1
|
Souchak J, Mohammed NBB, Lau LS, Dimitroff CJ. The role of galectins in mediating the adhesion of circulating cells to vascular endothelium. Front Immunol 2024; 15:1395714. [PMID: 38840921 PMCID: PMC11150550 DOI: 10.3389/fimmu.2024.1395714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/03/2024] [Indexed: 06/07/2024] Open
Abstract
Vascular cell adhesion is a complex orchestration of events that commonly feature lectin-ligand interactions between circulating cells, such as immune, stem, and tumor cells, and endothelial cells (ECs) lining post-capillary venules. Characteristically, circulating cell adherence to the vasculature endothelium is initiated through interactions between surface sialo-fucosylated glycoprotein ligands and lectins, specifically platelet (P)- or endothelial (E)-selectin on ECs or between leukocyte (L)-selectin on circulating leukocytes and L-selectin ligands on ECs, culminating in circulating cell extravasation. This lectin-ligand interplay enables the migration of immune cells into specific tissue sites to help maintain effective immunosurveillance and inflammation control, the homing of stem cells to bone marrow or tissues in need of repair, and, unfortunately, in some cases, the dissemination of circulating tumor cells (CTCs) to distant metastatic sites. Interestingly, there is a growing body of evidence showing that the family of β-galactoside-binding lectins, known as galectins, can also play pivotal roles in the adhesion of circulating cells to the vascular endothelium. In this review, we present contemporary knowledge on the significant roles of host- and/or tumor-derived galectin (Gal)-3, -8, and -9 in facilitating the adhesion of circulating cells to the vascular endothelium either directly by acting as bridging molecules or indirectly by triggering signaling pathways to express adhesion molecules on ECs. We also explore strategies for interfering with galectin-mediated adhesion to attenuate inflammation or hinder the metastatic seeding of CTCs, which are often rich in galectins and/or their glycan ligands.
Collapse
Affiliation(s)
- Joseph Souchak
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Norhan B. B. Mohammed
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
- Department of Medical Biochemistry, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Lee Seng Lau
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Charles J. Dimitroff
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| |
Collapse
|
2
|
Nunes MJ, Carvalho AN, Rosa AI, Videira PA, Gama MJ, Rodrigues E, Castro-Caldas M. Altered expression of Sialyl Lewis X in experimental models of Parkinson's disease. J Mol Med (Berl) 2024; 102:365-377. [PMID: 38197965 PMCID: PMC10879467 DOI: 10.1007/s00109-023-02415-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/07/2023] [Accepted: 12/22/2023] [Indexed: 01/11/2024]
Abstract
The mechanisms underlying neurodegeneration in Parkinson's disease (PD) are still not fully understood. Glycosylation is an important post-translational modification that affects protein function, cell-cell contacts and inflammation and can be modified in pathologic conditions. Although the involvement of aberrant glycosylation has been proposed for PD, the knowledge of the diversity of glycans and their role in PD is still minimal. Sialyl Lewis X (sLeX) is a sialylated and fucosylated tetrasaccharide with essential roles in cell-to-cell recognition processes. Pathological conditions and pro-inflammatory mediators can up-regulate sLeX expression on cell surfaces, which has important consequences in intracellular signalling and immune function. Here, we investigated the expression of this glycan using in vivo and in vitro models of PD. We show the activation of deleterious glycation-related pathways in mouse striatum upon treatment with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a toxin-based model of PD. Importantly, our results show that MPTP triggers the presentation of more proteins decorated with sLeX in mouse cortex and striatum in a time-dependent manner, as well as increased mRNA expression of its rate-limiting enzyme fucosyltransferase 7. sLeX is expressed in neurons, including dopaminergic neurons, and microglia. Although the underlying mechanism that drives increased sLeX epitopes, the nature of the protein scaffolds and their functional importance in PD remain unknown, our data suggest for the first time that sLeX in the brain may have a role in neuronal signalling and immunomodulation in pathological conditions. KEY MESSAGES: MPTP triggers the presentation of proteins decorated with sLeX in mouse brain. MPTP triggers the expression of sLeX rate-limiting enzyme FUT 7 in striatum. sLeX is expressed in neurons, including dopaminergic neurons, and microglia. sLeX in the brain may have a role in neuronal signalling and immunomodulation.
Collapse
Affiliation(s)
- Maria João Nunes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | - Andreia Neves Carvalho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | - Alexandra I Rosa
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | - Paula A Videira
- Department of Life Sciences, UCIBIO, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.
| | - Maria João Gama
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | - Elsa Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | - Margarida Castro-Caldas
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal.
- Department of Life Sciences, UCIBIO, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.
| |
Collapse
|
3
|
Delannoy C, Huang C, Coddeville B, Chen JY, Mouajjah D, Groux-Degroote S, Harduin-Lepers A, Khoo KH, Guerardel Y, Elass-Rochard E. Mycobacterium bovis BCG infection alters the macrophage N-glycome. Mol Omics 2020; 16:345-354. [PMID: 32270793 DOI: 10.1039/c9mo00173e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Macrophage glycosylation is essential to initiate the host-immune defense but may also be targeted by pathogens to promote infection. Indeed, the alteration of the cell-surface glycosylation status may affect the binding of lectins involved in cell activation and adhesion. Herein, we demonstrate that infection by M. bovis BCG induces the remodeling of the N-glycomes of both human primary blood monocyte-derived macrophages (MDM) and macrophage-cell line THP1. MALDI-MS based N-glycomic analysis established that mycobacterial infection induced increased synthesis of biantennary and multifucosylated complex type N-glycans. In contrast, infection of macrophages by M. bovis BCG did not modify the glycosphingolipids composition of macrophages. Further nano-LC-MSn glycotope-centric analysis of total N-glycans demonstrated that the increased fucosylation was due to an increased expression of the Lex (Galβ1-4[Fucα1-3]GlcNAc) epitope, also known as stage-specific embryonic antigen-1. Modification of the surface expression of Lex was further confirmed in both MDM and THP-1 cells by FACS analysis using an α1,3-linked fucose specific lectin. Activation with the mycobacterial lipopeptide Pam3Lp19, an agonist of toll-like receptor 2, did not modify the overall fucosylation pattern, which suggests that the infection process is required to modify surface glycosylation. These results pave the way toward the understanding of infection-triggered cell-surface remodeling of macrophages.
