/2022] Open
Abstract
Purpose Adenosine monophosphate-activated protein kinase (AMPK) is thought to inhibit cell proliferation or promote cell death, but the details remain unclear. In this study, we propose that AMPK inhibits the expression of anti-apoptotic B-cell lymphoma 2 (Bcl-2) by relying on the hypoxia-inducible factor 1 alpha (HIF-1α)-induced caveolin-1 (Cav-1) expression pathway in noninvasive human bladder tumor (RT4) cells. Methods In cells exposed to a hypoxic environment (0.5% oxygen), the levels of expression and phospho-activity of the relevant signaling enzymes were examined via Western blots and reverse transcription-polymerase chain reaction. Cell proliferation was assessed using a Cell Counting Kit-8 assay. Results The level of expression of Cav-1 was very low or undetectable in RT4 cells. Hypoxia was associated with significantly decreased cell growth, along with marked induction of HIF-1α and Cav-1 expression; additionally, it suppressed the expression of the antiapoptotic marker Bcl-2 while leaving AMPK activity unchanged. Under hypoxic conditions, HIF-1α acts as a transcription factor for Cav-1 mRNA gene expression. The cell growth and Bcl-2 expression suppressed under hypoxia were reversed along with decreases in the induced HIF-1α and Cav-1 levels by AMPK activation with metformin (1mM) or phenformin (0.1mM). In addition, pretreatment with AMPK small interfering RNA not only increased the hypoxia-induced expression of HIF-1α and Cav-1, but also reversed the suppression of Bcl-2 expression. These results suggest that HIF-1α and Cav-1 expression in hypoxic environments is regulated by basal AMPK activity; therefore, the inhibition of Bcl-2 expression cannot be expected when AMPK activity is suppressed, even if Cav-1 expression is elevated. Conclusions For the first time, we find that AMPK activation can regulate HIF-1α induction as well as HIF-1α-induced Cav1 expression, and the hypoxia-induced inhibitory effect on the antiapoptotic pathway in RT4 cells is due to Cav-1-dependent AMPK activity.
Collapse
|
6
|
Alexander MS, Hightower RM, Reid AL, Bennett AH, Iyer L, Slonim DK, Saha M, Kawahara G, Kunkel LM, Kopin AS, Gupta VA, Kang PB, Draper I. hnRNP L is essential for myogenic differentiation and modulates myotonic dystrophy pathologies. Muscle Nerve 2021; 63:928-940. [PMID: 33651408 DOI: 10.1002/mus.27216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 02/25/2021] [Accepted: 02/28/2021] [Indexed: 12/12/2022]
Abstract
INTRODUCTION RNA-binding proteins (RBPs) play an important role in skeletal muscle development and disease by regulating RNA splicing. In myotonic dystrophy type 1 (DM1), the RBP MBNL1 (muscleblind-like) is sequestered by toxic CUG repeats, leading to missplicing of MBNL1 targets. Mounting evidence from the literature has implicated other factors in the pathogenesis of DM1. Herein we sought to evaluate the functional role of the splicing factor hnRNP L in normal and DM1 muscle cells. METHODS Co-immunoprecipitation assays using hnRNPL and MBNL1 expression constructs and splicing profiling in normal and DM1 muscle cell lines were performed. Zebrafish morpholinos targeting hnrpl and hnrnpl2 were injected into one-cell zebrafish for developmental and muscle analysis. In human myoblasts downregulation of hnRNP L was achieved with shRNAi. Ascochlorin administration to DM1 myoblasts was performed and expression of the CUG repeats, DM1 splicing biomarkers, and hnRNP L expression levels were evaluated. RESULTS Using DM1 patient myoblast cell lines we observed the formation of abnormal hnRNP L nuclear foci within and outside the expanded CUG repeats, suggesting a role for this factor in DM1 pathology. We showed that the antiviral and antitumorigenic isoprenoid compound ascochlorin increased MBNL1 and hnRNP L expression levels. Drug treatment of DM1 muscle cells with ascochlorin partially rescued missplicing of established early biomarkers of DM1 and improved the defective myotube formation displayed by DM1 muscle cells. DISCUSSION Together, these studies revealed that hnRNP L can modulate DM1 pathologies and is a potential therapeutic target.
