1
|
Zeng Q, Xue L, Li W, Liang C, Zhou W, Xiong W, Dai X. Inhibition of 5-hydroxyindoleacetic acid to reduce neutrophil extracellular trap production improves lung condition in chronic obstructive pulmonary disease mice. Ann Med 2025; 57:2474734. [PMID: 40066951 PMCID: PMC11899248 DOI: 10.1080/07853890.2025.2474734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/09/2025] [Accepted: 01/31/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Neutrophil extracellular trap (NET) correlate with chronic obstructive pulmonary disease (COPD) severity. Platelets can promote NET generation. However, serotonin alone or serotonin-deficient platelets do not adequately promote NET production. The metabolism of serotonin to 5-hydroxyindoleacetic acid (5-HIAA) in platelets may be the key to this difference. OBJECTIVE The study aimed to determine whether 5-HIAA can influence NET production and thus play a role in COPD. METHODS After a 4-hour co-incubation with lipopolysaccharide (LPS) and 5-HIAA, NET and ROS levels in the culture medium were measured by ELISA, and NET production with aryl hydrocarbon receptor (AHR) expression in adherent cells were analyzed by immunofluorescence.A COPD model was established in C57BL/6 mice through smoke exposure combined with LPS tracheal administration, followed by selegiline or 5-HIAA treatment. Post-intervention, lung function tests and sample collection were performed. The levels of 5-HIAA, ROS, NET, IL-6, and AHR in the samples were quantified by ELISA, pathological changes were assessed by HE staining, and NET/AHR expression was detected by immunofluorescence. RESULTS 5-HIAA promoted NET production in vitro, and the nuclei of neutrophils secreting NET-like structures express AHR. In animal experiments, 5-HIAA levels were higher in both the plasma and lung tissues of COPD mice compared with normal mice. Inhibition of 5-HIAA in COPD mice down-regulated AHR expression, reduced reactive oxygen species and NET generation, elevated lung function indices (FEV0.1, FVC, PEF, and FEV0.1/FVC), decreased interleukin-6 levels, and improved lung tissue condition. CONCLUSION Inhibiting 5-HIAA reduces NET generation, thereby improving lung conditions in COPD mice, which is associated with the 5-HIAA/AHR pathway.
Collapse
Affiliation(s)
- Qiang Zeng
- Department of Geriatrics, First Affiliated Hospital, Army Medical University, Chongqing, China
| | - Lei Xue
- Department of Geriatrics, First Affiliated Hospital, Army Medical University, Chongqing, China
| | - Wu Li
- Department of Geriatrics, First Affiliated Hospital, Army Medical University, Chongqing, China
| | - Cheng Liang
- Department of Geriatrics, First Affiliated Hospital, Army Medical University, Chongqing, China
| | - Weijia Zhou
- Department of Geriatrics, First Affiliated Hospital, Army Medical University, Chongqing, China
| | - Wei Xiong
- Department of Geriatrics, First Affiliated Hospital, Army Medical University, Chongqing, China
| | - Xiaotian Dai
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
2
|
Naughton SX, Yang EJ, Iqbal U, Trageser K, Charytonowicz D, Masieri S, Estill M, Wu H, Raval U, Lyu W, Wu QL, Shen L, Simon J, Sebra R, Pasinetti GM. Permethrin exposure primes neuroinflammatory stress response to drive depression-like behavior through microglial activation in a mouse model of Gulf War Illness. J Neuroinflammation 2024; 21:222. [PMID: 39272155 PMCID: PMC11396632 DOI: 10.1186/s12974-024-03215-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
Gulf War Illness (GWI) is a chronic multisymptom disorder that affects approximately 25-32% of Gulf War veterans and is characterized by a number of symptoms such as cognitive impairment, psychiatric disturbances, chronic fatigue and gastrointestinal distress, among others. While the exact etiology of GWI is unknown, it is believed to have been caused by toxic exposures encountered during deployment in combination with other factors such as stress. In the present study we sought to evaluate the hypothesis that exposure to the toxin permethrin could prime neuroinflammatory stress response and elicit psychiatric symptoms associated with GWI. Specifically, we developed a mouse model of GWI, to evaluate the effects of chronic permethrin exposure followed by unpredictable stress. We found that subjecting mice to 14 days of chronic permethrin exposure followed by 7 days of unpredictable stress resulted in the development of depression-like behavior. This behavioral change coincided with distinct alterations in the microglia phenotype, indicating microglial activation in the hippocampus. We revealed that blocking microglial activation through Gi inhibitory DREADD receptors in microglia effectively prevented the behavioral change associated with permethrin and stress exposure. To elucidate the transcriptional networks impacted within distinct microglia populations linked to depression-like behavior in mice exposed to both permethrin and stress, we conducted a single-cell RNA sequencing analysis using 21,566 single nuclei collected from the hippocampus of mice. For bioinformatics, UniCell Deconvolve was a pre-trained, interpretable, deep learning model used to deconvolve cell type fractions and predict cell identity across spatial datasets. Our bioinformatics analysis identified significant alterations in permethrin exposure followed by stress-associated microglia population, notably pathways related to neuronal development, neuronal communication, and neuronal morphogenesis, all of which are associated with neural synaptic plasticity. Additionally, we observed permethrin exposure followed by stress-mediated changes in signal transduction, including modulation of chemical synaptic transmission, regulation of neurotransmitter receptors, and regulation of postsynaptic neurotransmitter receptor activity, a known contributor to the pathophysiology of depression in a subset of the hippocampal pyramidal neurons in CA3 subregions. Our findings tentatively suggest that permethrin may prime microglia towards a state of inflammatory activation that can be triggered by psychological stressors, resulting in depression-like behavior and alterations of neural plasticity. These findings underscore the significance of synergistic interactions between multi-causal factors associated with GWI.
Collapse
Affiliation(s)
- Sean X Naughton
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eun-Jeong Yang
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Umar Iqbal
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kyle Trageser
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel Charytonowicz
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sibilla Masieri
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Molly Estill
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Henry Wu
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Urdhva Raval
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Weiting Lyu
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, USA
| | - Qing-Li Wu
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, USA
| | - Li Shen
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James Simon
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, USA
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Giulio Maria Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Geriatric Research, Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA.
| |
Collapse
|
3
|
Liu J, Hou W, Zong Z, Chen Y, Liu X, Zhang R, Deng H. Supplementation of nicotinamide mononucleotide diminishes COX-2 associated inflammatory responses in macrophages by activating kynurenine/AhR signaling. Free Radic Biol Med 2024; 214:69-79. [PMID: 38336100 DOI: 10.1016/j.freeradbiomed.2024.01.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024]
Abstract
Cyclooxygenase-2 (COX-2) is an inducible enzyme responsible for prostaglandin synthesis during inflammation and immune responses. Our previous results show that NAD+ level decreased in activated macrophages while nicotinamide mononucleotide (NMN) supplementation suppressed the inflammatory responses via restoring NAD+ level and downregulating COX-2. However, whether NMN downregulates COX-2 in mouse model of inflammation, and its underlying mechanism needs to be further explored. In the present study, we established LPS- and alum-induced inflammation model and demonstrated that NMN suppressed the inflammatory responses in vivo. Quantitative proteomics in mouse peritoneal macrophages identified that NMN activated AhR signaling pathway in activated macrophages. Furthermore, we revealed that NMN supplementation led to IDO1 activation and kynurenine accumulation, which caused AhR nuclear translocation and activation. On the other hand, AhR or IDO1 knockout abolished the effects of NMN on suppressing COX-2 expression and inflammatory responses in macrophages. In summary, our results demonstrated that NMN suppresses inflammatory responses by activating IDO-kynurenine-AhR pathway, and suggested that administration of NMN in early-stage immuno-activation may cause an adverse health effect.