Collapse
Affiliation(s)
- Clément Delannoy
- Univ. Lille, CNRS UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, 59 000 Lille, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Cohen EN, Fouad TM, Lee BN, Arun BK, Liu D, Tin S, Gutierrez Barrera AM, Miura T, Kiyokawa I, Yamashita J, Alvarez RH, Valero V, Woodward WA, Shen Y, Ueno NT, Cristofanilli M, Reuben JM. Elevated serum levels of sialyl Lewis X (sLe X) and inflammatory mediators in patients with breast cancer. Breast Cancer Res Treat 2019; 176:545-556. [PMID: 31054033 DOI: 10.1007/s10549-019-05258-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 04/26/2019] [Indexed: 12/17/2022]
Abstract
PURPOSE The carbohydrate sialyl LewisX (sLeX) mediates cell adhesion, is critical in the normal function of immune cells, and is frequently over-expressed on cancer cells. We assessed the association, differential levels, and prognostic value of sLeX and inflammatory cytokines/chemokines in breast cancer sera. METHODS We retrospectively measured sLeX and a panel of cytokines/chemokines in the sera of 26 non-invasive ductal carcinoma in situ (DCIS), 154 invasive non-metastatic breast cancer (non-MBC), 63 metastatic breast cancer (MBC) patients, and 43 healthy controls. Differences in sLeX and inflammatory cytokines among and between patient groups and healthy controls were assessed with nonparametric tests and we performed survival analysis for the prognostic potential of sLeX using a cut-off of 8 U/mL as previously defined. RESULTS Median serum sLeX was significantly higher than controls for invasive breast cancer patients (MBC and non-MBC) but not DCIS. In univariate analysis, we confirmed patients with serum sLeX > 8 U/mL have a significantly shorter progression-free survival (PFS) (P = 0.0074) and overall survival (OS (P = 0.0003). Similarly, patients with high serum MCP-1 and IP-10 had shorter OS (P = 0.001 and P < 0.001, respectively) and PFS (P = 0.010 and P < 0.001, respectively). sLeX, MCP-1 and IP-10 remained significant in multivariate survival analysis. CONCLUSION Elevated serum sLeX was associated with invasive cancer but not DCIS. High serum sLeX levels were associated with inflammatory mediators and may play a role in facilitating local invasion of breast tumor. Furthermore, serum MCP-1, IP-10 and sLeX may have prognostic value in breast cancer.
Collapse
Affiliation(s)
- Evan N Cohen
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, 1220 Holcombe Blvd, Houston, TX, 77030, USA.,Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Tamer M Fouad
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, 1220 Holcombe Blvd, Houston, TX, 77030, USA.,Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe, Unit 3552, Houston, TX, 77030, USA.,Department of Medical Oncology, The National Cancer Institute, Cairo University, Kasr El-Aini Road, Cairo, 11796, Egypt
| | - Bang-Ning Lee
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, 1220 Holcombe Blvd, Houston, TX, 77030, USA.,Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.,Michael E. DeBakey Veterans Affairs Medical Center, Conroe, TX, USA
| | - Banu K Arun
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe, Unit 3552, Houston, TX, 77030, USA
| | - Diane Liu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Houston, TX, 77030, USA
| | - Sanda Tin
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, 1220 Holcombe Blvd, Houston, TX, 77030, USA.,Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Angelica M Gutierrez Barrera
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe, Unit 3552, Houston, TX, 77030, USA
| | - Toshihide Miura
- Nittobo Medical Co., Ltd., 1, Shiojima Fukuhara, Fukuyama, Koriyama, Fukushima, Japan
| | - Iwao Kiyokawa
- Nittobo Medical Co., Ltd., 1, Shiojima Fukuhara, Fukuyama, Koriyama, Fukushima, Japan
| | - Jun Yamashita
- Nittobo Medical Co., Ltd., 1, Shiojima Fukuhara, Fukuyama, Koriyama, Fukushima, Japan
| | - Ricardo H Alvarez
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, 1220 Holcombe Blvd, Houston, TX, 77030, USA.,Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe, Unit 3552, Houston, TX, 77030, USA.,Cancer Treatment Centers of America, Newnan, GA, USA
| | - Vicente Valero
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe, Unit 3552, Houston, TX, 77030, USA
| | - Wendy A Woodward
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, 1220 Holcombe Blvd, Houston, TX, 77030, USA.,Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe, Unit 76468, Houston, TX, 77030, USA
| | - Yu Shen
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Houston, TX, 77030, USA
| | - Naoto T Ueno
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, 1220 Holcombe Blvd, Houston, TX, 77030, USA.,Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe, Unit 3552, Houston, TX, 77030, USA
| | - Massimo Cristofanilli
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, 1220 Holcombe Blvd, Houston, TX, 77030, USA.,Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe, Unit 3552, Houston, TX, 77030, USA.,Feinberg School of Medicine, Northwestern Univeristy, Chicago, IL, USA
| | - James M Reuben
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, 1220 Holcombe Blvd, Houston, TX, 77030, USA. .,Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| |
Collapse
|
5
|
Ye ZS, Huang RC. Selectins modify dendritic cells during atherosclerosis. Chronic Dis Transl Med 2018; 4:205-210. [PMID: 30603739 PMCID: PMC6308906 DOI: 10.1016/j.cdtm.2018.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Indexed: 01/13/2023] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells (APC) that facilitate the development and progression of atherosclerosis. However, DCs also function as novel "switches" between immune activation and immune tolerance and represent a heterogeneous hematopoietic lineage, with cell subsets in different tissues that show a differential morphology, phenotype, and function. Regulatory DCs, depending on their immature state, can be induced by immunosuppressive modulation, which plays an important part in the maintenance of immunologic tolerance via suppression of the immune response. In this review, we describe the current understanding of the generation of regulatory DCs. The novel role of selectins in the modification of DCs in atherosclerosis is also discussed.