Collapse
Affiliation(s)
- Matthew S Alexander
- Division of Neurology, Department of Pediatrics, University of Alabama at Birmingham and Children's of Alabama, Birmingham, Alabama, USA.,Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rylie M Hightower
- Division of Neurology, Department of Pediatrics, University of Alabama at Birmingham and Children's of Alabama, Birmingham, Alabama, USA.,Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Andrea L Reid
- Division of Neurology, Department of Pediatrics, University of Alabama at Birmingham and Children's of Alabama, Birmingham, Alabama, USA
| | - Alexis H Bennett
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Lakshmanan Iyer
- Department of Neuroscience, Tufts University, Boston, Massachusetts, USA
| | - Donna K Slonim
- Department of Computer Science, Tufts University, Medford, Massachusetts, USA
| | - Madhurima Saha
- Division of Pediatric Neurology, Department of Pediatrics, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Genri Kawahara
- Department of Pathophysiology, Tokyo Medical University, Tokyo, Japan
| | - Louis M Kunkel
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Alan S Kopin
- Department of Medicine, Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Vandana A Gupta
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Peter B Kang
- Division of Pediatric Neurology, Department of Pediatrics, University of Florida College of Medicine, Gainesville, Florida, USA.,Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida, USA.,Department of Neurology, University of Florida College of Medicine, Gainesville, Florida, USA.,Genetics Institute and Myology Institute, University of Florida, Gainesville, Florida, USA.,Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota Medical School, Minneapolis, Minnesota, USA.,Neurology Department, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Isabelle Draper
- Department of Medicine, Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Lim H, Park JY, Abekura F, Choi H, Kim HD, Magae J, Chang YC, Lee YC, Kim CH. 4-O-methylascochlorin attenuates inflammatory responses induced by lipopolysaccharide in RAW 264.7 macrophages. Int Immunopharmacol 2021; 90:107184. [PMID: 33316741 DOI: 10.1016/j.intimp.2020.107184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 01/27/2023]
Abstract
Inflammation is implicated in various diseases, such as inflammatory bowel disease and cancer. Ascochlorin (ASC) and its derivatives have been shown to modulate inflammatory responses in many previous studies. However, the effects of 4-O-methylascochlorin (MAC), one of the ASC derivatives, on inflammatory responses have yet to be reported. In addition, the consequences of chemical modification of ASC on protein signaling and immunity have yet to be fully understood. The fourth carbon in MAC is methylated, which may result in modulation of immune response differently compared with ASC. Hence, we have investigated the role of MAC in inflammatory response induced by lipopolysaccharide in murine macrophage cells. Here, we found that MAC treatment decreased the inflammatory response by murine macrophages. When murine macrophages were treated with MAC, the transcription and translation of various pro-inflammatory indicators such as iNOS and COX-2 decreased. In addition, the ELISA results showed that the expression of TNF-α, IL-6, and IL-1β, which are pro-inflammatory cytokines, was successfully decreased by MAC. Such effects of MAC appear to be mediated via downregulation of MAPK signaling and the transactivational activity of NF-κB. Lipopolysaccharide upregulates MAPK protein phosphorylation and NF-κB translocation, which in turn enhances the transactivation of genes related to NF-κB. Such results of lipopolysaccharide were attenuated by MAC. Collectively, our results indicate that MAC alleviated the inflammatory responses induced by lipopolysaccharide in murine macrophages successfully by modulating MAPK signaling pathway and NF-κB-related genes. This study shows that MAC, similar to other ASC derivatives, can potentially be used therapeutically to reduce the harmful damage induced by prolonged inflammation. In addition, the structural differences between ASC and its derivatives as well as their effect on intracellular signaling will also be discussed.
Collapse
Affiliation(s)
- Hakseong Lim
- Molecular and Cellular Glycobiology Laboratory, Department of Biological Science, SungKyunKwan University, Seoburo 2066, Suwon City, Kyunggi-Do 16419, Republic of Korea
| | - Jun-Young Park
- Molecular and Cellular Glycobiology Laboratory, Department of Biological Science, SungKyunKwan University, Seoburo 2066, Suwon City, Kyunggi-Do 16419, Republic of Korea
| | - Fukushi Abekura
- Molecular and Cellular Glycobiology Laboratory, Department of Biological Science, SungKyunKwan University, Seoburo 2066, Suwon City, Kyunggi-Do 16419, Republic of Korea
| | - Hyunju Choi
- Molecular and Cellular Glycobiology Laboratory, Department of Biological Science, SungKyunKwan University, Seoburo 2066, Suwon City, Kyunggi-Do 16419, Republic of Korea.
| | - Hee-Do Kim
- Molecular and Cellular Glycobiology Laboratory, Department of Biological Science, SungKyunKwan University, Seoburo 2066, Suwon City, Kyunggi-Do 16419, Republic of Korea
| | - Junji Magae
- Magae Bioscience Institute, 49-4 Fujimidai, Tsukuba 300-1263, Japan.
| | - Young-Chae Chang
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu, Republic of Korea.
| | - Young-Choon Lee
- Department of Medicinal Biotechnology, College of Health Science, Dong-A University, Busan 49315, South Korea.
| | - Cheorl-Ho Kim
- Molecular and Cellular Glycobiology Laboratory, Department of Biological Science, SungKyunKwan University, Seoburo 2066, Suwon City, Kyunggi-Do 16419, Republic of Korea; Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Samsung Medical Center, Seoul 06351, South Korea.
| |
Collapse
|
8
|
Hwang SK, Han SY, Jeong YJ, Magae J, Bae YS, Chang YC. 4-O-methylascochlorin activates autophagy by activating AMPK and suppressing c-Myc in glioblastoma. J Biochem Mol Toxicol 2020; 34:e22552. [PMID: 32562591 DOI: 10.1002/jbt.22552] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 04/24/2020] [Accepted: 06/05/2020] [Indexed: 12/25/2022]
Abstract
A prior study identified that 4-O-methylascochlorin (MAC), a methylated derivative of ascochlorin (ASC) from the fungus Ascochyta viciae, activates autophagy in leukemia cells by suppressing c-Myc phosphorylation. However, the effects of MAC on autophagy in other cancer cells remain unknown. In the present study, we demonstrated that MAC activated autophagy in human glioblastoma. MAC increased expression of autophagy-related proteins, such as LC3-II and Beclin-1. Moreover, MAC stimulated AMP-activated protein kinase (AMPK) phosphorylation and suppressed phosphorylation of the mTOR, p70S6K, and 4EBP1. The well-known AMPK activator metformin increased LC3-II levels, which were augmented by MAC cotreatment. AMPK knockdown decreased LC3-II levels and inhibited MAC activation of autophagy. Furthermore, MAC suppression of c-Myc expression activated autophagy. Treatment with the c-MYC inhibitor, 10058-FA, induced autophagy, as did c-Myc small interfering RNA knockdown. These effects were augmented by MAC cotreatment. Taken together, these findings indicated that MAC induces autophagy in human glioblastoma by activating AMPK signaling and inhibiting c-Myc protein expression in human glioblastoma.
