1
|
Cho Y, Koyama-Honda I, Tanimura A, Matsuzawa K, Ikenouchi J. A sustained calcium response mediated by IP3 receptor anchoring to the desmosome is essential for apoptotic cell elimination. Curr Biol 2024; 34:4835-4844.e4. [PMID: 39317193 DOI: 10.1016/j.cub.2024.08.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/08/2024] [Accepted: 08/30/2024] [Indexed: 09/26/2024]
Abstract
Efficient elimination of apoptotic cells within epithelial cell sheets is crucial for preserving epithelial barrier integrity.1 It is well established that immediate neighbors of an apoptotic cell actively participate in its removal by enclosing it within a wall of actomyosin, pushing it out in a purse-string manner in a process called apical extrusion.2,3,4,5,6,7 Here, we found that sustained elevation of calcium ions in neighboring epithelial cells is necessary to generate the contractility required for apoptotic cell elimination. This phenomenon, which we call calcium response in effectors of apical extrusion (CaRE), highlights the disparate calcium dynamics within the epithelial sheet. Furthermore, we elucidate the essential role of desmosomes in CaRE. Specifically, we identify a subset of IP3 receptors within the endoplasmic reticulum that is recruited to the desmosome by K-Ras-induced actin-binding protein as the core component of this process. The interplay between these cellular structures heightens actomyosin contractility to drive apoptotic cell removal. Our findings underscore the physiological significance of integrating desmosomes with the endoplasmic reticulum in epithelial sheet homeostasis, shedding new light on cell-cell communication and tissue maintenance.
Collapse
Affiliation(s)
- Yuma Cho
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Ikuko Koyama-Honda
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Akihiko Tanimura
- Division of Pharmacology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari, Tobetsu 061-0293, Hokkaido, Japan
| | - Kenji Matsuzawa
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Junichi Ikenouchi
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 819-0395, Japan; Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan.
| |
Collapse
|
2
|
Atakpa-Adaji P, Ivanova A, Kujawa K, Taylor CW. KRAP regulates mitochondrial Ca2+ uptake by licensing IP3 receptor activity and stabilizing ER-mitochondrial junctions. J Cell Sci 2024; 137:jcs261728. [PMID: 38786982 PMCID: PMC11234384 DOI: 10.1242/jcs.261728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
Inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) are high-conductance channels that allow the regulated redistribution of Ca2+ from the endoplasmic reticulum (ER) to the cytosol and, at specialized membrane contact sites (MCSs), to other organelles. Only a subset of IP3Rs release Ca2+ to the cytosol in response to IP3. These 'licensed' IP3Rs are associated with Kras-induced actin-interacting protein (KRAP, also known as ITPRID2) beneath the plasma membrane. It is unclear whether KRAP regulates IP3Rs at MCSs. We show, using simultaneous measurements of Ca2+ concentration in the cytosol and mitochondrial matrix, that KRAP also licenses IP3Rs to release Ca2+ to mitochondria. Loss of KRAP abolishes cytosolic and mitochondrial Ca2+ signals evoked by stimulation of IP3Rs via endogenous receptors. KRAP is located at ER-mitochondrial membrane contact sites (ERMCSs) populated by IP3R clusters. Using a proximity ligation assay between IP3R and voltage-dependent anion channel 1 (VDAC1), we show that loss of KRAP reduces the number of ERMCSs. We conclude that KRAP regulates Ca2+ transfer from IP3Rs to mitochondria by both licensing IP3R activity and stabilizing ERMCSs.
Collapse
Affiliation(s)
- Peace Atakpa-Adaji
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Adelina Ivanova
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Karolina Kujawa
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Colin W. Taylor
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| |
Collapse
|
3
|
Sanli F, Tatar A, Gundogdu B, Karatas OF. IP3R1 dysregulation via mir-200c-3p/SSFA2 axis contributes to taxol resistance in head and neck cancer. Eur J Pharmacol 2024; 973:176592. [PMID: 38642666 DOI: 10.1016/j.ejphar.2024.176592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/22/2024]
Abstract
Head and neck cancer (HNC) is the sixth most common malignancy worldwide. Although current modalities offer a wide variety of therapy choices, head and neck carcinoma has poor prognosis due to its diagnosis at later stages and development of resistance to current therapeutic tools. In the current study, we aimed at exploring the roles of miR-200c-3p during head and neck carcinogenesis and acquisition of taxol resistance. We analyzed miR-200c-3p levels in HNC clinical samples and cell lines using quantitative real-time polymerase chain reaction and evaluated the effects of differential miR-200c-3p expression on cancer-related cellular phenotypes using in-vitro tools. We identified and characterized a direct target of miR-200c-3p using in-silico tools, luciferase and various in-vitro assays. We investigated potential involvement of miR-200c-3p/SSFA2 axis in taxol resistance in-vitro. We found miR-200c-3p expression as significantly downregulated in both HNC tissues and cells compared to corresponding controls. Ectopic miR-200c-3p expression in HNC cells significantly inhibited cancer-related phenotypes such as viability, clonogenicity, migration, and invasion. We, then, identified SSFA2 as a direct target of miR-200c-3p and demonstrated that overexpression of SSFA2 induced malignant phenotypes in HNC cells. Furthermore, we found reduced miR-200c-3p expression in parallel with overexpression of SSFA2 in taxol resistant HNC cells compared to parental sensitive cells. Both involved in intracellular cytoskeleton remodeling, we found that SSFA2 works collaboratively with IP3R1 to modulate resistance to taxol in HNC cells. When considered collectively, our results showed that miR-200c-3p acts as a tumor suppressor microRNA and targets SSFA2/IP3R1 axis to sensitize HNC cells to taxol.