Collapse
Affiliation(s)
| | - Rong-Chong Huang
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China
| |
Collapse
|
6
|
Videira PA, Silva M, Martin KC, Sackstein R. Ligation of the CD44 Glycoform HCELL on Culture-Expanded Human Monocyte-Derived Dendritic Cells Programs Transendothelial Migration. THE JOURNAL OF IMMUNOLOGY 2018; 201:1030-1043. [PMID: 29941663 DOI: 10.4049/jimmunol.1800188] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/23/2018] [Indexed: 12/12/2022]
Abstract
The success of dendritic cell (DC)-based immunotherapeutics critically hinges on the capacity of the vascularly administered cells to enter tissues. Transendothelial migration (TEM) is dictated by an ordered cascade of receptor/ligand interactions. In this study, we examined the key molecular effectors of TEM of human monocyte-derived DCs (mo-DCs) generated by clinically relevant methods: CD14 selection (CD14-S) and plastic adherence selection (PA-S). Without chemokine input, CD14-S cells undergo greater TEM than PA-S cells over TNF-α-stimulated HUVECs. TEM of CD14-S mo-DCs is E-selectin/very late Ag-4 (VLA-4) dependent, and engagement of E-selectin ligands activates VLA-4 on CD14-S mo-DCs but not on PA-S mo-DCs. E-selectin binding glycoforms of P-selectin glycoprotein ligand-1 (PSGL-1) (i.e., cutaneous lymphocyte Ag [CLA]) and CD44 (i.e., hematopoietic cell E-selectin/L-selectin ligand [HCELL]) are both expressed on CD14-S mo-DCs, but only CLA is expressed on PA-S mo-DCs. To elucidate the effect of CD44 or PSGL-1 engagement, mo-DCs were pretreated with their ligands. Ligation of CD44 on CD14-S mo-DCs triggers VLA-4 activation and TEM, whereas PSGL-1 ligation does not. HCELL expression on CD14-S mo-DC can be enforced by cell surface exofucosylation, yielding increased TEM in vitro and enhanced extravasation into bone marrow in vivo. These findings highlight structural and functional pleiotropism of CD44 in priming TEM of mo-DCs and suggest that strategies to enforce HCELL expression may boost TEM of systemically administered CD14-S mo-DCs.
Collapse
Affiliation(s)
- Paula A Videira
- Unidade de Ciências Biomoleculares Aplicadas, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.,Centro de Estudos de Doenças Crónicas, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-190 Lisbon, Portugal.,Congenital Disorders of Glycosylation and Allies-Professionals and Patient Associations International Network, 2829-516 Caparica, Portugal
| | - Mariana Silva
- Centro de Estudos de Doenças Crónicas, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-190 Lisbon, Portugal.,Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115.,Program of Excellence in Glycosciences, Harvard Medical School, Boston, MA 02115; and
| | - Kyle C Martin
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115.,Program of Excellence in Glycosciences, Harvard Medical School, Boston, MA 02115; and
| | - Robert Sackstein
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115; .,Program of Excellence in Glycosciences, Harvard Medical School, Boston, MA 02115; and.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
7
|
Protocols for Glycosyltransferase Assays: Ganglioside Globoside and Lewis-X Intermediate-Lactosylceramide Biosyntheses in Eukaryotic Systems. Methods Mol Biol 2018. [PMID: 29926409 DOI: 10.1007/978-1-4939-8552-4_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Protocols for assay of 24 different Glycolipid-Glycosyltransferases (GSL-GLTs) of the eukaryotic systems are described. Problems of quantitating the activities in crude membranes are also described. Different separation methods (for separation of substrate, donors, and the product of the reaction) have been described based on the paper chromatography or high voltage paper electrophoresis in 1.0% Na2B4O7. Liquid Scintillation counting system was used for quantitation of the enzymatic product. In the assay of each GSL-GLT it is recommended to compare the selected method to be used with the exact conditions used by the authors published previously. As a test case for these assays the following kinetic parameters for Lactosylceramide Synthase, GalT-2 (UDP-Gal: Glc-Cer β1-4-galactosyltransferase), (Km of glucosylceramide = 1.65 × 10-4 M; Km for UDP-Gal = 0.5 × 10-4 M; V max is determined in the presence of optimum detergent concentrations (2-15 mg/ml of Cutscum-Triton X-100, 2:1); Mn++ and Mg++, 10-20 mM) has been reported. The importance of use of GalT-2 assay method (as a model system) in the purified Golgi-rich membranes from 13-day-old embryonic chicken brains (13-ECB) is described.