Collapse
Affiliation(s)
- Soon-Kyung Hwang
- Department of Medicine, Research Institute of Biomedical Engineering, Catholic University of Daegu School of Medicine, Daegu, Republic of Korea
| | - Si-Yoon Han
- Department of Medicine, Research Institute of Biomedical Engineering, Catholic University of Daegu School of Medicine, Daegu, Republic of Korea
| | - Yun-Jeong Jeong
- Department of Medicine, Research Institute of Biomedical Engineering, Catholic University of Daegu School of Medicine, Daegu, Republic of Korea
| | | | - Young-Seuk Bae
- BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Young-Chae Chang
- Department of Medicine, Research Institute of Biomedical Engineering, Catholic University of Daegu School of Medicine, Daegu, Republic of Korea
| |
Collapse
|
9
|
Abstract
Hematopoietic stem cells (HSCs) are considered to originate from the aorta-gonad-mesonephros, migrate into fetal liver for a rapid expansion, and eventually reside into a unique hypoxic bone marrow niche, where they maintain their homeostasis throughout their life span. HSCs have been widely used for the treatment of many begin or malignant hematopoietic disorders. However, the unavailability of sufficient amount of HSCs still impedes their applications in the clinic. It is urgent to understand how HSC stemness or cell fates are determined at different developmental stages. Although many intrinsic and extrinsic factors (niche components) have been identified in the regulation of HSC origination, expansion, migration, and localization, the underlying mechanisms remain largely unknown. In this article, we summarize current views on the metabolic profiles of HSCs and related regulatory networks, which shows that intrinsic metabolic regulation may be critical for the cell fate determinations of HSCs: HSCs utilize glycolysis as their major energy sources; mitochondrial respiration is also required for the homeostasis of HSCs; amino acids, lipids, or other nutrient metabolisms also have unique roles in sustaining HSC activities. Mechanistically, many important regulatory pathways, such as MEIS1/HIF1A, MYC, PPM1K/CDC20, and ROS signals, are identified to fine-tune the nutrient metabolisms and cell fate commitments in HSCs. Nevertheless, more effort is required for the optimization or establishment of sensitive and specific metabolic techniques/systems for the metabolism studies in HSCs with limited cell numbers and exploring the metabolic profiles and fundamental regulatory mechanisms of different types of nutrients at each developmental stage of HSCs.
Collapse
|
10
|
Magae J, Furukawa C, Kuwahara S, Jeong YJ, Nakajima H, Chang YC. 4- O-methylascochlorin stabilizes hypoxia-inducible factor-1 in a manner different from hydroxylase inhibition by iron chelating or substrate competition. Biosci Biotechnol Biochem 2019; 83:2244-2248. [PMID: 31392931 DOI: 10.1080/09168451.2019.1651626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Hypoxia-inducible factor-1 (HIF-1) is a transcription factor that plays essential roles in human diseases including cancer. The synthetic ascochlorin derivative 4-O-methylascochlorin stabilizes HIF-1α protein, and activates its transcriptional activity, resulting to induce gene expression of its downstream targets such as VEGF and GLUT-1. Here, we quantified protein level of HIF-1α in human osteosarcoma U2OS cells treated with ascochlorin-related compounds and typical HIF-1α stabilizers to characterize properties of HIF-1α stabilization by 4-O-methylascochlorin. Structure-activity relationship studies suggested that the aromatic moiety and hydrophobic substitution of the 4'-hydroxyl group are important for HIF-1α stabilization by ascochlorin-related compounds. 4-O-Methylascochlorin-induced HIF-1α stabilization was suppressed by ascorbic acid and compound C, but not by Fe(II), whereas ascorbic acid only suppressed HIF-1α stabilization by dimethyloxaloylglycine, an analog of the HIF-1 hydroxylase substrate. Fe(II) completely suppressed iron chelator-induced stabilization. These results suggest that ascochlorin-related compounds stabilize HIF-1α in a manner distinct from iron chelating or substrate competition.