Collapse
Affiliation(s)
- Fatma Sanli
- Molecular Biology and Genetics Department, Erzurum Technical University, Erzurum, Turkiye; Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkiye
| | - Arzu Tatar
- Department of Otorhinolaryngology Diseases, Faculty of Medicine, Ataturk University, Erzurum, Turkiye
| | - Betul Gundogdu
- Department of Medical Pathology, Faculty of Medicine, Ataturk University, Erzurum, Turkiye
| | - Omer Faruk Karatas
- Molecular Biology and Genetics Department, Erzurum Technical University, Erzurum, Turkiye; Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkiye.
| |
Collapse
|
4
|
Smith HA, Thillaiappan NB, Rossi AM. IP 3 receptors: An "elementary" journey from structure to signals. Cell Calcium 2023; 113:102761. [PMID: 37271052 DOI: 10.1016/j.ceca.2023.102761] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 06/06/2023]
Abstract
Inositol 1,4,5-trisphosphate receptors (IP3Rs) are large tetrameric channels which sit mostly in the membrane of the endoplasmic reticulum (ER) and mediate Ca2+ release from intracellular stores in response to extracellular stimuli in almost all cells. Dual regulation of IP3Rs by IP3 and Ca2+ itself, upstream "licensing", and the arrangement of IP3Rs into small clusters in the ER membrane, allow IP3Rs to generate spatially and temporally diverse Ca2+ signals. The characteristic biphasic regulation of IP3Rs by cytosolic Ca2+ concentration underpins regenerative Ca2+ signals by Ca2+-induced Ca2+-release, while also preventing uncontrolled explosive Ca2+ release. In this way, cells can harness a simple ion such as Ca2+ as a near-universal intracellular messenger to regulate diverse cellular functions, including those with conflicting outcomes such as cell survival and cell death. High-resolution structures of the IP3R bound to IP3 and Ca2+ in different combinations have together started to unravel the workings of this giant channel. Here we discuss, in the context of recently published structures, how the tight regulation of IP3Rs and their cellular geography lead to generation of "elementary" local Ca2+ signals known as Ca2+ "puffs", which form the fundamental bottleneck through which all IP3-mediated cytosolic Ca2+ signals must first pass.
Collapse
Affiliation(s)
- Holly A Smith
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | | | - Ana M Rossi
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom.
| |
Collapse
|
5
|
Rodrigues MA, Gomes DA, Fiorotto R, Guerra MT, Weerachayaphorn J, Bo T, Sessa WC, Strazzabosco M, Nathanson MH. Molecular determinants of peri-apical targeting of inositol 1,4,5-trisphosphate receptor type 3 in cholangiocytes. Hepatol Commun 2022; 6:2748-2764. [PMID: 35852334 PMCID: PMC9512452 DOI: 10.1002/hep4.2042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/03/2022] [Accepted: 06/20/2022] [Indexed: 11/19/2022] Open
Abstract
Fluid and bicarbonate secretion is a principal function of cholangiocytes, and impaired secretion results in cholestasis. Cholangiocyte secretion depends on peri-apical expression of the type 3 inositol trisphosphate receptor (ITPR3), and loss of this intracellular Ca2+ release channel is a final common event in most cholangiopathies. Here we investigated the mechanism by which ITPR3 localizes to the apical region to regulate secretion. Isolated bile duct units, primary mouse cholangiocytes, and polarized Madin-Darby canine kidney (MDCK) cells were examined using a combination of biochemical and fluorescence microscopy techniques to investigate the mechanism of ITPR3 targeting to the apical region. Apical localization of ITPR3 depended on the presence of intact lipid rafts as well as interactions with both caveolin 1 (CAV1) and myosin heavy chain 9 (MYH9). Chemical disruption of lipid rafts or knockdown of CAV1 or MYH9 redistributed ITPR3 away from the apical region. MYH9 interacted with the five c-terminal amino acids of the ITPR3 peptide. Disruption of lipid rafts impaired Ca2+ signaling, and absence of CAV1 impaired both Ca2+ signaling and fluid secretion. Conclusion: A cooperative mechanism involving MYH9, CAV1, and apical lipid rafts localize ITPR3 to the apical region to regulate Ca2+ signaling and secretion in cholangiocytes.