Collapse
|
8
|
Carrascal MA, Talina C, Borralho P, Gonçalo Mineiro A, Henriques AR, Pen C, Martins M, Braga S, Sackstein R, Videira PA. Staining of E-selectin ligands on paraffin-embedded sections of tumor tissue. BMC Cancer 2018; 18:495. [PMID: 29716546 PMCID: PMC5930952 DOI: 10.1186/s12885-018-4410-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/18/2018] [Indexed: 01/07/2023] Open
Abstract
Background The E-selectin ligands expressed by cancer cells mediate adhesion of circulating cancer cells to endothelial cells, as well as within tissue microenvironments important for tumor progression and metastasis. The identification of E-selectin ligands within cancer tissue could yield new biomarkers for patient stratification and aid in identifying novel therapeutic targets. The determinants of selectin ligands consist of sialylated tetrasaccharides, the sialyl Lewis X and A (sLeX and sLeA), displayed on protein or lipid scaffolds. Standardized procedures for immunohistochemistry make use of the antibodies against sLeX and/or sLeA. However, antibody binding does not define E-selectin binding activity. Methods In this study, we developed an immunohistochemical staining technique, using E-selectin-human Ig Fc chimera (E-Ig) to characterize the expression and localization of E-selectin binding sites on paraffin-embedded sections of different cancer tissue. Results E-Ig successfully stained cancer cells with high specificity. The E-Ig staining show high reactivity scores in colon and lung adenocarcinoma and moderate reactivity in triple negative breast cancer. Compared with reactivity of antibody against sLeX/A, the E-Ig staining presented higher specificity to cancer tissue with better defined borders and less background. Conclusions The E-Ig staining technique allows the qualitative and semi-quantitative analysis of E-selectin binding activity on cancer cells. The development of accurate techniques for detection of selectin ligands may contribute to better diagnostic and better understanding of the molecular basis of tumor progression and metastasis. Electronic supplementary material The online version of this article (10.1186/s12885-018-4410-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mylène A Carrascal
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Lisbon, Portugal.,CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Catarina Talina
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Paula Borralho
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal.,Hospital CUF Descobertas, Lisbon, Portugal
| | - A Gonçalo Mineiro
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Ana Raquel Henriques
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Cláudia Pen
- Centro Hospitalar de Lisboa Central, EPE e Serviço de Anatomia Patológica, Lisbon, Portugal
| | - Manuela Martins
- Centro Hospitalar de Lisboa Central, EPE e Serviço de Anatomia Patológica, Lisbon, Portugal
| | | | - Robert Sackstein
- Departments of Dermatology and Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, USA.,Program of Excellence in Glycosciences, Harvard Medical School, Boston, USA
| | - Paula A Videira
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Lisbon, Portugal. .,CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal.
| |
Collapse
|
9
|
Carrascal MA, Silva M, Ramalho JS, Pen C, Martins M, Pascoal C, Amaral C, Serrano I, Oliveira MJ, Sackstein R, Videira PA. Inhibition of fucosylation in human invasive ductal carcinoma reduces E-selectin ligand expression, cell proliferation, and ERK1/2 and p38 MAPK activation. Mol Oncol 2018; 12:579-593. [PMID: 29215790 PMCID: PMC5928367 DOI: 10.1002/1878-0261.12163] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 10/09/2017] [Accepted: 11/13/2017] [Indexed: 01/08/2023] Open
Abstract
Breast cancer tissue overexpresses fucosylated glycans, such as sialyl-Lewis X/A (sLeX/A ), and α-1,3/4-fucosyltransferases (FUTs) in relation to increased disease progression and metastasis. These glycans in tumor circulating cells mediate binding to vascular E-selectin, initiating tumor extravasation. However, their role in breast carcinogenesis is still unknown. Here, we aimed to define the contribution of the fucosylated structures, including sLeX/A , to cell adhesion, cell signaling, and cell proliferation in invasive ductal carcinomas (IDC), the most frequent type of breast cancer. We first analyzed expression of E-selectin ligands in IDC tissue and established primary cell cultures from the tissue. We observed strong reactivity with E-selectin and anti-sLeX/A antibodies in both IDC tissue and cell lines, and expression of α-1,3/4 FUTs FUT4, FUT5, FUT6, FUT10, and FUT11. To further assess the role of fucosylation in IDC biology, we immortalized a primary IDC cell line with human telomerase reverse transcriptase to create the 'CF1_T cell line'. Treatment with 2-fluorofucose (2-FF), a fucosylation inhibitor, completely abrogated its sLeX/A expression and dramatically reduced adherence of CF1_T cells to E-selectin under hemodynamic flow conditions. In addition, 2-FF-treated CF1_T cells showed a reduced migratory ability, as well as decreased cell proliferation rate. Notably, 2-FF treatment lowered the growth factor expression of CF1_T cells, prominently for FGF2, vascular endothelial growth factor, and transforming growth factor beta, and negatively affected activation of signal-regulating protein kinases 1 and 2 and p38 mitogen-activated protein kinase signaling pathways. These data indicate that fucosylation licenses several malignant features of IDC, such as cell adhesion, migration, proliferation, and growth factor expression, contributing to tumor progression.