Collapse
Affiliation(s)
- Junji Magae
- Magae Bioscience Institute, Tsukuba, Japan.,Institute of Research and Innovation, Kashiwa, Japan
| | | | - Shigefumi Kuwahara
- Laboratory of Applied Bioorganic Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Yun-Jeong Jeong
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu, Republic of Korea
| | - Hiroo Nakajima
- Department of Breast Surgery, Misugi-kai Sato Hospital, Osaka, Japan
| | - Young-Chae Chang
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu, Republic of Korea
| |
Collapse
|
11
|
Park J, Kim HD, Lee SH, Kwak CH, Chang YC, Lee YC, Chung TW, Magae J, Kim CH. Ascochlorin induces caspase-independent necroptosis in LPS-stimulated RAW 264.7 macrophages. JOURNAL OF ETHNOPHARMACOLOGY 2019; 239:111898. [PMID: 31028855 DOI: 10.1016/j.jep.2019.111898] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 04/18/2019] [Accepted: 04/18/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Plant-specific fungus of natural compound of Ascochyta viciae has traditionally been used in the treatment of sleeping sickness and tumors. The anti-tumor activities of the compounds obtained from Pisum sativum L were evaluated in this study. AIM OF THE STUDY In this study, during the prolonged incubation, treatment of the LPS-stimulated tumor-like macrophage RAW 264.7 cells with ASC exhibited the shift of anti-inflammatory behavior to a type of necroptotic cell death named necroptosis. MATERIALS AND METHODS Ascochlorin (ASC) purified from plant-specific fungus Ascochyta viciae is a natural compound with the trimethyl oxocyclohexyl structure and an anti-cancer and antibiotic agent. The fungus contributes to the Ascochyta blight disease complex of pea (Pisum sativum L). RAW 264.7 cells have been stimulated with LPS and treated with ASC. Cell viability of the LPS-treated RAW 264.7 cells and bone marrow-derived macrophage (BMDM) cells were examined. Flow cytometry analysis with 7AAD and Annexin V was examined for the apoptotic or necroptosis/late-apoptosis. Cleaved caspase-3, -7 and -8 as well as cleaved PARP were assessed with a caspase inhibitor, z-VAD-fmk. LPS-responsible human leukemic U937 and colon cancer SW480 and HT-29 cells were also examined for the cell viabilities. RESULTS Flow cytometry analysis after Annexin V and 7AAD double staining showed that ASC alone induces apoptosis in RAW 264.7 cells, while it induces necroptosis/late-apoptosis in LPS-treated RAW 264.7 cells. 7AAD and Annexin V positive populations were increased in the LPS-treated cells with ASC. Although viability of LPS-treated cells with ASC was decreased, the amounts of cleaved caspase-3, -7 and -8 as well as cleaved PARP were reduced when compared with ASC-treated cells. Upon ASC treatment, the cleaved caspase-8 level was not changed, however, cleaved caspase-3, -7, and PARP were reduced in LPS-stimulated RAW 264.7 cells treated with ASC, claiming a caspase-8 independent necroptosis of ASC. Furthermore, ASC and LPS-cotreated cells which a caspase inhibitor, z-VAD-fmk, was pretreated, showed the decreased cell viability compared with control cells without the inhibitor. Cell viability of RAW 264.7 cells co-treated with ASC and LPS when treated with z-VAD was decreased. In the LPS-responsible human leukemic U937 and colon cancer SW480 and HT-29 cells, cell viabilities were decreased by 10 μM ASC. CONCLUSION Prolonged stimulation of ASC with LPS induces the necroptosis in RAW cells. Activated immune cells may share the susceptibility of antitumor agents with the cancer cells.
Collapse
Affiliation(s)
- Junyoung Park
- Molecular and Cellular Glycobiology Laboratory, Department of Biological Science, SungKyunKwan University, Seoburo 2066, Suwon City, Kyunggi-Do, 16419, Republic of Korea.
| | - Hee-Do Kim
- Molecular and Cellular Glycobiology Laboratory, Department of Biological Science, SungKyunKwan University, Seoburo 2066, Suwon City, Kyunggi-Do, 16419, Republic of Korea.
| | - Sook-Hyun Lee
- Molecular and Cellular Glycobiology Laboratory, Department of Biological Science, SungKyunKwan University, Seoburo 2066, Suwon City, Kyunggi-Do, 16419, Republic of Korea.
| | - Choong-Hwan Kwak
- Molecular and Cellular Glycobiology Laboratory, Department of Biological Science, SungKyunKwan University, Seoburo 2066, Suwon City, Kyunggi-Do, 16419, Republic of Korea.
| | - Young-Chae Chang
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu, Republic of Korea.
| | - Young-Choon Lee
- Department of Medicinal Biotechnology, College of Health Science, Dong-A University, Busan, 49315, South Korea.
| | - Tae-Wook Chung
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan City, Gyeongsangnam-Do, Republic of Korea.
| | - Junji Magae
- Magae Bioscience Institute, 49-4 Fujimidai, Tsukuba, 300-1263, Japan.
| | - Cheorl-Ho Kim
- Molecular and Cellular Glycobiology Laboratory, Department of Biological Science, SungKyunKwan University, Seoburo 2066, Suwon City, Kyunggi-Do, 16419, Republic of Korea; Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Samsung Medical Center, Seoul, 06351, South Korea.
| |
Collapse
|
12
|
Park J, Ha SH, Abekura F, Lim H, Magae J, Ha KT, Chung TW, Chang YC, Lee YC, Chung E, Ku J, Kim CH. 4- O-Carboxymethylascochlorin Inhibits Expression Levels of on Inflammation-Related Cytokines and Matrix Metalloproteinase-9 Through NF-κB/MAPK/TLR4 Signaling Pathway in LPS-Activated RAW264.7 Cells. Front Pharmacol 2019; 10:304. [PMID: 31001118 PMCID: PMC6445864 DOI: 10.3389/fphar.2019.00304] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/12/2019] [Indexed: 02/02/2023] Open
Abstract
Toll-like receptor 4 (TLR4) and matrix metalloproteinase-9 (MMP-9) are known to play important roles in inflammatory diseases such as arteriosclerosis and plaque instability. The purpose of this study was to perform the effect of 4-O-carboxymethylascochlorin (AS-6) on MMP-9 expression in lipopolysaccharide (LPS)-induced murine macrophages and signaling pathway involved in its anti-inflammatory effect. Effect of AS-6 on MAPK/NF-κB/TLR4 signaling pathway in LPS-activated murine macrophages was examined using ELISA, Western blotting, reverse transcription polymerase chain reaction (RT-PCR) and fluorescence immunoassay. MMP-9 enzyme activity was examined by gelatin zymography. AS-6 significantly suppressed MMP-9 and MAPK/NF-κB expression levels in LPS-stimulated murine macrophages. Expression levels of inducible nitric oxide synthase (iNOS), COX2, MMP-9, JNK, ERK, p38 phosphorylation, and NF-κB stimulated by LPS were also decreased by AS-6. Moreover, AS-6 suppressed TLR4 expression and dysregulated LPS-induced activators of transcription signaling pathway. The results of this study showed that AS-6 can inhibit LPS-stimulated inflammatory response by suppressing TLR4/MAPK/NF-κB signals, suggesting that AS-6 can be used to induce the stability of atherosclerotic plaque and prevent inflammatory diseases in an in vitro model.