Collapse
Affiliation(s)
- Michele A. Rodrigues
- Section of Digestive Diseases, Internal MedicineYale UniversityNew HavenConnecticutUSA
- Department of Biochemistry and ImmunologyFederal University of Minas Gerais (UFMG)Belo HorizonteMGBrazil
| | - Dawidson A. Gomes
- Section of Digestive Diseases, Internal MedicineYale UniversityNew HavenConnecticutUSA
- Department of Biochemistry and ImmunologyFederal University of Minas Gerais (UFMG)Belo HorizonteMGBrazil
| | - Romina Fiorotto
- Section of Digestive Diseases, Internal MedicineYale UniversityNew HavenConnecticutUSA
| | - Mateus T. Guerra
- Section of Digestive Diseases, Internal MedicineYale UniversityNew HavenConnecticutUSA
| | | | - Tao Bo
- Department of Pharmacology and Program in Vascular Cell Signaling and TherapeuticsYale University School of MedicineNew HavenConnecticutUSA
| | - William C. Sessa
- Department of Pharmacology and Program in Vascular Cell Signaling and TherapeuticsYale University School of MedicineNew HavenConnecticutUSA
| | - Mario Strazzabosco
- Section of Digestive Diseases, Internal MedicineYale UniversityNew HavenConnecticutUSA
| | - Michael H. Nathanson
- Section of Digestive Diseases, Internal MedicineYale UniversityNew HavenConnecticutUSA
| |
Collapse
|
6
|
Arige V, Yule DI. Spatial and temporal crosstalk between the cAMP and Ca 2+ signaling systems. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119293. [PMID: 35588944 DOI: 10.1016/j.bbamcr.2022.119293] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 12/31/2022]
Abstract
The ubiquitous secondary messengers, Ca2+ and cAMP, play a vital role in shaping a diverse array of physiological processes. More significantly, accumulating evidence over the past several decades underpin extensive crosstalk between these two canonical messengers in discrete sub-cellular nanodomains across various cell types. Within such specialized nanodomains, each messenger fine-tunes signaling to maintain homeostasis by manipulating the activities of cellular machinery accountable for the metabolism or activity of the complementary pathway. Interaction between these messengers is ensured by scaffolding proteins which tether components of the signaling machinery in close proximity. Disruption of dynamic communications between Ca2+ and cAMP at these loci consequently is linked to several pathological conditions. This review summarizes recent novel mechanisms underlying effective crosstalk between Ca2+ and cAMP in such nanodomains.
Collapse
Affiliation(s)
- Vikas Arige
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - David I Yule
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA..
| |
Collapse
|
7
|
Huang G, Zhang X, Yao G, Huang L, Wu S, Li X, Guo J, Wen Y, Wang Y, Shang L, Li N, Xu W. A loss-of-function variant in SSFA2 causes male infertility with globozoospermia and failed oocyte activation. Reprod Biol Endocrinol 2022; 20:103. [PMID: 35836265 PMCID: PMC9281110 DOI: 10.1186/s12958-022-00976-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/29/2022] [Indexed: 11/10/2022] Open
Abstract
Globozoospermia (OMIM: 102530) is a rare type of teratozoospermia (< 0.1%). The etiology of globozoospermia is complicated and has not been fully revealed. Here, we report an infertile patient with globozoospermia. Variational analysis revealed a homozygous missense variant in the SSFA2 gene (NM_001130445.3: c.3671G > A; p.R1224Q) in the patient. This variant significantly reduced the protein expression of SSFA2. Immunofluorescence staining showed positive SSFA2 expression in the acrosome of human sperm. Liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) and Coimmunoprecipitation (Co-IP) analyses identified that GSTM3 and Actin interact with SSFA2. Further investigation revealed that for the patient, regular intracytoplasmic sperm injection (ICSI) treatment had a poor prognosis. However, Artificial oocyte activation (AOA) by a calcium ionophore (A23187) after ICSI successfully rescued the oocyte activation failure for the patient with the SSFA2 variant, and the couple achieved a live birth. This study revealed that SSFA2 plays an important role in acrosome formation, and the homozygous c.3671G > A loss-of-function variant in SSFA2 caused globozoospermia. SSFA2 may represent a new gene in the genetic diagnosis of globozoospermia, especially the successful outcome of AOA-ICSI treatment for couples, which has potential value for clinicians in their treatment regimen selections.