Collapse
Affiliation(s)
- Mylène A. Carrascal
- UCIBIODepartamento Ciências da VidaFaculdade de Ciências e TecnologiaUniversidade Nova de LisboaPortugal
- CEDOCChronic Diseases Research CenterNOVA Medical School/Faculdade de Ciências MédicasUniversidade Nova de LisboaPortugal
| | - Mariana Silva
- CEDOCChronic Diseases Research CenterNOVA Medical School/Faculdade de Ciências MédicasUniversidade Nova de LisboaPortugal
- Departments of Dermatology and MedicineBrigham & Women's HospitalBostonMAUSA
- Harvard Medical SchoolProgram of Excellence in GlycosciencesBostonMAUSA
| | - José S. Ramalho
- CEDOCChronic Diseases Research CenterNOVA Medical School/Faculdade de Ciências MédicasUniversidade Nova de LisboaPortugal
| | - Cláudia Pen
- Centro Hospitalar de Lisboa CentralEPE – Serviço de Anatomia PatológicaLisbonPortugal
| | - Manuela Martins
- Centro Hospitalar de Lisboa CentralEPE – Serviço de Anatomia PatológicaLisbonPortugal
| | - Carlota Pascoal
- UCIBIODepartamento Ciências da VidaFaculdade de Ciências e TecnologiaUniversidade Nova de LisboaPortugal
| | - Constança Amaral
- UCIBIODepartamento Ciências da VidaFaculdade de Ciências e TecnologiaUniversidade Nova de LisboaPortugal
| | | | - Maria José Oliveira
- New Therapies GroupINEB‐Institute for Biomedical EngineeringPortoPortugal
- Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortugal
| | - Robert Sackstein
- Departments of Dermatology and MedicineBrigham & Women's HospitalBostonMAUSA
- Harvard Medical SchoolProgram of Excellence in GlycosciencesBostonMAUSA
| | - Paula A. Videira
- UCIBIODepartamento Ciências da VidaFaculdade de Ciências e TecnologiaUniversidade Nova de LisboaPortugal
- CEDOCChronic Diseases Research CenterNOVA Medical School/Faculdade de Ciências MédicasUniversidade Nova de LisboaPortugal
- CDG & Allies – PPAIN Congenital Disorders of Glycosylation Professionals and Patient Associations International NetworkCaparicaPortugal
| |
Collapse
|
10
|
Silva M, Videira PA, Sackstein R. E-Selectin Ligands in the Human Mononuclear Phagocyte System: Implications for Infection, Inflammation, and Immunotherapy. Front Immunol 2018; 8:1878. [PMID: 29403469 PMCID: PMC5780348 DOI: 10.3389/fimmu.2017.01878] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 12/08/2017] [Indexed: 12/20/2022] Open
Abstract
The mononuclear phagocyte system comprises a network of circulating monocytes and dendritic cells (DCs), and “histiocytes” (tissue-resident macrophages and DCs) that are derived in part from blood-borne monocytes and DCs. The capacity of circulating monocytes and DCs to function as the body’s first-line defense against offending pathogens greatly depends on their ability to egress the bloodstream and infiltrate inflammatory sites. Extravasation involves a sequence of coordinated molecular events and is initiated by E-selectin-mediated deceleration of the circulating leukocytes onto microvascular endothelial cells of the target tissue. E-selectin is inducibly expressed by cytokines (tumor necrosis factor-α and IL-1β) on inflamed endothelium, and binds to sialofucosylated glycan determinants displayed on protein and lipid scaffolds of blood cells. Efficient extravasation of circulating monocytes and DCs to inflamed tissues is crucial in facilitating an effective immune response, but also fuels the immunopathology of several inflammatory disorders. Thus, insights into the structural and functional properties of the E-selectin ligands expressed by different monocyte and DC populations is key to understanding the biology of protective immunity and the pathobiology of several acute and chronic inflammatory diseases. This review will address the role of E-selectin in recruitment of human circulating monocytes and DCs to sites of tissue injury/inflammation, the structural biology of the E-selectin ligands expressed by these cells, and the molecular effectors that shape E-selectin ligand cell-specific display. In addition, therapeutic approaches targeting E-selectin receptor/ligand interactions, which can be used to boost host defense or, conversely, to dampen pathological inflammatory conditions, will also be discussed.
Collapse
Affiliation(s)
- Mariana Silva
- Department of Dermatology, Harvard Skin Disease Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Program of Excellence in Glycosciences, Harvard Medical School, Boston, MA, United States
| | - Paula A Videira
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Lisboa, Portugal.,Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Robert Sackstein
- Department of Dermatology, Harvard Skin Disease Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Program of Excellence in Glycosciences, Harvard Medical School, Boston, MA, United States.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
11
|
Lynch K, Treacy O, Gerlach JQ, Annuk H, Lohan P, Cabral J, Joshi L, Ryan AE, Ritter T. Regulating Immunogenicity and Tolerogenicity of Bone Marrow-Derived Dendritic Cells through Modulation of Cell Surface Glycosylation by Dexamethasone Treatment. Front Immunol 2017; 8:1427. [PMID: 29163502 PMCID: PMC5670353 DOI: 10.3389/fimmu.2017.01427] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 10/13/2017] [Indexed: 12/15/2022] Open
Abstract
Dendritic cellular therapies and dendritic cell vaccines show promise for the treatment of autoimmune diseases, the prolongation of graft survival in transplantation, and in educating the immune system to fight cancers. Cell surface glycosylation plays a crucial role in the cell–cell interaction, uptake of antigens, migration, and homing of DCs. Glycosylation is known to change with environment and the functional state of DCs. Tolerogenic DCs (tDCs) are commonly generated using corticosteroids including dexamethasone, however, to date, little is known on how corticosteroid treatment alters glycosylation and what functional consequences this may have. Here, we present a comprehensive profile of rat bone marrow-derived dendritic cells, examining their cell surface glycosylation profile before and after Dexa treatment as resolved by both lectin microarrays and lectin-coupled flow cytometry. We further examine the functional consequences of altering cell surface glycosylation on immunogenicity and tolerogenicity of DCs. Dexa treatment of rat DCs leads to profoundly reduced expression of markers of immunogenicity (MHC I/II, CD80, CD86) and pro-inflammatory molecules (IL-6, IL-12p40, inducible nitric oxide synthase) indicating a tolerogenic phenotype. Moreover, by comprehensive lectin microarray profiling and flow cytometry analysis, we show that sialic acid (Sia) is significantly upregulated on tDCs after Dexa treatment, and that this may play a vital role in the therapeutic attributes of these cells. Interestingly, removal of Sia by neuraminidase treatment increases the immunogenicity of immature DCs and also leads to increased expression of pro-inflammatory cytokines while tDCs are moderately protected from this increase in immunogenicity. These findings may have important implications in strategies aimed at increasing tolerogenicity where it is advantageous to reduce immune activation over prolonged periods. These findings are also relevant in therapeutic strategies aimed at increasing the immunogenicity of cells, for example, in the context of tumor specific immunotherapies.