Collapse
Affiliation(s)
- Junyoung Park
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Sun-Hyung Ha
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Fukushi Abekura
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Hakseong Lim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Juni Magae
- Magae Bioscience Institute, Tsukuba, Japan
| | - Ki-Tae Ha
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan, South Korea
| | - Tae-Wook Chung
- School of Korean Medicine and Healthy Aging Korean Medical Research Center, Pusan National University, Yangsan, South Korea
| | - Young-Chae Chang
- Research Institute of Biomedical Engineering, Department of Medicine, School of Medicine, Catholic University of Daegu, Daegu, South Korea
| | - Young-Choon Lee
- Department of Medicinal Biotechnology, College of Health Science, Dong-A University, Busan, South Korea
| | - Eunyong Chung
- Department of Anesthesiology and Pain Medicine, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jiyeon Ku
- Department of Anesthesiology and Pain Medicine, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Cheorl-Ho Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
13
|
4-O-Methylascochlorin inhibits the prolyl hydroxylation of hypoxia-inducible factor-1α, which is attenuated by ascorbate. J Antibiot (Tokyo) 2019; 72:271-281. [PMID: 30796332 DOI: 10.1038/s41429-019-0157-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 01/14/2019] [Accepted: 01/31/2019] [Indexed: 12/27/2022]
Abstract
4-O-Methylascochlorin (MAC), a methylated derivative of ascochlorin, was previously shown to promote the accumulation of hypoxia-inducible factor (HIF)-1α in human breast adenocarcinoma MCF-7 cells. In the present study, we further investigated the effects of MAC on the expression and function of HIF-1α in human fibrosarcoma HT-1080 cells. MAC promoted the accumulation of the HIF-1α protein without affecting its constitutive mRNA expression and augmented the transcriptional activation of HIF target genes. Ascorbate, but not N-acetylcysteine, attenuated MAC-mediated HIF-1α accumulation. MAC-induced increases in HIF-1α transcriptional activity were also attenuated by ascorbate. MAC inhibited the hydroxylation of HIF-1α at the proline 564 residue, while it was reversed by ascorbate. MAC slightly decreased the intracellular concentration of ascorbate. The present results demonstrated that MAC promoted the accumulation of HIF-1α by preventing prolyl hydroxylation, and ascorbate attenuated the MAC-mediated inhibition of HIF-1α prolyl hydroxylation.
Collapse
|
14
|
Park J, Ha SH, Abekura F, Lim H, Chang YC, Lee MJ, Lee M, Lee YC, Kim CH. 4-O-carboxymethylascochlorin protected against microglial-mediated neurotoxicity in SH-SY5Y and BV2 cocultured cells from LPS-induced neuroinflammation and death by inhibiting MAPK, NF-κB, and Akt pathways. J Cell Biochem 2019; 120:1742-1753. [PMID: 30324762 DOI: 10.1002/jcb.27464] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/19/2018] [Indexed: 01/24/2023]
Abstract
In our previous studies, structurally similar compounds of ascochlorin and ascofuranone exhibited anti-inflammatory activity. Neural inflammation plays a significant role in the commence and advancement of neurodegenerative diseases. It is not known whether 4-O-carboxymethylascochlorin (AS-6) regulates the initial stage of inflammatory responses at the cellular level in BV2 microglia cells. We here investigated the anti-inflammatory effects of AS-6 treatment in microglia cells with the microglial protection in neurons. We found that the lipopolysaccharide (LPS)-stimulated production of nitric oxide, a main regulator of inflammation, is suppressed by AS-6 in BV2 microglial cells. In addition, AS-6 dose-dependently suppressed the increase in COX-2 protein and messenger RNA levels in LPS-stimulated BV2 cells. Moreover, AS-6 inhibited the expression and secretion of proinflammatory cytokines in BV2 microglial cells. At the intracellular level, AS-6 inhibited LPS-activated nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in BV2 microglial cells. AS-6 negatively affected mitogen-activated protein kinases (MAPK) and Akt phosphorylation: Phosphorylated forms of ERK, JNK, p38, and Akt decreased. To check whether AS-6 protects against inflammatory inducer-mediated neurotoxicity, neuronal SH-SY5Y cells were coincubated with BV2 cells in conditioned medium. AS-6 exerted a neuroprotective effect by suppressing microglial activation by LPS or amyloid-β peptide. AS-6 is a promising suppressor of inflammatory responses in LPS-induced BV2 cells by attenuating NF-κB and MAPKs signaling. AS-6 protected against microglial-mediated neurotoxicity in SH-SY5Y and BV2 cocultured cells from LPS-induced neuroinflammation and death via inhibiting MAPK, NF-κB, and Akt pathways.