Collapse
Affiliation(s)
- Gelin Huang
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Joint Lab for Reproductive Medicine(SCU-CUHK), West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xueguang Zhang
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Joint Lab for Reproductive Medicine(SCU-CUHK), West China Second University Hospital, Sichuan University, Chengdu, China
| | - Guanping Yao
- Department of Reproductive Medicine Center, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Lin Huang
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Joint Lab for Reproductive Medicine(SCU-CUHK), West China Second University Hospital, Sichuan University, Chengdu, China
| | - Sixian Wu
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Joint Lab for Reproductive Medicine(SCU-CUHK), West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xiaoliang Li
- Department of Reproductive Endocrinology of West China Second University Hospital, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, China
| | - Juncen Guo
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Joint Lab for Reproductive Medicine(SCU-CUHK), West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yuting Wen
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Joint Lab for Reproductive Medicine(SCU-CUHK), West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yan Wang
- Department of Reproductive Endocrinology of West China Second University Hospital, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, China
| | - Lijun Shang
- School of Human Sciences, London Metropolitan University, London, UK
| | - Na Li
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.
| | - Wenming Xu
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Joint Lab for Reproductive Medicine(SCU-CUHK), West China Second University Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
8
|
Arige V, Terry LE, Malik S, Knebel TR, Wagner II LE, Yule DI. CREB regulates the expression of type 1 inositol 1,4,5-trisphosphate receptors. J Cell Sci 2021; 134:jcs258875. [PMID: 34533188 PMCID: PMC8601716 DOI: 10.1242/jcs.258875] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/13/2021] [Indexed: 12/16/2022] Open
Abstract
Inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) play a central role in regulating intracellular Ca2+ signals in response to a variety of internal and external cues. Dysregulation of IP3R signaling is the underlying cause for numerous pathological conditions. It is well established that the activities of IP3Rs are governed by several post-translational modifications, including phosphorylation by protein kinase A (PKA). However, the long-term effects of PKA activation on expression of IP3R subtypes remains largely unexplored. In this report, we investigate the effects of chronic stimulation and tonic activity of PKA on the expression of IP3R subtypes. We demonstrate that expression of the type 1 IP3R (IP3R1) is augmented upon prolonged activation of PKA or upon ectopic overexpression of cyclic AMP-response element-binding protein (CREB) without altering IP3R2 and IP3R3 abundance. By contrast, inhibition of PKA or blocking CREB diminished IP3R1 expression. We also demonstrate that agonist-induced Ca2+-release mediated by IP3R1 is significantly attenuated upon blocking of CREB. Moreover, CREB - by regulating the expression of KRAS-induced actin-interacting protein (KRAP) - ensures correct localization and licensing of IP3R1. Overall, we report a crucial role for CREB in governing both the expression and correct localization of IP3R1. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
| | | | | | | | | | - David I. Yule
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
9
|
Arige V, Yule DI. A KRAP(y) job: Defining the localization of active IP 3R. Cell Calcium 2021; 100:102470. [PMID: 34583188 DOI: 10.1016/j.ceca.2021.102470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 10/20/2022]
Abstract
A recent publication documented an exciting role for KRAP in tethering/immobilizing IP3Rs to actin. This interaction "licenses" IP3R activity as disrupting the partnership markedly diminishes Ca2+ puffs and global signals. These findings highlight a unique mechanism for regulating IP3R activity.
Collapse
Affiliation(s)
- Vikas Arige
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, 14642, United States
| | - David I Yule
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, 14642, United States.
| |
Collapse
|
10
|
KRAP tethers IP 3 receptors to actin and licenses them to evoke cytosolic Ca 2+ signals. Nat Commun 2021; 12:4514. [PMID: 34301929 PMCID: PMC8302619 DOI: 10.1038/s41467-021-24739-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 07/01/2021] [Indexed: 02/06/2023] Open
Abstract
Regulation of IP3 receptors (IP3Rs) by IP3 and Ca2+ allows regenerative Ca2+ signals, the smallest being Ca2+ puffs, which arise from coordinated openings of a few clustered IP3Rs. Cells express thousands of mostly mobile IP3Rs, yet Ca2+ puffs occur at a few immobile IP3R clusters. By imaging cells with endogenous IP3Rs tagged with EGFP, we show that KRas-induced actin-interacting protein (KRAP) tethers IP3Rs to actin beneath the plasma membrane. Loss of KRAP abolishes Ca2+ puffs and the global increases in cytosolic Ca2+ concentration evoked by more intense stimulation. Over-expressing KRAP immobilizes additional IP3R clusters and results in more Ca2+ puffs and larger global Ca2+ signals. Endogenous KRAP determines which IP3Rs will respond: it tethers IP3R clusters to actin alongside sites where store-operated Ca2+ entry occurs, licenses IP3Rs to evoke Ca2+ puffs and global cytosolic Ca2+ signals, implicates the actin cytoskeleton in IP3R regulation and may allow local activation of Ca2+ entry.