Collapse
Affiliation(s)
- Jing Liu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Wenxuan Hou
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Zhaoyun Zong
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yuling Chen
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaohui Liu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Ran Zhang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
4
|
Kuang TY, Yin SQ, Dai WH, Luo L, Chen T, Liang XH, Wang RX, Liang HP, Zhu JY. [Effects of enhancing the expression of aryl hydrocarbon receptor in post-traumatic mice macrophages on the inflammatory cytokine level and bactericidal ability]. ZHONGHUA SHAO SHANG YU CHUANG MIAN XIU FU ZA ZHI 2023; 39:633-640. [PMID: 37805692 DOI: 10.3760/cma.j.cn501225-20230210-00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 10/09/2023]
Abstract
Objective: To explore the expression pattern of aryl hydrocarbon receptor (AhR) in mice peritoneal macrophages (PMs) after major trauma and analyze the effects of enhanced AhR expression on the inflammatory cytokine level and bactericidal ability after trauma. Methods: The experimental study method was used. Forty 6-8-week-old male C57BL/6J mice (the same mouse age, sex, and strain below) were divided into control group, post trauma hour (PTH) 2 group, PTH 6 group, and PTH 12 group according to the random number table (the same grouping method below), with 10 mice in each group. Mice in the latter 3 groups were constructed as severe trauma model with fracture+blood loss, while mice in control group were left untreated. The primary PMs (the same cells below) were extracted from the mice in control group, PTH 2 group, PTH 6 group, and PTH 12 group when uninjured or at PTH 2, 6, and 12, respectively. Then the protein and mRNA expressions of AhR were detected by Western blotting and real-time fluorescence quantitative reverse transcription polymerase chain reaction, respectively, and the gene expressions of AhR signaling pathway related molecules were analyzed by transcriptome sequencing. Twenty mice were divided into control group and PTH 6 group, with 10 mice in each group, and the PMs were extracted. The level of ubiquitin of AhR was detected by immunoprecipitation. Twelve mice were divided into dimethyl sulfoxide (DMSO) alone group, PTH 6+DMSO group, MG-132 alone group, and PTH 6+MG-132 group, with 3 mice in each group. After the corresponding treatment, PMs were extracted, and the protein expression of AhR was detected by Western blotting. Twenty mice were constructed as PTH 6 model. Then, the PMs were extracted and divided into empty negative control adenovirus (Ad-NC) group and AhR overexpression adenovirus (Ad-AhR) group. The protein expression of AhR was detected by Western blotting at 36 h after some PMs were transfected with the corresponding adenovirus. The rest cells in Ad-NC group were divided into Ad-NC alone group and Ad-NC+endotoxin/lipopolysaccharide (LPS) group, and the rest cells in Ad-AhR group were divided into Ad-AhR alone group and Ad-AhR+LPS group. The expressions of interleukin-6 (IL-6) and tumor necrosis factor α (TNF-α) in the cell supernatant were detected by enzyme-linked immunosorbent assay at 12 h after the corresponding treatment (n=6). Twenty mice were obtained to extract PMs. The cells were divided into control+Ad-NC group, PTH 6+Ad-NC group, control+Ad-AhR group, and PTH 6+Ad-AhR group, and the intracellular bacterial load was detected by plate spread method after the corresponding treatment (n=6). Data were statistically analyzed with one-way analysis of variance, least significant difference test, analysis of variance for factorial design, and independent sample t test. Results: Compared with 1.16±0.28 of control group, the protein expressions of AhR in PMs in PTH 2 group (0.59±0.14), PTH 6 group (0.72±0.16), and PTH 12 group (0.71±0.17) were all significantly decreased (P<0.05). The overall comparison of the difference of AhR mRNA expression in PMs among control group, PTH 2 group, PTH 6 group, and PTH 12 group showed no statistical significance (P>0.05). The AhR signaling pathway related molecules included AhR, AhR inhibitor, cytochrome P450 family member 1b1, cytochrome P450 family member 11a1, heat shock protein 90, aryl hydrocarbon receptor-interaction protein, and heat shock protein 70 interaction protein. The heat shock protein 90 expression of PMs in PTH 2 group was higher than that in control group, while the expressions of other molecules did not change significantly after trauma. Compared with that in control group, the level of ubiquitin of AhR in PMs in PTH 6 group was increased. Compared with that in DMSO alone group, the protein expression of AhR in PMs in PTH 6+DMSO group was decreased, while that in PMs in MG-132 alone group had no significant change. Compared with that in PTH 6+DMSO group, the protein expression of AhR in PMs in PTH 6+MG-132 group was up-regulated. At transfection hour 36, compared with that in Ad-NC group, the protein expression of AhR in PMs in Ad-AhR group was increased. At treatment hour 12, compared with those in Ad-NC+LPS group, the expressions of IL-6 and TNF-α in PM supernatant of Ad-AhR+LPS group were significantly decreased (with t values of 4.80 and 3.82, respectively, P<0.05). The number of intracellular bacteria of 1×106 PMs in control+Ad-NC group, PTH 6+Ad-NC group, control+Ad-AhR group, and PTH 6+Ad-AhR group was (3.0±1.8), (41.8±10.2), (1.8±1.2), and (24.2±6.3) colony forming unit, respectively. Compared with that in PTH 6+Ad-NC group, the number of intracellular bacteria of PMs in PTH 6+Ad-AhR group was significantly decreased (t=3.61, P<0.05). Conclusions: Ubiquitin degradation of AhR in PMs of mice after major trauma results in decreased protein expression of AhR. Increasing the expression of AhR in post-traumatic macrophages can reduce the expressions of LPS-induced inflammatory cytokines IL-6 and TNF-α, and improve the bactericidal ability of macrophages after trauma.
Collapse
Affiliation(s)
- T Y Kuang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - S Q Yin
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - W H Dai
- Emergency Department of the Second Affiliated Hospital of Hainan Medical University, the Emergency and Critical Care Clinical Medicine Research Center of Hainan, Haikou 570216, China
| | - L Luo
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - T Chen
- The 17th Team of Cadet Brigade, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - X H Liang
- The 17th Team of Cadet Brigade, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - R X Wang
- Emergency Department of the Second Affiliated Hospital of Hainan Medical University, the Emergency and Critical Care Clinical Medicine Research Center of Hainan, Haikou 570216, China
| | - H P Liang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - J Y Zhu
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing 400042, China
| |
Collapse
|
5
|
Sondermann NC, Faßbender S, Hartung F, Hätälä AM, Rolfes KM, Vogel CFA, Haarmann-Stemmann T. Functions of the aryl hydrocarbon receptor (AHR) beyond the canonical AHR/ARNT signaling pathway. Biochem Pharmacol 2023; 208:115371. [PMID: 36528068 PMCID: PMC9884176 DOI: 10.1016/j.bcp.2022.115371] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022]
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor regulating adaptive and maladaptive responses toward exogenous and endogenous signals. Research from various biomedical disciplines has provided compelling evidence that the AHR is critically involved in the pathogenesis of a variety of diseases and disorders, including autoimmunity, inflammatory diseases, endocrine disruption, premature aging and cancer. Accordingly, AHR is considered an attractive target for the development of novel preventive and therapeutic measures. However, the ligand-based targeting of AHR is considerably complicated by the fact that the receptor does not always follow the beaten track, i.e. the canonical AHR/ARNT signaling pathway. Instead, AHR might team up with other transcription factors and signaling molecules to shape gene expression patterns and associated physiological or pathophysiological functions in a ligand-, cell- and micromilieu-dependent manner. Herein, we provide an overview about some of the most important non-canonical functions of AHR, including crosstalk with major signaling pathways involved in controlling cell fate and function, immune responses, adaptation to low oxygen levels and oxidative stress, ubiquitination and proteasomal degradation. Further research on these diverse and exciting yet often ambivalent facets of AHR biology is urgently needed in order to exploit the full potential of AHR modulation for disease prevention and treatment.