Collapse
Affiliation(s)
- Junyoung Park
- Department of Biological Sciences, Molecular and Cellular Glycobiology Unit, SungKyunKwan University, Suwon, Kyunggi-Do, Republic of Korea
| | - Sun-Hyung Ha
- Department of Biological Sciences, Molecular and Cellular Glycobiology Unit, SungKyunKwan University, Suwon, Kyunggi-Do, Republic of Korea
| | - Fukushi Abekura
- Department of Biological Sciences, Molecular and Cellular Glycobiology Unit, SungKyunKwan University, Suwon, Kyunggi-Do, Republic of Korea
| | - Hakseong Lim
- Department of Biological Sciences, Molecular and Cellular Glycobiology Unit, SungKyunKwan University, Suwon, Kyunggi-Do, Republic of Korea
| | - Young-Chae Chang
- Department of Medicine, Research Institute of Biomedical Engineering, Catholic University of Daegu School of Medicine, Daegu, Republic of Korea
| | - Moon-Jo Lee
- Department of Herb Science, Dong-Eui Institute of Technology, Busan, Republic of Korea
| | - Miri Lee
- Department of Biological Sciences, Faculty of Medicinal Biotechnology, Dong-A University, Busan, Republic of Korea
| | - Young-Choon Lee
- Department of Biological Sciences, Faculty of Medicinal Biotechnology, Dong-A University, Busan, Republic of Korea
| | - Cheorl-Ho Kim
- Department of Biological Sciences, Molecular and Cellular Glycobiology Unit, SungKyunKwan University, Suwon, Kyunggi-Do, Republic of Korea
| |
Collapse
|
15
|
Metabolic Regulations in Hematopoietic Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1143:59-74. [PMID: 31338815 DOI: 10.1007/978-981-13-7342-8_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
One of the bottlenecks of the treatments for malignant hematopoietic disorders is the unavailability of sufficient amount of hematopoietic stem cells (HSCs). HSCs are considered to be originated from the aorta-gonad-mesonephros and gradually migrates into fetal liver and resides in a unique microenvironment/niche of bone marrow. Although many intrinsic and extrinsic factors (niche components) are reported to be involved in the origination, maturation, migration, and localization of HSCs at different developmental stages, the detailed molecular mechanisms still remain largely unknown. Previous studies have shown that intrinsic metabolic networks may be critical for the cell fate determinations of HSCs. For example, HSCs mainly utilize glycolysis as the main energy sources; oxidative phosphorylation is required for the homeostasis of HSCs; lipid or amino acid metabolisms may also sustain HSC stemness. Mechanistically, lots of regulatory pathways, such as MEIS1/HIF1A and PI3K/AKT/mTOR signaling, are found to fine-tune the different nutrient metabolisms and cell fate commitments of HSCs. However, more efforts are required for the optimization and establishment of precise metabolic techniques specific for the HSCs with relatively rare cell frequency and understanding of the basic metabolic properties and their underlying regulatory mechanisms of different nutrients (such as glucose) during the different developmental stages of HSCs.
Collapse
|
16
|
Seok JY, Jeong YJ, Hwang SK, Kim CH, Magae J, Chang YC. Upregulation of AMPK by 4-O-methylascochlorin promotes autophagy via the HIF-1α expression. J Cell Mol Med 2018; 22:6345-6356. [PMID: 30338933 PMCID: PMC6237564 DOI: 10.1111/jcmm.13933] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 09/03/2018] [Indexed: 12/25/2022] Open
Abstract
4‐O‐methylascochlorin (MAC) is a derivative of ascochlorin, a prenyl‐phenol compound antibiotic isolated from the fungus Ascochyta viciae. MAC induces caspase/poly (ADP‐ribose) polymerase‐mediated apoptosis in leukemia cells. However, the effects of MAC on autophagy in cancer cells and the underlying molecular mechanisms remain unknown. Here, we show that MAC induces autophagy in lung cancer cells. MAC significantly induced the expression of autophagy marker proteins including LC3‐II, Beclin1, and ATG7. MAC promoted AMP‐activated protein kinase (AMPK) phosphorylation and inhibited the phosphorylation of mammalian target of rapamycin (mTOR) and its downstream signalling proteins P70S6K and 4EBP1. The AMPK activator AICAR upregulated LC3‐II expression through the AMPK/mTOR pathway similar to the effects of MAC. MAC‐induced LC3‐II protein expression was slightly reduced in AMPK siRNA transfected cells. MAC upregulated hypoxia‐inducible factor‐1α (HIF‐1α) and BNIP3, which are HIF‐1α‐dependent autophagic proteins. Treatment with CoCl2, which mimics hypoxia, induced autophagy similar to the effect of MAC. The HIF‐1α inhibitor YC‐1 and HIF‐1α siRNA inhibited the MAC‐induced upregulation of LC3‐II and BNIP3. These results suggest that MAC induces autophagy via the AMPK/mTOR signalling pathway and by upregulating HIF‐1α and BNIP3 protein expression in lung cancer cells.