Collapse
|
11
|
Rosa N, Sneyers F, Parys JB, Bultynck G. Type 3 IP 3 receptors: The chameleon in cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 351:101-148. [PMID: 32247578 DOI: 10.1016/bs.ircmb.2020.02.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs), intracellular calcium (Ca2+) release channels, fulfill key functions in cell death and survival processes, whose dysregulation contributes to oncogenesis. This is essentially due to the presence of IP3Rs in microdomains of the endoplasmic reticulum (ER) in close proximity to the mitochondria. As such, IP3Rs enable efficient Ca2+ transfers from the ER to the mitochondria, thus regulating metabolism and cell fate. This review focuses on one of the three IP3R isoforms, the type 3 IP3R (IP3R3), which is linked to proapoptotic ER-mitochondrial Ca2+ transfers. Alterations in IP3R3 expression have been highlighted in numerous cancer types, leading to dysregulations of Ca2+ signaling and cellular functions. However, the outcome of IP3R3-mediated Ca2+ transfers for mitochondrial function is complex with opposing effects on oncogenesis. IP3R3 can either suppress cancer by promoting cell death and cellular senescence or support cancer by driving metabolism, anabolic processes, cell cycle progression, proliferation and invasion. The aim of this review is to provide an overview of IP3R3 dysregulations in cancer and describe how such dysregulations alter critical cellular processes such as proliferation or cell death and survival. Here, we pose that the IP3R3 isoform is not only linked to proapoptotic ER-mitochondrial Ca2+ transfers but might also be involved in prosurvival signaling.
Collapse
Affiliation(s)
- Nicolas Rosa
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut (LKI), Leuven, Belgium
| | - Flore Sneyers
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut (LKI), Leuven, Belgium
| | - Jan B Parys
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut (LKI), Leuven, Belgium
| | - Geert Bultynck
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut (LKI), Leuven, Belgium.
| |
Collapse
|
12
|
New Insights in the IP 3 Receptor and Its Regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:243-270. [PMID: 31646513 DOI: 10.1007/978-3-030-12457-1_10] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) is a Ca2+-release channel mainly located in the endoplasmic reticulum (ER). Three IP3R isoforms are responsible for the generation of intracellular Ca2+ signals that may spread across the entire cell or occur locally in so-called microdomains. Because of their ubiquitous expression, these channels are involved in the regulation of a plethora of cellular processes, including cell survival and cell death. To exert their proper function a fine regulation of their activity is of paramount importance. In this review, we will highlight the recent advances in the structural analysis of the IP3R and try to link these data with the newest information concerning IP3R activation and regulation. A special focus of this review will be directed towards the regulation of the IP3R by protein-protein interaction. Especially the protein family formed by calmodulin and related Ca2+-binding proteins and the pro- and anti-apoptotic/autophagic Bcl-2-family members will be highlighted. Finally, recently identified and novel IP3R regulatory proteins will be discussed. A number of these interactions are involved in cancer development, illustrating the potential importance of modulating IP3R-mediated Ca2+ signaling in cancer treatment.
Collapse
|
13
|
Prole DL, Taylor CW. Inositol 1,4,5-trisphosphate receptors and their protein partners as signalling hubs. J Physiol 2016; 594:2849-66. [PMID: 26830355 PMCID: PMC4887697 DOI: 10.1113/jp271139] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/06/2015] [Indexed: 01/26/2023] Open
Abstract
Inositol 1,4,5‐trisphosphate receptors (IP3Rs) are expressed in nearly all animal cells, where they mediate the release of Ca2+ from intracellular stores. The complex spatial and temporal organization of the ensuing intracellular Ca2+ signals allows selective regulation of diverse physiological responses. Interactions of IP3Rs with other proteins contribute to the specificity and speed of Ca2+ signalling pathways, and to their capacity to integrate information from other signalling pathways. In this review, we provide a comprehensive survey of the proteins proposed to interact with IP3Rs and the functional effects that these interactions produce. Interacting proteins can determine the activity of IP3Rs, facilitate their regulation by multiple signalling pathways and direct the Ca2+ that they release to specific targets. We suggest that IP3Rs function as signalling hubs through which diverse inputs are processed and then emerge as cytosolic Ca2+ signals.