Collapse
Affiliation(s)
- Kevin Lynch
- School of Medicine, Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland
| | - Oliver Treacy
- School of Medicine, Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland
| | - Jared Q Gerlach
- School of Medicine, Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland.,Glycoscience Group, NCBES National Centre for Biomedical Engineering Science, National University of Ireland Galway, Galway, Ireland
| | - Heidi Annuk
- Glycoscience Group, NCBES National Centre for Biomedical Engineering Science, National University of Ireland Galway, Galway, Ireland
| | - Paul Lohan
- School of Medicine, Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland
| | - Joana Cabral
- School of Medicine, Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland
| | - Lokesh Joshi
- Glycoscience Group, NCBES National Centre for Biomedical Engineering Science, National University of Ireland Galway, Galway, Ireland
| | - Aideen E Ryan
- School of Medicine, Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland.,Discipline of Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland
| | - Thomas Ritter
- School of Medicine, Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
12
|
Silva M, Fung RKF, Donnelly CB, Videira PA, Sackstein R. Cell-Specific Variation in E-Selectin Ligand Expression among Human Peripheral Blood Mononuclear Cells: Implications for Immunosurveillance and Pathobiology. THE JOURNAL OF IMMUNOLOGY 2017; 198:3576-3587. [PMID: 28330896 DOI: 10.4049/jimmunol.1601636] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 02/22/2017] [Indexed: 12/26/2022]
Abstract
Both host defense and immunopathology are shaped by the ordered recruitment of circulating leukocytes to affected sites, a process initiated by binding of blood-borne cells to E-selectin displayed at target endothelial beds. Accordingly, knowledge of the expression and function of leukocyte E-selectin ligands is key to understanding the tempo and specificity of immunoreactivity. In this study, we performed E-selectin adherence assays under hemodynamic flow conditions coupled with flow cytometry and Western blot analysis to elucidate the function and structural biology of glycoprotein E-selectin ligands expressed on human PBMCs. Circulating monocytes uniformly express high levels of the canonical E-selectin binding determinant sialyl Lewis X (sLeX) and display markedly greater adhesive interactions with E-selectin than do circulating lymphocytes, which exhibit variable E-selectin binding among CD4+ and CD8+ T cells but no binding by B cells. Monocytes prominently present sLeX decorations on an array of protein scaffolds, including P-selectin glycoprotein ligand-1, CD43, and CD44 (rendering the E-selectin ligands cutaneous lymphocyte Ag, CD43E, and hematopoietic cell E-selectin/L-selectin ligand, respectively), and B cells altogether lack E-selectin ligands. Quantitative PCR gene expression studies of glycosyltransferases that regulate display of sLeX reveal high transcript levels among circulating monocytes and low levels among circulating B cells, and, commensurately, cell surface α(1,3)-fucosylation reveals that acceptor sialyllactosaminyl glycans convertible into sLeX are abundantly expressed on human monocytes yet are relatively deficient on B cells. Collectively, these findings unveil distinct cell-specific patterns of E-selectin ligand expression among human PBMCs, indicating that circulating monocytes are specialized to engage E-selectin and providing key insights into the molecular effectors mediating recruitment of these cells at inflammatory sites.