Collapse
Affiliation(s)
- Natalie C Sondermann
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Sonja Faßbender
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Frederick Hartung
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Anna M Hätälä
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Katharina M Rolfes
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Christoph F A Vogel
- Department of Environmental Toxicology and Center for Health and the Environment, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
6
|
Maier AM, Huth K, Alessandrini F, Schnautz B, Arifovic A, Riols F, Haid M, Koegler A, Sameith K, Schmidt-Weber CB, Esser-von-Bieren J, Ohnmacht C. The aryl hydrocarbon receptor regulates lipid mediator production in alveolar macrophages. Front Immunol 2023; 14:1157373. [PMID: 37081886 PMCID: PMC10110899 DOI: 10.3389/fimmu.2023.1157373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/23/2023] [Indexed: 04/22/2023] Open
Abstract
Allergic inflammation of the airways such as allergic asthma is a major health problem with growing incidence world-wide. One cardinal feature in severe type 2-dominated airway inflammation is the release of lipid mediators of the eicosanoid family that can either promote or dampen allergic inflammation. Macrophages are key producers of prostaglandins and leukotrienes which play diverse roles in allergic airway inflammation and thus require tight control. Using RNA- and ATAC-sequencing, liquid chromatography coupled to mass spectrometry (LC-MS/MS), enzyme immunoassays (EIA), gene expression analysis and in vivo models, we show that the aryl hydrocarbon receptor (AhR) contributes to this control via transcriptional regulation of lipid mediator synthesis enzymes in bone marrow-derived as well as in primary alveolar macrophages. In the absence or inhibition of AhR activity, multiple genes of both the prostaglandin and the leukotriene pathway were downregulated, resulting in lower synthesis of prostanoids, such as prostaglandin E2 (PGE2), and cysteinyl leukotrienes, e.g., Leukotriene C4 (LTC4). These AhR-dependent genes include PTGS1 encoding for the enzyme cyclooxygenase 1 (COX1) and ALOX5 encoding for the arachidonate 5-lipoxygenase (5-LO) both of which major upstream regulators of the prostanoid and leukotriene pathway, respectively. This regulation is independent of the activation stimulus and partially also detectable in unstimulated macrophages suggesting an important role of basal AhR activity for eicosanoid production in steady state macrophages. Lastly, we demonstrate that AhR deficiency in hematopoietic but not epithelial cells aggravates house dust mite induced allergic airway inflammation. These results suggest an essential role for AhR-dependent eicosanoid regulation in macrophages during homeostasis and inflammation.
Collapse
Affiliation(s)
- Ann-Marie Maier
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
| | - Karsten Huth
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
| | - Francesca Alessandrini
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
| | - Benjamin Schnautz
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
| | - Anela Arifovic
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
| | - Fabien Riols
- Metabolomics and Proteomics Core, Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
| | - Mark Haid
- Metabolomics and Proteomics Core, Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
| | - Anja Koegler
- DRESDEN-concept Genome Center, Technology Platform at the Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Katrin Sameith
- DRESDEN-concept Genome Center, Technology Platform at the Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Carsten B. Schmidt-Weber
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
- Member of the German Center of Lung Research (DZL), Partner Site Munich, Munich, Germany
| | - Julia Esser-von-Bieren
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Caspar Ohnmacht
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
- *Correspondence: Caspar Ohnmacht,
| |
Collapse
|
7
|
Ishihara Y, Kado SY, Bein KJ, He Y, Pouraryan AA, Urban A, Haarmann-Stemmann T, Sweeney C, Vogel CFA. Aryl Hydrocarbon Receptor Signaling Synergizes with TLR/NF-κB-Signaling for Induction of IL-22 Through Canonical and Non-Canonical AhR Pathways. FRONTIERS IN TOXICOLOGY 2022; 3:787360. [PMID: 35295139 PMCID: PMC8915841 DOI: 10.3389/ftox.2021.787360] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/30/2021] [Indexed: 12/24/2022] Open
Abstract
Interleukin 22 (IL-22) is critically involved in gut immunity and host defense and primarily produced by activated T cells. In different circumstances IL-22 may contribute to pathological conditions or act as a cancer promoting cytokine secreted by infiltrating immune cells. Here we show that bone marrow-derived macrophages (BMM) express and produce IL-22 after activation of the aryl hydrocarbon receptor (AhR) when cells are activated through the Toll-like receptor (TLR) family. The additional activation of AhR triggered a significant induction of IL-22 in TLR-activated BMM. Deletion and mutation constructs of the IL-22 promoter revealed that a consensus DRE and RelBAhRE binding element are necessary to mediate the synergistic effects of AhR and TLR ligands. Inhibitor studies and analysis of BMM derived from knockout mice confirmed that the synergistic induction of IL-22 by AhR and TLR ligands depend on the expression of AhR and Nuclear Factor-kappa B (NF-κB) member RelB. The exposure to particulate matter (PM) collected from traffic related air pollution (TRAP) and wildfires activated AhR as well as NF-κB signaling and significantly induced the expression of IL-22. In summary this study shows that simultaneous activation of the AhR and NF-κB signaling pathways leads to synergistic and prolonged induction of IL-22 by integrating signals of the canonical and non-canonical AhR pathway.