Collapse
Affiliation(s)
- Ji-Young Seok
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu, Korea
| | - Yun-Jeong Jeong
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu, Korea
| | - Soon-Kyung Hwang
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu, Korea
| | - Cheorl-Ho Kim
- Department of Biological Science, Sungkyunkwan University, Suwon, Kyunggi, Korea
| | | | - Young-Chae Chang
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu, Korea
| |
Collapse
|
17
|
Min-Wen JC, Yan-Jiang BC, Mishra S, Dai X, Magae J, Shyh-Chang N, Kumar AP, Sethi G. Molecular Targets of Ascochlorin and Its Derivatives for Cancer Therapy. STRESS AND INFLAMMATION IN DISORDERS 2017; 108:199-225. [DOI: 10.1016/bs.apcsb.2017.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Lee SH, Kwak CH, Lee SK, Ha SH, Park J, Chung TW, Ha KT, Suh SJ, Chang YC, Chang HW, Lee YC, Kang BS, Magae J, Kim CH. Anti-Inflammatory Effect of Ascochlorin in LPS-Stimulated RAW 264.7 Macrophage Cells Is Accompanied With the Down-Regulation of iNOS, COX-2 and Proinflammatory Cytokines Through NF-κB, ERK1/2, and p38 Signaling Pathway. J Cell Biochem 2016; 117:978-987. [PMID: 26399466 DOI: 10.1002/jcb.25383] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 09/22/2015] [Indexed: 05/14/2025]
Abstract
A natural compound C23 H32 O4 Cl, ascochlorin (ASC) isolated from an incomplete fungus, Ascochyta viciae has been known to have several biological activities as an antibiotic, antifungal, anti-cancer, anti-hypolipidemic, and anti-hypertension agent. In this study, anti-inflammatory activity has been investigated in lipopolysaccharide (LPS)-induced murine macrophage RAW 264.7 cells, since ASC has not been observed on the inflammatory events. The present study has clearly shown that ASC (1-50 μM) significantly suppressed the production of nitric oxide (NO) and prostaglandin E2 (PGE2 ) and decreased the gene expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) in a dose-dependent manner. Moreover, ASC inhibited the mRNA expression and the protein secretion of interleukin (IL)-1β and IL-6 but not tumor necrosis factor (TNF)-α in LPS-stimulated RAW 264.7 macrophage cells. In addition, ASC suppressed nuclear translocation and DNA binding affinity of nuclear factor-κB (NF-κB). Furthermore, ASC down-regulated phospho-extracellular signal-regulated kinase 1/2 (p-ERK1/2) and p-p38. These results demonstrate that ASC exhibits anti-inflammatory effects in RAW 264.7 macrophage cells.
Collapse
Affiliation(s)
- Sook-Hyun Lee
- Molecular and Cellular Glycobiology Laboratory, Department of Biological Science, SungKyunKwan University, Suwon City, Kyunggi-Do, Republic of Korea
| | - Choong-Hwan Kwak
- Molecular and Cellular Glycobiology Laboratory, Department of Biological Science, SungKyunKwan University, Suwon City, Kyunggi-Do, Republic of Korea
| | - Sung-Kyun Lee
- Molecular and Cellular Glycobiology Laboratory, Department of Biological Science, SungKyunKwan University, Suwon City, Kyunggi-Do, Republic of Korea
| | - Sun-Hyung Ha
- Molecular and Cellular Glycobiology Laboratory, Department of Biological Science, SungKyunKwan University, Suwon City, Kyunggi-Do, Republic of Korea
| | - Junyoung Park
- Molecular and Cellular Glycobiology Laboratory, Department of Biological Science, SungKyunKwan University, Suwon City, Kyunggi-Do, Republic of Korea
| | - Tae-Wook Chung
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan City, Gyeongsangnam-Do, Republic of Korea
| | - Ki-Tae Ha
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan City, Gyeongsangnam-Do, Republic of Korea
| | - Suk-Jong Suh
- Molecular and Cellular Glycobiology Laboratory, Department of Biological Science, SungKyunKwan University, Suwon City, Kyunggi-Do, Republic of Korea
| | - Young-Chae Chang
- Research Institute of Biomedical Engineering, Department of Medicine, School of Medicine, Catholic University of Daegu, Daegu, Republic of Korea
| | - Hyeun Wook Chang
- Faculty of Pharmacy, Yeungnam University, Kyungsan, Republic of Korea
| | - Young-Choon Lee
- Faculty of Medicinal Biotechnology, Dong-A University, Busan, Republic of Korea
| | - Bong-Seok Kang
- Bio-Medical Research Institute, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Junji Magae
- Magae Bioscience Institute, 49-4 Fujimidai, Tsukuba, 300-1263, Japan
| | - Cheorl-Ho Kim
- Molecular and Cellular Glycobiology Laboratory, Department of Biological Science, SungKyunKwan University, Suwon City, Kyunggi-Do, Republic of Korea
| |
Collapse
|
19
|
Shin JM, Jeong YJ, Cho HJ, Magae J, Bae YS, Chang YC. Suppression of c-Myc induces apoptosis via an AMPK/mTOR-dependent pathway by 4-O-methyl-ascochlorin in leukemia cells. Apoptosis 2016; 21:657-68. [DOI: 10.1007/s10495-016-1228-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
20
|
Kim M, Cho HJ, Jeong YJ, Chung IK, Magae J, Chang YC. 4-O-methylascochlorin suppresses differentiation of 3T3-L1 preadipocytes by inhibiting PPARγ expression through regulation of AMPK/mTOR signaling pathways. Arch Biochem Biophys 2015; 583:79-86. [PMID: 26271443 DOI: 10.1016/j.abb.2015.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 06/20/2015] [Accepted: 07/07/2015] [Indexed: 01/24/2023]
Abstract
Obesity increases the risk of developing many chronic diseases, including type 2 diabetes and certain cancers, and is thereby associated with premature death. The present study was conducted to identify the inhibitory effect of the ascochlorin derivative 4-O-methylascochlorin (MAC) on the differentiation of 3T3-L1 preadipocytes. MAC suppressed the differentiation of 3T3-L1 preadipocytes and inhibited the expression of adipocyte differentiation marker genes, FABP4, PPARγ and C/EBPα. In addition, we found that the inhibitory effects of MAC on differentiation of 3T3-L1 preadipocytes were caused by suppression of mTORC1 via inhibition of mTOR/p70S6K/4E-BP1 phosphorylation and activation of Raptor phosphorylation. MAC also regulated the PPARγ expression and the mTORC1 activation by increasing AMPK phosphorylation and inhibiting PI3K/Akt, which suggest that MAC suppresses the differentiation of 3T3-L1 adipocytes by regulating the AMPK- and PI3K-mTOR-PPARγ signaling pathways. Furthermore, animal model results showed that the phosphorylation of AMPK was enhanced in the liver of C57BL/6 mice intraperitoneally injected with MAC. These results indicate that MAC could be a therapeutic agent for obesity involving PPARγ and AMPK.