![]()
Collapse
Affiliation(s)
- David L Prole
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD, UK
| | - Colin W Taylor
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD, UK
| |
Collapse
|
14
|
Fu G, Rybakin V, Brzostek J, Paster W, Acuto O, Gascoigne NRJ. Fine-tuning T cell receptor signaling to control T cell development. Trends Immunol 2014; 35:311-8. [PMID: 24951034 PMCID: PMC4119814 DOI: 10.1016/j.it.2014.05.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/24/2014] [Accepted: 05/12/2014] [Indexed: 01/23/2023]
Abstract
T cell development from immature CD4(+)CD8(+) double-positive (DP) thymocytes to the mature CD4 or CD8 single-positive (SP) stage requires proper T cell receptor (TCR) signaling. The current working model of thymocyte development is that the strength of the TCR-mediated signal - from little-or-none, through intermediate, to strong - received by the immature cells determines whether they will undergo death by neglect, positive selection, or negative selection, respectively. In recent years, several developmentally regulated, stage-specifically expressed proteins and miRNAs have been found that act like fine-tuners for signal transduction and propagation downstream of the TCR. This allows them to govern thymocyte positive selection. Here, we summarize recent findings on these molecules and suggest new concepts of TCR positive-selection signaling.
Collapse
Affiliation(s)
- Guo Fu
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Vasily Rybakin
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117597
| | - Joanna Brzostek
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117597
| | - Wolfgang Paster
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Oreste Acuto
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Nicholas R J Gascoigne
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117597.
| |
Collapse
|
15
|
Tespa1 is a novel component of mitochondria-associated endoplasmic reticulum membranes and affects mitochondrial calcium flux. Biochem Biophys Res Commun 2013; 433:322-6. [DOI: 10.1016/j.bbrc.2013.02.099] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 02/28/2013] [Indexed: 12/20/2022]
|
16
|
Fujimoto T, Matsuzaki H, Tanaka M, Shirasawa S. Tespa1 protein is phosphorylated in response to store-operated calcium entry. Biochem Biophys Res Commun 2013; 434:162-5. [PMID: 23541577 DOI: 10.1016/j.bbrc.2013.02.128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 02/27/2013] [Indexed: 10/27/2022]
Abstract
We previously reported that Tespa1 (thymocyte-expressed, positive selection-associated gene 1) protein expressed in lymphocytes physically interacts with IP3R (Inositol 1,4,5-trisphosphate receptor), a Ca(2+) channel protein spanning endoplasmic reticulum (ER) membrane. However, the biochemical characterization of Tespa1 protein remains unknown. In this study, we have found that Tespa1 protein was posttranslationally modified upon intracellular Ca(2+) increase in thymocytes. Through the analyses using various inhibitors, store-operated Ca(2+) entry (SOCE) was found to be an essential factor for the Tespa1 protein modification induced by T cell receptor (TCR)-stimulation. Remarkably, the Ca(2+)-dependent Tespa1 protein modification was restored by in vitro protein phosphatase treatment, indicating that this modification was due to phosphorylation. Moreover, we examined whether Ca(2+)-dependent phosphorylation of Tespa1 protein would affect the physical association between Tespa1 and IP3R proteins, revealing that physical association of these proteins is maintained regardless of the presence or absence of phosphorylation of Tespa1. In addition, KRAP protein which represents substantial amino acid sequence homology to Tespa1 was also posttranslationally phosphorylated by intracellular Ca(2+) increase in HCT116 human colon cancer cells and HEK293 human embryonic kidney cells, suggesting that common signaling mechanism(s) may contribute to the molecular modification of Tespa1 and KRAP in different cellular processes. All these results suggested a novel molecular modification of Tespa1 and the existence of the regulatory pathway that SOCE affects the Tespa1-IP3R molecular complex.