Collapse
Affiliation(s)
- Yasuhiro Ishihara
- Center for Health and the Environment, University of California, Davis, Davis, CA, United States,Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan
| | - Sarah Y. Kado
- Center for Health and the Environment, University of California, Davis, Davis, CA, United States
| | - Keith J. Bein
- Center for Health and the Environment, University of California, Davis, Davis, CA, United States
| | - Yi He
- Center for Health and the Environment, University of California, Davis, Davis, CA, United States
| | - Arshia A. Pouraryan
- Center for Health and the Environment, University of California, Davis, Davis, CA, United States
| | - Angelika Urban
- Center for Health and the Environment, University of California, Davis, Davis, CA, United States
| | | | - Colleen Sweeney
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Christoph F. A. Vogel
- Center for Health and the Environment, University of California, Davis, Davis, CA, United States,Department of Environmental Toxicology, University of California, Davis, Davis, CA, United States,*Correspondence: Christoph F. A. Vogel,
| |
Collapse
|
8
|
Larigot L, Benoit L, Koual M, Tomkiewicz C, Barouki R, Coumoul X. Aryl Hydrocarbon Receptor and Its Diverse Ligands and Functions: An Exposome Receptor. Annu Rev Pharmacol Toxicol 2021; 62:383-404. [PMID: 34499523 DOI: 10.1146/annurev-pharmtox-052220-115707] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is a transcriptional factor that regulates multiple functions following its activation by a variety of ligands, including xenobiotics, natural products, microbiome metabolites, and endogenous molecules. Because of this diversity, the AhR constitutes an exposome receptor. One of its main functions is to regulate several lines of defense against chemical insults and bacterial infections. Indeed, in addition to its well-established detoxication function, it has several functions at physiological barriers, and it plays a critical role in immunomodulation. The AhR is also involved in the development of several organs and their homeostatic maintenance. Its activity depends on the type of ligand and on the time frame of the receptor activation, which can be either sustained or transient, leading in some cases to opposite modes of regulations as illustrated in the regulation of different cancer pathways. The development of selective modulators and their pharmacological characterization are important areas of research. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Lucie Larigot
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles thérapeutiques, Signalisation cellulaire et Biomarqueurs, and Université de Paris, 75006 Paris, France;
| | - Louise Benoit
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles thérapeutiques, Signalisation cellulaire et Biomarqueurs, and Université de Paris, 75006 Paris, France; .,Service de Chirurgie Cancérologique Gynécologique et du Sein, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges-Pompidou, 75015 Paris, France
| | - Meriem Koual
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles thérapeutiques, Signalisation cellulaire et Biomarqueurs, and Université de Paris, 75006 Paris, France; .,Service de Chirurgie Cancérologique Gynécologique et du Sein, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges-Pompidou, 75015 Paris, France
| | - Céline Tomkiewicz
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles thérapeutiques, Signalisation cellulaire et Biomarqueurs, and Université de Paris, 75006 Paris, France;
| | - Robert Barouki
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles thérapeutiques, Signalisation cellulaire et Biomarqueurs, and Université de Paris, 75006 Paris, France; .,Service de Chirurgie Cancérologique Gynécologique et du Sein, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges-Pompidou, 75015 Paris, France
| | - Xavier Coumoul
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles thérapeutiques, Signalisation cellulaire et Biomarqueurs, and Université de Paris, 75006 Paris, France;
| |
Collapse
|
9
|
The Landscape of AhR Regulators and Coregulators to Fine-Tune AhR Functions. Int J Mol Sci 2021; 22:ijms22020757. [PMID: 33451129 PMCID: PMC7828596 DOI: 10.3390/ijms22020757] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 01/04/2023] Open
Abstract
The aryl-hydrocarbon receptor (AhR) is a ligand-activated transcription factor that mediates numerous cellular responses. Originally investigated in toxicology because of its ability to bind environmental contaminants, AhR has attracted enormous attention in the field of immunology in the last 20 years. In addition, the discovery of endogenous and plant-derived ligands points to AhR also having a crucial role in normal cell physiology. Thus, AhR is emerging as a promiscuous receptor that can mediate either toxic or physiologic effects upon sensing multiple exogenous and endogenous molecules. Within this scenario, several factors appear to contribute to the outcome of gene transcriptional regulation by AhR, including the nature of the ligand as such and its further metabolism by AhR-induced enzymes, the local tissue microenvironment, and the presence of coregulators or specific transcription factors in the cell. Here, we review the current knowledge on the array of transcription factors and coregulators that, by interacting with AhR, tune its transcriptional activity in response to endogenous and exogenous ligands.
Collapse
|
10
|
Westfall S, Caracci F, Zhao D, Wu QL, Frolinger T, Simon J, Pasinetti GM. Microbiota metabolites modulate the T helper 17 to regulatory T cell (Th17/Treg) imbalance promoting resilience to stress-induced anxiety- and depressive-like behaviors. Brain Behav Immun 2021; 91:350-368. [PMID: 33096252 PMCID: PMC7986984 DOI: 10.1016/j.bbi.2020.10.013] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/07/2020] [Accepted: 10/10/2020] [Indexed: 02/08/2023] Open
Abstract
Chronic stress disrupts immune homeostasis while gut microbiota-derived metabolites attenuate inflammation, thus promoting resilience to stress-induced immune and behavioral abnormalities. There are both peripheral and brain region-specific maladaptations of the immune response to chronic stress that produce interrelated mechanistic considerations required for the design of novel therapeutic strategies for prevention of stress-induced psychological impairment. This study shows that a combination of probiotics and polyphenol-rich prebiotics, a synbiotic, attenuates the chronic-stress induced inflammatory responses in the ileum and the prefrontal cortex promoting resilience to the consequent depressive- and anxiety-like behaviors in male mice. Pharmacokinetic studies revealed that this effect may be attributed to specific synbiotic-produced metabolites including 4-hydroxyphenylpropionic, 4-hydroxyphenylacetic acid and caffeic acid. Using a model of chronic unpredictable stress, behavioral abnormalities were associated to strong immune cell activation and recruitment in the ileum while inflammasome pathways were implicated in the prefrontal cortex and hippocampus. Chronic stress also upregulated the ratio of activated proinflammatory T helper 17 (Th17) to regulatory T cells (Treg) in the liver and ileum and it was predicted with ingenuity pathway analysis that the aryl hydrocarbon receptor (AHR) could be driving the synbiotic's effect on the ileum's inflammatory response to stress. Synbiotic treatment indiscriminately attenuated the stress-induced immune and behavioral aberrations in both the ileum and the brain while in a gut-immune co-culture model, the synbiotic-specific metabolites promoted anti-inflammatory activity through the AHR. Overall, this study characterizes a novel synbiotic treatment for chronic-stress induced behavioral impairments while defining a putative mechanism of gut-microbiota host interaction for modulating the peripheral and brain immune systems.
Collapse
Affiliation(s)
- Susan Westfall
- Icahn School of Medicine at Mount Sinai, Department of Neurology, New York, NY, USA
| | - Francesca Caracci
- Icahn School of Medicine at Mount Sinai, Department of Neurology, New York, NY, USA
| | - Danyue Zhao
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, USA
| | - Qing-li Wu
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, USA
| | - Tal Frolinger
- Icahn School of Medicine at Mount Sinai, Department of Neurology, New York, NY, USA
| | - James Simon
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, USA
| | - Giulio Maria Pasinetti
- Icahn School of Medicine at Mount Sinai, Department of Neurology, New York, NY, USA; Geriatric Research, Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA.
| |
Collapse
|
11
|
D'Evelyn SM, Vogel C, Bein KJ, Lara B, Laing EA, Abarca RA, Zhang Q, Li L, Li J, Nguyen TB, Pinkerton KE. Differential inflammatory potential of particulate matter (PM) size fractions from Imperial Valley, CA. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2021; 244:117992. [PMID: 33184556 PMCID: PMC7654835 DOI: 10.1016/j.atmosenv.2020.117992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Particulate matter (PM) in Imperial Valley originates from a variety of sources such as agriculture, traffic at the border crossing, emissions from the cross-border city of Mexicali, and the drying lakebed of the Salton Sea. Dust storms in Imperial Valley, California regularly lead to exceedances of the federal air quality standards for PM10 (diameter less than 10 microns). To determine if there are differences in the composition and biological response to Imperial County PM by size, ambient PM samples were collected from a sampling unit stationed in the northern-most part of the valley, South of the Salton Sea. Ultrafine, fine, and coarse PM samples were collected and extracted separately. Chemical composition of each size fraction was obtained after extraction by using several analytical techniques, and biological response was measured by exposing a cell line of macrophages to particles and quantifying subsequent gene expression. Biological measurements demonstrated coarse PM induced an inflammatory response in macrophages measured in increases of inflammatory markers IL-1β, IL-6, IL-8 and CXCL2 expression, whereas ultrafine and fine PM only demonstrated significant increases in expression of CYP1a1. These differential responses were due not only to particle size, but to the distinct chemical profiles of each size faction as well. Community groups in Imperial Valley have already completed several projects to learn more about local air quality, giving residents access to data that provides real-time levels of PM2.5 and PM10 as well as recommendations on health-based practices dependent on the current AQI (air quality index). However, to date there is no information on the composition or toxicity of ambient PM from the region. The data presented here could provide more definitive information on the toxicity of PM by size, and further inform the community on local air quality.