Collapse
Affiliation(s)
- Mihyun Kim
- Department of Physical Therapy, Inje University, Gimhae, 621-749, Republic of Korea
| | - Hyun-Ji Cho
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu 705-718, Republic of Korea
| | - Yun-Jeong Jeong
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu 705-718, Republic of Korea
| | - Il-Kyung Chung
- Department of Biotechnology, Catholic University of Daegu, Gyeongsan 712-702, Republic of Korea
| | - Junji Magae
- Magae Bioscience Institute, 49-4 Fujimidai, Tsukuba 300-1263, Japan
| | - Young-Chae Chang
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu 705-718, Republic of Korea.
| |
Collapse
|
21
|
Abstract
SIGNIFICANCE The effect of redox signaling on hematopoietic stem cell (HSC) function is not clearly understood. RECENT ADVANCES A growing body of evidence suggests that adult HSCs reside in the hypoxic bone marrow microenvironment or niche during homeostasis. It was recently shown that primitive HSCs in the bone marrow prefer to utilize anaerobic glycolysis to meet their energy demands and have lower rates of oxygen consumption and lower ATP levels. Hypoxia-inducible factor-α (Hif-1α) is a master regulator of cellular metabolism. With hundreds of downstream target genes and crosstalk with other signaling pathways, it regulates various aspects of metabolism from the oxidative stress response to glycolysis and mitochondrial respiration. Hif-1α is highly expressed in HSCs, where it regulates their function and metabolic phenotype. However, the regulation of Hif-1α in HSCs is not entirely understood. The homeobox transcription factor myeloid ecotropic viral integration site 1 (Meis1) is expressed in the most primitive HSCs populations, and it is required for primitive hematopoiesis. Recent reports suggest that Meis1 is required for normal adult HSC function by regulating the metabolism and redox state of HSCs transcriptionally through Hif-1α and Hif-2α. CRITICAL ISSUES Given the profound effect of redox status on HSC function, it is critical to fully characterize the intrinsic, and microenvironment-related mechanisms of metabolic and redox regulation in HSCs. FUTURE DIRECTIONS Future studies will be needed to elucidate the link between HSC metabolism and HSC fates, including quiescence, self-renewal, differentiation, apoptosis, and migration.
Collapse
Affiliation(s)
- Cheng Cheng Zhang
- Division of Cardiology, Departments of Physiology and Developmental Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Hesham A. Sadek
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
22
|
Shizu R, Shindo S, Yoshida T, Numazawa S. Cross-talk between constitutive androstane receptor and hypoxia-inducible factor in the regulation of gene expression. Toxicol Lett 2013; 219:143-50. [PMID: 23528251 DOI: 10.1016/j.toxlet.2013.03.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 03/12/2013] [Accepted: 03/15/2013] [Indexed: 11/24/2022]
Abstract
Hypoxia inducible factor (HIF) and 5'-AMP-activated protein kinase are often activated under similar physiological conditions. Constitutive androstane receptor (CAR) translocates into the nucleus in accordance with 5'-AMP-activated protein kinase and thus confers transactivation. The aim of the present study was to investigate a possible link between CAR and HIFα. Phenobarbital (PB), a typical CAR activator, increased the gene expression of HIF-target genes in the livers of mice, including erythropoietin, heme oxygenase-1 and vascular endothelial growth factor-a. PB induced an accumulation of nuclear HIF-1α and an increase in the HIF-responsive element-mediated transactivation in HepG2 cells. Cobalt chloride, a typical HIF activator, induced the gene expression of CAR-target genes, including cyp2b9 and cyp2b10, an accumulation of nuclear CAR and an increase in the PB-responsive enhancer module-mediated transactivation in the mouse liver. Immunoprecipitation-immunoblot and chromatin immunoprecipitation analyses suggest that CAR binds to the PB-responsive enhancer module with HIF-1α in the liver of untreated mice and that the complex dissociates upon PB treatment. Taken together these results suggest that CAR and HIF-α interact and reciprocally modulate the functions of each other.
Collapse
Affiliation(s)
- Ryota Shizu
- Division of Toxicology, Department of Pharmacology, Toxicology and Therapeutics, Showa University School of Pharmacy, Tokyo, Japan
| | | | | | | |
Collapse
|
23
|
Chang YC, Cho HJ. Ascofuranone stimulates expression of adiponectin and peroxisome proliferator activated receptor through the modulation of mitogen activated protein kinase family members in 3T3-L1, murine pre-adipocyte cell line. Biochem Biophys Res Commun 2012; 422:423-8. [DOI: 10.1016/j.bbrc.2012.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Accepted: 05/02/2012] [Indexed: 11/24/2022]
|