Collapse
Affiliation(s)
- Mariana Silva
- Centro de Estudos de Doenças Crónicas, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal.,Department of Dermatology, Brigham and Women's Hospital, Boston, MA 02115.,Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115.,Program of Excellence in Glycosciences, Harvard Medical School, Boston, MA 02115
| | - Ronald Kam Fai Fung
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA 02115.,Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115.,Medical Training and Administration Unit, Royal Prince Alfred Hospital, Sydney, New South Wales 2050, Australia; and
| | - Conor Brian Donnelly
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA 02115.,Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115.,Program of Excellence in Glycosciences, Harvard Medical School, Boston, MA 02115
| | - Paula Alexandra Videira
- Centro de Estudos de Doenças Crónicas, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal.,Unidade de Ciências Biomoleculares Aplicadas, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Robert Sackstein
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA 02115; .,Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115.,Program of Excellence in Glycosciences, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
13
|
Delannoy CP, Rombouts Y, Groux-Degroote S, Holst S, Coddeville B, Harduin-Lepers A, Wuhrer M, Elass-Rochard E, Guérardel Y. Glycosylation Changes Triggered by the Differentiation of Monocytic THP-1 Cell Line into Macrophages. J Proteome Res 2016; 16:156-169. [DOI: 10.1021/acs.jproteome.6b00161] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Clément P. Delannoy
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité
de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille, France
| | - Yoann Rombouts
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité
de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille, France
| | - Sophie Groux-Degroote
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité
de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille, France
| | - Stephanie Holst
- Center
for Proteomics and Metabolomics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Bernadette Coddeville
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité
de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille, France
| | - Anne Harduin-Lepers
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité
de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille, France
| | - Manfred Wuhrer
- Center
for Proteomics and Metabolomics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Elisabeth Elass-Rochard
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité
de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille, France
| | - Yann Guérardel
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité
de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille, France
| |
Collapse
|
14
|
Selectin-mediated leukocyte trafficking during the development of autoimmune disease. Autoimmun Rev 2015; 14:984-95. [DOI: 10.1016/j.autrev.2015.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 06/18/2015] [Indexed: 12/18/2022]
|
15
|
Immature myeloid cells and tolerogenic cytokine profile in lung adenocarcinoma metastatic lymph nodes assessed by endobronchial ultrasound. Tumour Biol 2015; 37:953-61. [DOI: 10.1007/s13277-015-3885-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 08/03/2015] [Indexed: 01/15/2023] Open
|
16
|
Regulations of glycolipid: XI. glycosyltransferase (GSL: GLTs) genes involved in SA-LeX and related GSLs biosynthesis in carcinoma cells by Biosimilar apoptotic agents: potential anticancer drugs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 842:329-54. [PMID: 25408353 DOI: 10.1007/978-3-319-11280-0_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
17
|
Bueno-Sánchez JC, Peña-Alzate S, Peña RB, Agudelo-Jaramillo B, Cadavid-Jaramillo AP, Chaouat G, Maldonado-Estrada JG. Sera from early-onset, severely preeclamptic women directly modulate HLA-E expression in the EA.hy296 endothelial cell line. J Reprod Immunol 2014; 104-105:68-79. [PMID: 24837231 DOI: 10.1016/j.jri.2014.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 03/14/2014] [Accepted: 03/17/2014] [Indexed: 11/18/2022]
Abstract
The expression of endothelial HLA-E in the context of the systemic inflammatory response observed in preeclampsia has not been established. An experimental study was designed to determine the effect of the sera of pregnant women on the expression of HLA-E in EA.hy296 endothelial cells. First, measurements of protein fractions were performed in sera from early-onset, severely preeclamptic women without HELLP syndrome, in which there was no significant difference in total proteins between the groups, but a reduced level of plasma albumin and an increase in α1-globulin were observed in both groups of pregnant women compared with non-pregnant women. Measurements of colloid osmotic pressure (COP) using a recalculated albumin/globulin ratio formula determined only a significant decrease in COP in all pregnant groups compared with non-pregnant women. The expression of membrane HLA-E was increased in EA.hy296 endothelial cells stimulated with sera of early-onset, severely preeclamptic women, while recombinant interferon-γ (IFN-γ) significantly reduced the expression of membrane HLA-E. Pro-inflammatory cytokines were measured by Luminex in the serum samples, and increased levels of tumor necrosis factor (TNF) and decreased levels of IFN-γ were observed in early-onset, severe preeclampsia compared with normal pregnancy. Moreover, soluble HLA-E was detected in these serum samples by Western blot and ELISA, but no significant difference was found. This raises the possibility that a systemic inflammatory response promotes a compensatory mechanism of COP balance in severe preeclampsia by release of inflammation-induced factors, including endothelial HLA-E. Evidence is now provided regarding HLA-E expression by EA.hy296 cells.
Collapse
Affiliation(s)
- J C Bueno-Sánchez
- Reproduction Group, Universidad de Antioquia, Calle 70 No. 52-21, Medellin, Colombia; Department of Physiology and Biochemistry, Universidad de Antioquia, Calle 70 No. 52-21, Medellin, Colombia.
| | - S Peña-Alzate
- Reproduction Group, Universidad de Antioquia, Calle 70 No. 52-21, Medellin, Colombia
| | - R B Peña
- Reproduction Group, Universidad de Antioquia, Calle 70 No. 52-21, Medellin, Colombia
| | - B Agudelo-Jaramillo
- NACER-SSR, Department of Obstetrics and Gynaecology, School of Medicine, Universidad de Antioquia, Calle 70 No. 52-21, Medellin, Colombia; Hospital Universitario San Vicente Fundación and Hospital General de Medellín, Obstetrics and Gynaecology Services, Medellín, Colombia
| | - A P Cadavid-Jaramillo
- Reproduction Group, Universidad de Antioquia, Calle 70 No. 52-21, Medellin, Colombia
| | - G Chaouat
- INSERM U 976, Pavillon Bazin, Hopital Saint Louis, 75010 Paris, France
| | - J G Maldonado-Estrada
- Reproduction Group, Universidad de Antioquia, Calle 70 No. 52-21, Medellin, Colombia; Centauro Group, School of Veterinary Medicine, Universidad de Antioquia, Calle 70 No. 52-21, Medellin, Colombia
| |
Collapse
|
18
|
Crespo HJ, Lau JTY, Videira PA. Dendritic cells: a spot on sialic Acid. Front Immunol 2013; 4:491. [PMID: 24409183 PMCID: PMC3873530 DOI: 10.3389/fimmu.2013.00491] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 12/15/2013] [Indexed: 11/17/2022] Open
Abstract
Glycans decorating cell surface and secreted proteins and lipids occupy the juncture where critical host–host and host-pathogen interactions occur. The role of glycan epitopes in cell–cell and cell-pathogen adhesive events is already well-established, and cell surface glycan structures change rapidly in response to stimulus and inflammatory cues. Despite the wide acceptance that glycans are centrally implicated in immunity, exactly how glycans and their changes contribute to the overall immune response remains poorly defined. Sialic acids are unique sugars that usually occupy the terminal position of the glycan chains and may be modified by external factors, such as pathogens, or upon specific physiological cellular events. At cell surface, sialic acid-modified structures form the key fundamental determinants for a number of receptors with known involvement in cellular adhesiveness and cell trafficking, such as the Selectins and the Siglec families of carbohydrate recognizing receptors. Dendritic cells (DCs) preside over the transition from innate to the adaptive immune repertoires, and no other cell has such relevant role in antigen screening, uptake, and its presentation to lymphocytes, ultimately triggering the adaptive immune response. Interestingly, sialic acid-modified structures are involved in all DC functions, such as antigen uptake, DC migration, and capacity to prime T cell responses. Sialic acid content changes along DC differentiation and activation and, while, not yet fully understood, these changes have important implications in DC functions. This review focuses on the developmental regulation of DC surface sialic acids and how manipulation of DC surface sialic acids can affect immune-critical DC functions by altering antigen endocytosis, pathogen and tumor cell recognition, cell recruitment, and capacity for T cell priming. The existing evidence points to a potential of DC surface sialylation as a therapeutic target to improve and diversify DC-based therapies.