Collapse
Affiliation(s)
- S M D'Evelyn
- Center for Health and the Environment, University of California, Davis
| | - Cfa Vogel
- Center for Health and the Environment, University of California, Davis
- Department of Environmental Toxicology, University of California, Davis
| | - K J Bein
- Center for Health and the Environment, University of California, Davis
| | | | - E A Laing
- Center for Health and the Environment, University of California, Davis
| | - R A Abarca
- Center for Health and the Environment, University of California, Davis
| | - Q Zhang
- Department of Environmental Toxicology, University of California, Davis
| | - L Li
- Department of Environmental Toxicology, University of California, Davis
| | - J Li
- Department of Environmental Toxicology, University of California, Davis
| | - T B Nguyen
- Department of Environmental Toxicology, University of California, Davis
| | - K E Pinkerton
- Center for Health and the Environment, University of California, Davis
| |
Collapse
|
12
|
Wang F, Liang S, Hu J, Xu Y. Aryl hydrocarbon receptor connects dysregulated immune cells to atherosclerosis. Immunol Lett 2020; 228:55-63. [PMID: 33053378 DOI: 10.1016/j.imlet.2020.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/29/2020] [Accepted: 10/08/2020] [Indexed: 11/20/2022]
Abstract
As a chronic inflammatory disease with autoimmune components, atherosclerosis is the major cause of cardiovascular morbidity and mortality. Recent studies have revealed that the development of atherosclerosis is strongly linked to the functional activities of aryl hydrocarbon receptor (AHR), a chemical sensor that is also important for the development, maintenance, and function of a variety of immune cells. In this review, we focus on the impact of AHR signaling on the different cell types that are closely related to the atherogenesis, including T cells, B cells, dendritic cells, macrophages, foam cells, and hematopoietic stem cells in the arterial walls, and summarize the latest development on the interplay between this environmental sensor and immune cells in the context of atherosclerosis. Hopefully, elucidation of the role of AHR in atherosclerosis will facilitate the understanding of case variation in disease prevalence and may aid in the development of novel therapies.
Collapse
Affiliation(s)
- Fengge Wang
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, School of Life Science, Anhui Normal University, Wuhu, 241000, China
| | - Shuangchao Liang
- Department of Vascular Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, 241000, China
| | - Jiqiong Hu
- Department of Vascular Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, 241000, China
| | - Yuekang Xu
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, School of Life Science, Anhui Normal University, Wuhu, 241000, China.
| |
Collapse
|
13
|
Zhu J, Luo L, Tian L, Yin S, Ma X, Cheng S, Tang W, Yu J, Ma W, Zhou X, Fan X, Yang X, Yan J, Xu X, Lv C, Liang H. Aryl Hydrocarbon Receptor Promotes IL-10 Expression in Inflammatory Macrophages Through Src-STAT3 Signaling Pathway. Front Immunol 2018; 9:2033. [PMID: 30283437 PMCID: PMC6156150 DOI: 10.3389/fimmu.2018.02033] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/17/2018] [Indexed: 12/16/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is an important immune regulator with a role in inflammatory response. However, the role of AhR in IL-10 production by inflammatory macrophages is currently unknown. In this study, we investigated LPS-induced IL-10 expression in macrophages from AhR-KO mice and AhR-overexpressing RAW264.7 cells. AhR was highly expressed after LPS stimulation through NF-κB pathway. Loss of AhR resulted in reduced IL-10 expression in LPS-induced macrophages. Moreover, the IL-10 expression was elevated in LPS-induced AhR-overexpressing RAW264.7 cells. Maximal IL-10 expression was dependent on an AhR non-genomic pathway closely related to Src and STAT3. Furthermore, AhR-associated Src activity was responsible for tyrosine phosphorylation of STAT3 and IL-10 expression by inflammatory macrophages. Adoptive transfer of AhR-expressing macrophages protected mice against LPS-induced peritonitis associated with high IL-10 production. In conclusion, we identified the AhR-Src-STAT3-IL-10 signaling pathway as a critical pathway in the immune regulation of inflammatory macrophages, It suggests that AhR may be a potential therapeutic target in immune response.
Collapse
Affiliation(s)
- Junyu Zhu
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Li Luo
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Lixing Tian
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Shangqi Yin
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiaoyuan Ma
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China.,Emergency and Trauma College of Hainan Medical University, Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Shaowen Cheng
- Trauma Center, First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Wanqi Tang
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Jing Yu
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Wei Ma
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiaoying Zhou
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Xia Fan
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Xue Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Jun Yan
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiang Xu
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Chuanzhu Lv
- Emergency and Trauma College of Hainan Medical University, Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Huaping Liang
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
14
|
Castañeda AR, Pinkerton KE, Bein KJ, Magaña-Méndez A, Yang HT, Ashwood P, Vogel CFA. Ambient particulate matter activates the aryl hydrocarbon receptor in dendritic cells and enhances Th17 polarization. Toxicol Lett 2018; 292:85-96. [PMID: 29689377 PMCID: PMC5971007 DOI: 10.1016/j.toxlet.2018.04.020] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 03/01/2018] [Accepted: 04/18/2018] [Indexed: 02/02/2023]
Abstract
The objective of this study was to explore the role of the aryl hydrocarbon receptor (AhR) in ambient particulate matter (PM)-mediated activation of dendritic cells (DCs) and Th17-immune responses in vitro. To assess the potential role of the AhR in PM-mediated activation of DCs, co-stimulation, and cytokine expression, bone marrow (BM)-derived macrophages and DCs from C57BL/6 wildtype or AhR knockout (AhR-/-) mice were treated with PM. Th17 differentiation was assessed via co-cultures of wildtype or AhR-/- BMDCs with autologous naive T cells. PM2.5 significantly induced AhR DNA binding activity to dioxin responsive elements (DRE) and expression of the AhR repressor (AhRR), cytochrome P450 (CYP) 1A1, and CYP1B1, indicating activation of the AhR. In activated (OVA sensitized) BMDCs, PM2.5 induced interleukin (IL)-1β, CD80, CD86, and MHC class II, suggesting enhanced DC activation, co-stimulation, and antigen presentation; responses that were abolished in AhR deficient DCs. DC-T cell co-cultures treated with PM and lipopolysaccharide (LPS) led to elevated IL-17A and IL-22 expression at the mRNA level, which is mediated by the AhR. PM-treated DCs were essential in endowing T cells with a Th17-phenotype, which was associated with enhanced expression of MHC class II and cyclooxygenase (COX)-2. In conclusion, PM enhances DC activation that primes naive T cell differentiation towards a Th17-like phenotype in an AhR-dependent manner.