Collapse
Affiliation(s)
- Takahiro Fujimoto
- Department of Cell Biology, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Fukuoka 814-0180, Japan
| | | | | | | |
Collapse
|
17
|
Akl H, Bultynck G. Altered Ca(2+) signaling in cancer cells: proto-oncogenes and tumor suppressors targeting IP3 receptors. Biochim Biophys Acta Rev Cancer 2012; 1835:180-93. [PMID: 23232185 DOI: 10.1016/j.bbcan.2012.12.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 11/30/2012] [Accepted: 12/01/2012] [Indexed: 01/15/2023]
Abstract
Proto-oncogenes and tumor suppressors critically control cell-fate decisions like cell survival, adaptation and death. These processes are regulated by Ca(2+) signals arising from the endoplasmic reticulum, which at distinct sites is in close proximity to the mitochondria. These organelles are linked by different mechanisms, including Ca(2+)-transport mechanisms involving the inositol 1,4,5-trisphosphate receptor (IP3R) and the voltage-dependent anion channel (VDAC). The amount of Ca(2+) transfer from the endoplasmic reticulum to mitochondria determines the susceptibility of cells to apoptotic stimuli. Suppressing the transfer of Ca(2+) from the endoplasmic reticulum to the mitochondria increases the apoptotic resistance of cells and may decrease the cellular responsiveness to apoptotic signaling in response to cellular damage or alterations. This can result in the survival, growth and proliferation of cells with oncogenic features. Clearly, proper maintenance of endoplasmic reticulum Ca(2+) homeostasis and dynamics including its links with the mitochondrial network is essential to detect and eliminate altered cells with oncogenic features through the apoptotic pathway. Proto-oncogenes and tumor suppressors exploit the central role of Ca(2+) signaling by targeting the IP3R. There are an increasing number of reports showing that activation of proto-oncogenes or inactivation of tumor suppressors directly affects IP3R function and endoplasmic reticulum Ca(2+) homeostasis, thereby decreasing mitochondrial Ca(2+) uptake and mitochondrial outer membrane permeabilization. In this review, we provide an overview of the current knowledge on the proto-oncogenes and tumor suppressors identified as IP3R-regulatory proteins and how they affect endoplasmic reticulum Ca(2+) homeostasis and dynamics.
Collapse
Affiliation(s)
- Haidar Akl
- Department Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
18
|
Fujimoto T, Shirasawa S. Identification of KRAP-expressing cells and the functional relevance of KRAP to the subcellular localization of IP3R in the stomach and kidney. Int J Mol Med 2012; 30:1287-93. [PMID: 22992961 PMCID: PMC4042864 DOI: 10.3892/ijmm.2012.1126] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 08/20/2012] [Indexed: 12/31/2022] Open
Abstract
KRAS-induced actin-interacting protein (KRAP), originally identified as
one of the deregulated genes expressed in colorectal cancer, participates under
physiological conditions in the regulation of systemic energy homeostasis and of the
exocrine system. We have recently found that KRAP is a molecule associated with inositol
1,4,5-trisphosphate receptor (IP3R) and is critical for the proper subcellular
localization of IP3R in the liver and the pancreas. However, the expression of
KRAP and its precise function in other tissues remain elusive. In this study, we aimed to
identify the KRAP-expressing cells in mouse stomach and kidneys and to examine the
relevance of KRAP expression in the regulation of IP3R localization in these
tissues. In the stomach, double immunohistochemical staining for KRAP and IP3R
demonstrated that KRAP was expressed along with the apical regions in the mucous cells and
the chief cells, and IP3R3 was dominantly co-localized with KRAP in these
cells. Furthermore, IP3R2 was also co-localized with IP3R3 in the
chief cells. It is of note that the proper localization of IP3R3 and
IP3R2 in the chief cells and of IP3R3 in the mucous cells were
significantly abrogated in KRAP-deficient mice. In the kidneys, KRAP was
expressed in both the apical and the basal regions of the proximal tubular cells.
Intriguingly, KRAP deficiency abrogated the localization of
IP3R1 in the proximal tubular cells. Finally, co-immunoprecipitation study in
the stomachs and the kidneys validated the physical association of KRAP with
IP3Rs. These findings demonstrate that KRAP physically associates with
IP3Rs and regulates the proper localization of IP3Rs in the mucous
cells and the chief cells of the stomach and in the proximal tubular cells of the
kidneys.
Collapse
Affiliation(s)
- Takahiro Fujimoto
- Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan
| | | |
Collapse
|
19
|
Matsuzaki H, Fujimoto T, Ota T, Ogawa M, Tsunoda T, Doi K, Hamabashiri M, Tanaka M, Shirasawa S. Tespa1 is a novel inositol 1,4,5-trisphosphate receptor binding protein in T and B lymphocytes. FEBS Open Bio 2012; 2:255-9. [PMID: 23650607 PMCID: PMC3642165 DOI: 10.1016/j.fob.2012.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 07/30/2012] [Accepted: 08/24/2012] [Indexed: 10/27/2022] Open
Abstract
Tespa1 has been recently reported to be a critical molecule in T-cell development, however, the precise molecular mechanisms of Tespa1 remain elusive. Here, we demonstrate that Tespa1 shows amino-acid sequence homology to KRAS-induced actin-interacting protein (KRAP), an inositol 1,4,5-trisphosphate receptor (IP3R) binding protein, and that Tespa1 physically associates with IP3R in T and B lymphocytes. Two-consecutive phenylalanine residues (Phe185/Phe186) in Tespa1, which are conserved between Tespa1 and KRAP, are indispensable for the association between Tespa1 and IP3R. These findings suggest that Tespa1 plays critical roles in the immune system through the regulation of the IP3R.