Collapse
Affiliation(s)
- Hélio J Crespo
- CEDOC - UC Imunologia, Faculdade de Ciências Médicas, Universidade Nova de Lisboa , Lisbon , Portugal ; Department of Molecular and Cellular Biology, Roswell Park Cancer Institute , Buffalo, NY , USA
| | - Joseph T Y Lau
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute , Buffalo, NY , USA
| | - Paula A Videira
- CEDOC - UC Imunologia, Faculdade de Ciências Médicas, Universidade Nova de Lisboa , Lisbon , Portugal
| |
Collapse
|
19
|
Bugalho A, Martins C, Dias SS, Nunes G, Silva Z, Correia M, Marques Gomes MJ, Videira PA. Cytokeratin 19, Carcinoembryonic Antigen, and Epithelial Cell Adhesion Molecule Detect Lung Cancer Lymph Node Metastasis in Endobronchial Ultrasound-Guided Transbronchial Aspiration Samples. Clin Lung Cancer 2013; 14:704-12. [DOI: 10.1016/j.cllc.2013.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 05/14/2013] [Accepted: 06/18/2013] [Indexed: 12/25/2022]
|
20
|
Cabral MG, Silva Z, Ligeiro D, Seixas E, Crespo H, Carrascal MA, Silva M, Piteira AR, Paixão P, Lau JT, Videira PA. The phagocytic capacity and immunological potency of human dendritic cells is improved by α2,6-sialic acid deficiency. Immunology 2013; 138:235-45. [PMID: 23113614 DOI: 10.1111/imm.12025] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 10/17/2012] [Accepted: 10/22/2012] [Indexed: 12/22/2022] Open
Abstract
Dendritic cells (DCs) play an essential role in immunity against bacteria by phagocytosis and by eliciting adaptive immune responses. Previously, we demonstrated that human monocyte-derived DCs (MDDCs) express a high content of cell surface α2,6-sialylated glycans. However, the relative role of these sialylated structures in phagocytosis of bacteria has not been reported. Here, we show that treatment with a sialidase significantly improved the capacity of both immature and mature MDDCs to phagocytose Escherichia coli. Desialylated MDDCs had a significantly more mature phenotype, with higher expression of MHC molecules and interleukin (IL)-12, tumour necrosis factor-α, IL-6 and IL-10 cytokines, and nuclear factor-κB activation. T lymphocytes primed by desialylated MDDCs expressed more interferon-γ when compared with priming by sialylated MDDCs. Improved phagocytosis required E. coli sialic acids, indicating a mechanism of host-pathogen interaction dependent on sialic acid moieties. The DCs harvested from mice deficient in the ST6Gal.1 sialyltransferase showed improved phagocytosis capacity, demonstrating that the observed sialidase effect was a result of the removal of α2,6-sialic acid. The phagocytosis of different pathogenic E. coli isolates was also enhanced by sialidase, which suggests that modifications on MDDC sialic acids may be considered in the development of MDDC-based antibacterial therapies. Physiologically, our findings shed new light on mechanisms that modulate the function of both immature and mature MDDCs, in the context of host-bacteria interaction. Hence, with particular relevance to DC-based therapies, the engineering of α2,6-sialic acid cell surface is a novel possibility to fine tune DC phagocytosis and immunological potency.
Collapse
Affiliation(s)
- M Guadalupe Cabral
- CEDOC, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
The role of sugars in dendritic cell trafficking. Ann Biomed Eng 2011; 40:777-89. [PMID: 22045510 DOI: 10.1007/s10439-011-0448-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 10/18/2011] [Indexed: 01/13/2023]
Abstract
Dendritic cells (DCs) are crucial components of the immune response, strategically positioned as immune sentinels. Complex trafficking and accurate positioning of DCs are indispensable for both immunity and tolerance. This is particularly evident for their therapeutic application where an unmet clinical need exists for DCs with improved migratory capacity upon adoptive transfer into patients. One critical step that directs the trafficking of DCs throughout the body is their egress from the vasculature, starting with their adhesive interactions with vascular endothelium under shear flow. Both tethering and rolling rely on interactions mediated by specific glycans attached to glycoproteins and glycolipids present on the DC surface. In DCs, surface glycosylation, including the expression of selectin ligands, changes significantly depending on the local microenvironment and the functional state of the cells. These changes have been documented and have potential implications in important cell functions such as migration. In this article, we review the glycobiological aspects in the context of DC interaction with endothelium, and offer insights on how it can be applied to modulate DC applicability in therapy.
Collapse
|