Collapse
Affiliation(s)
| | - Kent E Pinkerton
- Center for Health and the Environment, University of California, Davis, 95616, USA; Department of Pediatrics, School of Medicine, University of California, Davis, 95817, USA
| | - Keith J Bein
- Center for Health and the Environment, University of California, Davis, 95616, USA; Air Quality Research Center, University of California, Davis, CA, 95616, USA
| | - Alfonso Magaña-Méndez
- Escuela de Ciencias de la Salud, Universidad Autónoma de Baja California, Ensenada, C.P. 22860, Mexico
| | - Houa T Yang
- M.I.N.D. Institute, University of California, Davis, 95817, USA
| | - Paul Ashwood
- M.I.N.D. Institute, University of California, Davis, 95817, USA
| | - Christoph F A Vogel
- Center for Health and the Environment, University of California, Davis, 95616, USA; Department of Environmental Toxicology, University of California, Davis, 95616, USA.
| |
Collapse
|
15
|
Mescher M, Haarmann-Stemmann T. Modulation of CYP1A1 metabolism: From adverse health effects to chemoprevention and therapeutic options. Pharmacol Ther 2018; 187:71-87. [PMID: 29458109 DOI: 10.1016/j.pharmthera.2018.02.012] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The human cytochrome P450 (CYP) 1A1 gene encodes a monooxygenase that metabolizes multiple exogenous and endogenous substrates. CYP1A1 has become infamous for its oxidative metabolism of benzo[a]pyrene and related polycyclic aromatic hydrocarbons, converting these chemicals into very potent human carcinogens. CYP1A1 expression is mainly controlled by the aryl hydrocarbon receptor (AHR), a transcription factor whose activation is induced by binding of persistent organic pollutants, including polycyclic aromatic hydrocarbons and dioxins. Accordingly, induction of CYP1A1 expression and activity serves as a biomarker of AHR activation and associated xenobiotic metabolism as well as toxicity in diverse animal species and humans. Determination of CYP1A1 activity is integrated into modern toxicological concepts and testing guidelines, emphasizing the tremendous importance of this enzyme for risk assessment and regulation of chemicals. Further, CYP1A1 serves as a molecular target for chemoprevention of chemical carcinogenesis, although present literature is controversial on whether its inhibition or induction exerts beneficial effects. Regarding therapeutic applications, first anti-cancer prodrugs are available, which require a metabolic activation by CYP1A1, and thus enable a specific elimination of CYP1A1-positive tumors. However, the application range of these drugs may be limited due to the frequently observed downregulation of CYP1A1 in various human cancers, probably leading to a reduced metabolism of endogenous AHR ligands and a sustained activation of AHR and associated tumor-promoting responses. We here summarize the current knowledge on CYP1A1 as a key player in the metabolism of exogenous and endogenous substrates and as a promising target molecule for prevention and treatment of human malignancies.
Collapse
Affiliation(s)
- Melina Mescher
- IUF - Leibniz-Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | | |
Collapse
|
16
|
Salvesen Ø, Reiten MR, Kamstra JH, Bakkebø MK, Espenes A, Tranulis MA, Ersdal C. Goats without Prion Protein Display Enhanced Proinflammatory Pulmonary Signaling and Extracellular Matrix Remodeling upon Systemic Lipopolysaccharide Challenge. Front Immunol 2017; 8:1722. [PMID: 29270176 PMCID: PMC5723645 DOI: 10.3389/fimmu.2017.01722] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 11/21/2017] [Indexed: 12/15/2022] Open
Abstract
A naturally occurring mutation in the PRNP gene of Norwegian dairy goats terminates synthesis of the cellular prion protein (PrPC), rendering homozygous goats (PRNPTer/Ter) devoid of the protein. Although PrPC has been extensively studied, particularly in the central nervous system, the biological role of PrPC remains incompletely understood. Here, we examined whether loss of PrPC affects the initial stage of lipopolysaccharide (LPS)-induced acute lung injury (ALI). Acute pulmonary inflammation was induced by intravenous injection of LPS (Escherichia coli O26:B6) in 16 goats (8 PRNPTer/Ter and 8 PRNP+/+). A control group of 10 goats (5 PRNPTer/Ter and 5 PRNP+/+) received sterile saline. Systemic LPS challenge induced sepsis-like clinical signs including tachypnea and respiratory distress. Microscopic examination of lungs revealed multifocal areas with alveolar hemorrhages, edema, neutrophil infiltration, and higher numbers of alveolar macrophages, with no significant differences between PRNP genotypes. A total of 432 (PRNP+/+) and 596 (PRNPTer/Ter) genes were differentially expressed compared with the saline control of the matching genotype. When assigned to gene ontology categories, biological processes involved in remodeling of the extracellular matrix (ECM), were exclusively enriched in PrPC-deficient goats. These genes included a range of collagen-encoding genes, and proteases such as matrix metalloproteinases (MMP1, MMP2, MMP14, ADAM15) and cathepsins. Several proinflammatory upstream regulators (TNF-α, interleukin-1β, IFN-γ) showed increased activation scores in goats devoid of PrPC. In conclusion, LPS challenge induced marked alterations in the lung tissue transcriptome that corresponded with histopathological and clinical findings in both genotypes. The increased activation of upstream inflammatory regulators and enrichment of ECM components could reflect increased inflammation in the absence of PrPC. Further studies are required to elucidate whether these alterations may affect the later reparative phase of ALI.
Collapse
Affiliation(s)
- Øyvind Salvesen
- Faculty of Veterinary Medicine, Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Sandnes, Norway
| | - Malin R Reiten
- Faculty of Veterinary Medicine, Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Jorke H Kamstra
- Faculty of Veterinary Medicine, Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Maren K Bakkebø
- Faculty of Veterinary Medicine, Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Arild Espenes
- Faculty of Veterinary Medicine, Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Michael A Tranulis
- Faculty of Veterinary Medicine, Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Cecilie Ersdal
- Faculty of Veterinary Medicine, Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Sandnes, Norway
| |
Collapse
|
17
|
Vogel CFA, Haarmann-Stemmann T. The aryl hydrocarbon receptor repressor - More than a simple feedback inhibitor of AhR signaling: Clues for its role in inflammation and cancer. CURRENT OPINION IN TOXICOLOGY 2017; 2:109-119. [PMID: 28971163 DOI: 10.1016/j.cotox.2017.02.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The aryl hydrocarbon receptor repressor (AhRR) was first described as a specific competitive repressor of aryl hydrocarbon receptor (AhR) activity based on its ability to dimerize with the AhR nuclear translocator (ARNT) and through direct competition of AhR/ARNT and AhRR/ARNT complexes for binding to dioxin-responsive elements (DREs). Like AhR, AhRR belongs to the basic Helix-Loop-Helix/Per-ARNT-Sim (bHLH/PAS) protein family but lacks functional ligand-binding and transactivation domains. Transient transfection experiments with ARNT and AhRR mutants examining the inhibitory mechanism of AhRR suggested a more complex mechanism than the simple mechanism of negative feedback through sequestration of ARNT to regulate AhR signaling. Recently, AhRR has been shown to act as a tumor suppressor gene in several types of cancer cells. Furthermore, epidemiological studies have found epigenetic changes and silencing of AhRR associated with exposure to cigarette smoke and cancer development. Additional studies from our laboratories have demonstrated that AhRR represses other signaling pathways including NF-κB and is capable of regulating inflammatory responses. A better understanding of the regulatory mechanisms of AhRR in AhR signaling and adverse outcome pathways leading to deregulated inflammatory responses contributing to tumor promotion and other adverse health effects is expected from future studies. This review article summarizes the characteristics of AhRR as an inhibitor of AhR activity and highlights more recent findings pointing out the role of AhRR in inflammation and tumorigenesis.