Collapse
Affiliation(s)
- Hiroshi Matsuzaki
- Department of Cell Biology, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Dingli F, Parys JB, Loew D, Saule S, Mery L. Vimentin and the K-Ras-induced actin-binding protein control inositol-(1,4,5)-trisphosphate receptor redistribution during MDCK cell differentiation. J Cell Sci 2012; 125:5428-40. [PMID: 22946050 DOI: 10.1242/jcs.108738] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Inositol-(1,4,5)-triphosphate receptors (InsP(3)Rs) are ligand-gated Ca(2+) channels that control Ca(2+) release from intracellular stores and play a central role in a wide range of cellular responses. In most epithelial cells, InsP(3)Rs are not uniformly distributed within the endoplasmic reticulum (ER) membrane, with the consequence that agonist stimulation results in compartmentalized Ca(2+) signals. Despite these observations, little is known about the mechanisms that regulate the intracellular localization of InsP(3)Rs. Here, we report that exogenously expressed InsP(3)R1-GFP and endogenous InsP(3)R3 interact with the K-Ras-induced actin-binding protein (KRAP) in both differentiated and undifferentiated Madin-Darby canine kidney (MDCK) cells. KRAP mediates InsP(3)R clustering in confluent MDCK cells and functions as an adapter, linking InsP(3)Rs to vimentin intermediate filaments. Upon epithelial differentiation, KRAP and vimentin are both required for InsP(3)R accumulation at the periphery of MDCK cells. Finally, KRAP associates with vimentin in chicken B lymphocytes and with keratins in a breast cancer cell line devoid of vimentin. Collectively, our data suggest that intermediate filaments in conjunction with KRAP may govern the localization of InsP(3)Rs in a large number of cell types (including epithelial cells) and in various physiological or pathological contexts.
Collapse
Affiliation(s)
- Florent Dingli
- Laboratory of Proteomic Mass Spectrometry, Institut Curie, 75248 Paris, Cedex 05, France
| | | | | | | | | |
Collapse
|
21
|
Fujimoto T, Machida T, Tsunoda T, Doi K, Ota T, Kuroki M, Shirasawa S. KRAS-induced actin-interacting protein regulates inositol 1,4,5-trisphosphate-receptor-mediated calcium release. Biochem Biophys Res Commun 2011; 408:214-7. [DOI: 10.1016/j.bbrc.2011.03.112] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 03/25/2011] [Indexed: 10/18/2022]
|
22
|
Determination of the critical region of KRAS-induced actin-interacting protein for the interaction with inositol 1,4,5-trisphosphate receptor. Biochem Biophys Res Commun 2011; 408:282-6. [PMID: 21501587 DOI: 10.1016/j.bbrc.2011.04.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 04/03/2011] [Indexed: 11/23/2022]
Abstract
KRAS-induced actin-interacting protein (KRAP) was originally characterized as a filamentous-actin-interacting protein. We have recently found that KRAP is an associated molecule with inositol 1,4,5-trisphosphate receptor (IP(3)R) and is critical for the proper subcellular localization and function of IP(3)R. However, the molecular mechanisms underlying the regulation of IP(3)R by KRAP remain elusive. In this report, to determine the critical region of KRAP protein for the regulation of IP(3)R, we generate several mutants of KRAP and examine the association with IP(3)R using coimmunoprecipitation and confocal imaging assays. Coimmunoprecipitations using the deletion mutants reveal that amino-acid residues 1-218 but not 1-199 of KRAP interact with IP(3)R, indicating that the 19-length amino-acid residues (200-218) are essential for the association with IP(3)R. This critical region is highly conserved between human and mouse KRAP. Within the critical region, substitutions of two phenylalanine residues (Phe202/Phe203) in mouse KRAP to alanines result in failure of the association with IP(3)R, suggesting that the two consecutive phenylalanine residues are indispensable for the association. Moreover, the KRAP-knockdown stable HeLa cells exhibit the inappropriate subcellular localization of IP(3)R, in which exogenous expression of full-length of KRAP properly restores the subcellular localization of IP(3)R, but not the 1-218 or 1-236 mutant, indicating that the residual carboxyl-terminal region is also required for the proper subcellular localization of KRAP-IP(3)R complex. All these results provide insight into the understandings for the molecular mechanisms underlying the regulation of IP(3)R, and would reveal a potent strategy for the drug development targeting on IP(3)R.
Collapse
|