Collapse
Affiliation(s)
- Christoph F A Vogel
- Department of Environmental Toxicology and Center for Health and the Environment, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
18
|
Mallick P, Taneja G, Moorthy B, Ghose R. Regulation of drug-metabolizing enzymes in infectious and inflammatory disease: implications for biologics-small molecule drug interactions. Expert Opin Drug Metab Toxicol 2017; 13:605-616. [PMID: 28537216 DOI: 10.1080/17425255.2017.1292251] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Drug-metabolizing enzymes (DMEs) are primarily down-regulated during infectious and inflammatory diseases, leading to disruption in the metabolism of small molecule drugs (smds), which are increasingly being prescribed therapeutically in combination with biologics for a number of chronic diseases. The biologics may exert pro- or anti-inflammatory effect, which may in turn affect the expression/activity of DMEs. Thus, patients with infectious/inflammatory diseases undergoing biologic/smd treatment can have complex changes in DMEs due to combined effects of the disease and treatment. Areas covered: We will discuss clinical biologics-SMD interaction and regulation of DMEs during infection and inflammatory diseases. Mechanistic studies will be discussed and consequences on biologic-small molecule combination therapy on disease outcome due to changes in drug metabolism will be highlighted. Expert opinion: The involvement of immunomodulatory mediators in biologic-SMDs is well known. Regulatory guidelines recommend appropriate in vitro or in vivo assessments for possible interactions. The role of cytokines in biologic-SMDs has been documented. However, the mechanisms of drug-drug interactions is much more complex, and is probably multi-factorial. Studies aimed at understanding the mechanism by which biologics effect the DMEs during inflammation/infection are clinically important.
Collapse
Affiliation(s)
- Pankajini Mallick
- a Department of Pharmacological and Pharmaceutical Sciences , University of Houston , Houston , TX , USA
| | - Guncha Taneja
- a Department of Pharmacological and Pharmaceutical Sciences , University of Houston , Houston , TX , USA
| | - Bhagavatula Moorthy
- b Department of Pediatrics , Baylor College of Medicine , Houston , TX , USA
| | - Romi Ghose
- a Department of Pharmacological and Pharmaceutical Sciences , University of Houston , Houston , TX , USA
| |
Collapse
|
19
|
Merches K, Haarmann-Stemmann T, Weighardt H, Krutmann J, Esser C. AHR in the skin: From the mediator of chloracne to a therapeutic panacea? CURRENT OPINION IN TOXICOLOGY 2017. [DOI: 10.1016/j.cotox.2017.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
20
|
Holen E, Olsvik PA. β-naphthoflavone interferes with cyp1c1, cox2 and IL-8 gene transcription and leukotriene B4 secretion in Atlantic cod (Gadus morhua) head kidney cells during inflammation. FISH & SHELLFISH IMMUNOLOGY 2016; 54:128-134. [PMID: 27041667 DOI: 10.1016/j.fsi.2016.03.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/18/2016] [Accepted: 03/21/2016] [Indexed: 06/05/2023]
Abstract
The objective of this study was to evaluate how β-naphthoflavone interacts with lipopolysaccharide (LPS) and polyinosinic acid: polycytidylic acid (poly I: C) induced innate immune parameters as well as phase I and phase II detoxification enzymes in head kidney cells isolated from Atlantic cod. β-naphthoflavone is a pure agonist of aryl hydrocarbon receptor (AhR) while LPS and poly I: C are not. β-naphthoflavone was added to head kidney leukocytes alone or together with LPS or poly I: C and the responses were evaluated in terms of protein and gene expression. The results showed that β-naphthoflavone (25 nM), with and without LPS, significantly induced cytochrome P450 (cyp1c) transcription in cod head kidney cells. β-naphthoflavone (100 nM) in the presence of the virus mimic, poly I: C, also increased cyp1c1transcription. LPS induced cyp1c1, cyclooxygenase 2 (cox2), interleukin 1β (IL-1β), interleukin 6 (IL-6) and interleukin 8 (IL-8) transcription, genes that were not affected by the tested β-naphthoflavone concentrations alone. However, β-naphthoflavone (25 and 50 nM) strengthened LPS induced cox2 and IL-8 transcription. Cod head kidney cells exposed to β-naphthoflavone concentrations ranging from 25 to 100 nM, with and without LPS or poly I: C, expressed AhR protein. LPS or β-naphthoflavone (5-50 nM) significantly induced leukotriene B4 (LTB4) secretion compared to control. In conclusion, this study suggests that β-naphthoflavone could interfere with LPS induced immune cell signaling in cod head kidney cells.
Collapse
Affiliation(s)
- Elisabeth Holen
- National Institute of Nutrition and Seafood Research (NIFES), P. B. 2029 Nordnes, 5817, Bergen, Norway.
| | - Pål A Olsvik
- National Institute of Nutrition and Seafood Research (NIFES), P. B. 2029 Nordnes, 5817, Bergen, Norway
| |
Collapse
|
21
|
Inhibition of the aryl hydrocarbon receptor prevents Western diet-induced obesity. Model for AHR activation by kynurenine via oxidized-LDL, TLR2/4, TGFβ, and IDO1. Toxicol Appl Pharmacol 2016; 300:13-24. [PMID: 27020609 DOI: 10.1016/j.taap.2016.03.011] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/11/2016] [Accepted: 03/21/2016] [Indexed: 12/25/2022]
Abstract
Obesity is an increasingly urgent global problem, yet, little is known about its causes and less is known how obesity can be effectively treated. We showed previously that the aryl hydrocarbon receptor (AHR) plays a role in the regulation of body mass in mice fed Western diet. The AHR is a ligand-activated nuclear receptor that regulates genes involved in a number of biological pathways, including xenobiotic metabolism and T cell polarization. This study was an investigation into whether inhibition of the AHR prevents Western diet-based obesity. Male C57Bl/6J mice were fed control and Western diets with and without the AHR antagonist α-naphthoflavone or CH-223191, and a mouse hepatocyte cell line was used to delineate relevant cellular pathways. Studies are presented showing that the AHR antagonists α-naphthoflavone and CH-223191 significantly reduce obesity and adiposity and ameliorates liver steatosis in male C57Bl/6J mice fed a Western diet. Mice deficient in the tryptophan metabolizing enzyme indoleamine 2,3-dioxygenase 1 (IDO1) were also resistant to obesity. Using an AHR-directed, luciferase-expressing mouse hepatocyte cell line, we show that the transforming growth factor β1 (TGFβ1) signaling pathway via PI3K and NF-κB and the toll-like receptor 2/4 (TLR2/4) signaling pathway stimulated by oxidized low-density lipoproteins via NF-κB, each induce luciferase expression; however, TLR2/4 signaling was significantly reduced by inhibition of IDO1. At physiological levels, kynurenine but not kynurenic acid (both tryptophan metabolites and known AHR agonists) activated AHR-directed luciferase expression. We propose a hepatocyte-based model, in which kynurenine production is increased by enhanced IDO1 activity stimulated by TGFβ1 and TLR2/4 signaling, via PI3K and NF-κB, to perpetuate a cycle of AHR activation to cause obesity; and inhibition of the AHR, in turn, blocks the cycle's output to prevent obesity. The AHR with its broad ligand binding specificity is a promising candidate for a potentially simple therapeutic approach for the prevention and treatment of obesity and associated complications.
Collapse
|
22
|
Thaiss CA, Levy M, Itav S, Elinav E. Integration of Innate Immune Signaling. Trends Immunol 2016; 37:84-101. [PMID: 26755064 DOI: 10.1016/j.it.2015.12.003] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/07/2015] [Accepted: 12/08/2015] [Indexed: 12/21/2022]
Abstract
The last decades of research in innate immunology have revealed a multitude of sensing receptors that evaluate the presence of microorganisms or cellular damage in tissues. In the context of a complex tissue, many such sensing events occur simultaneously. Thus, the downstream pathways need to be integrated to launch an appropriate cellular response, to tailor the magnitude of the reaction to the inciting event, and to terminate it in a manner that avoids immunopathology. Here, we provide a conceptual overview of the crosstalk between innate immune receptors in the initiation of a concerted immune reaction to microbial and endogenous triggers. We classify the known interactions into categories of communication and provide examples of their importance in pathogenic infection.
Collapse
Affiliation(s)
| | - Maayan Levy
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Shlomik Itav
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Elinav
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
23
|
Arlt VM, Krais AM, Godschalk RW, Riffo-Vasquez Y, Mrizova I, Roufosse CA, Corbin C, Shi Q, Frei E, Stiborova M, van Schooten FJ, Phillips DH, Spina D. Pulmonary Inflammation Impacts on CYP1A1-Mediated Respiratory Tract DNA Damage Induced by the Carcinogenic Air Pollutant Benzo[a]pyrene. Toxicol Sci 2015; 146:213-25. [PMID: 25911668 PMCID: PMC4517052 DOI: 10.1093/toxsci/kfv086] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Pulmonary inflammation can contribute to the development of lung cancer in humans. We investigated whether pulmonary inflammation alters the genotoxicity of polycyclic aromatic hydrocarbons (PAHs) in the lungs of mice and what mechanisms are involved. To model nonallergic acute inflammation, mice were exposed intranasally to lipopolysaccharide (LPS; 20 µg/mouse) and then instilled intratracheally with benzo[a]pyrene (BaP; 0.5 mg/mouse). BaP-DNA adduct levels, measured by (32)P-postlabeling analysis, were approximately 3-fold higher in the lungs of LPS/BaP-treated mice than in mice treated with BaP alone. Pulmonary Cyp1a1 enzyme activity was decreased in LPS/BaP-treated mice relative to BaP-treated mice suggesting that pulmonary inflammation impacted on BaP-induced Cyp1a1 activity in the lung. Our results showed that Cyp1a1 appears to be important for BaP detoxification in vivo and that the decrease of pulmonary Cyp1a1 activity in LPS/BaP-treated mice results in a decrease of pulmonary BaP detoxification, thereby enhancing BaP genotoxicity (ie, DNA adduct formation) in the lung. Because less BaP was detoxified by Cyp1a1 in the lungs of LPS/BaP-treated mice, more BaP circulated via the blood to extrapulmonary tissues relative to mice treated with BaP only. Indeed, we observed higher BaP-DNA adduct levels in livers of LPS/BaP-treated mice compared with BaP-treated mice. Our results indicate that pulmonary inflammation could be a critical determinant in the induction of genotoxicity in the lung by PAHs like BaP. Cyp1a1 appears to be involved in both BaP bioactivation and detoxification although the contribution of other enzymes to BaP-DNA adduct formation in lung and liver under inflammatory conditions remains to be explored.
Collapse
Affiliation(s)
- Volker M Arlt
- *Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment & Health, King's College London, London SE1 9NH, United Kingdom,
| | - Annette M Krais
- *Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment & Health, King's College London, London SE1 9NH, United Kingdom
| | - Roger W Godschalk
- Department of Toxicology, School for Nutrition, Toxicology and Metabolism (NUTRIM), Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
| | - Yanira Riffo-Vasquez
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London SE1 9NH, United Kingdom
| | - Iveta Mrizova
- Department of Biochemistry, Faculty of Science, Charles University, 12840 Prague 2, Czech Republic
| | - Candice A Roufosse
- Department of Histopathology, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London W12 0HS, United Kingdom, and
| | - Charmaine Corbin
- *Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment & Health, King's College London, London SE1 9NH, United Kingdom
| | - Quan Shi
- Department of Toxicology, School for Nutrition, Toxicology and Metabolism (NUTRIM), Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
| | - Eva Frei
- Division of Preventive Oncology, National Center for Tumor Diseases, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Marie Stiborova
- Department of Biochemistry, Faculty of Science, Charles University, 12840 Prague 2, Czech Republic
| | - Frederik-Jan van Schooten
- Department of Toxicology, School for Nutrition, Toxicology and Metabolism (NUTRIM), Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
| | - David H Phillips
- *Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment & Health, King's College London, London SE1 9NH, United Kingdom
| | - Domenico Spina
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London SE1 9NH, United Kingdom
| |
Collapse
|
24
|
Øvrevik J, Refsnes M, Låg M, Holme JA, Schwarze PE. Activation of Proinflammatory Responses in Cells of the Airway Mucosa by Particulate Matter: Oxidant- and Non-Oxidant-Mediated Triggering Mechanisms. Biomolecules 2015; 5:1399-440. [PMID: 26147224 PMCID: PMC4598757 DOI: 10.3390/biom5031399] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/16/2015] [Accepted: 06/16/2015] [Indexed: 12/23/2022] Open
Abstract
Inflammation is considered to play a central role in a diverse range of disease outcomes associated with exposure to various types of inhalable particulates. The initial mechanisms through which particles trigger cellular responses leading to activation of inflammatory responses are crucial to clarify in order to understand what physico-chemical characteristics govern the inflammogenic activity of particulate matter and why some particles are more harmful than others. Recent research suggests that molecular triggering mechanisms involved in activation of proinflammatory genes and onset of inflammatory reactions by particles or soluble particle components can be categorized into direct formation of reactive oxygen species (ROS) with subsequent oxidative stress, interaction with the lipid layer of cellular membranes, activation of cell surface receptors, and direct interactions with intracellular molecular targets. The present review focuses on the immediate effects and responses in cells exposed to particles and central down-stream signaling mechanisms involved in regulation of proinflammatory genes, with special emphasis on the role of oxidant and non-oxidant triggering mechanisms. Importantly, ROS act as a central second-messenger in a variety of signaling pathways. Even non-oxidant mediated triggering mechanisms are therefore also likely to activate downstream redox-regulated events.
Collapse
Affiliation(s)
- Johan Øvrevik
- Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo, Norway.
| | - Magne Refsnes
- Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo, Norway.
| | - Marit Låg
- Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo, Norway.
| | - Jørn A Holme
- Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo, Norway.
| | - Per E Schwarze
- Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo, Norway.
| |
Collapse
|
25
|
Histopathological, ultrastructural, and immunohistochemical assessment of hippocampus structures of rats exposed to TCDD and high doses of tocopherol and acetylsalicylic acid. BIOMED RESEARCH INTERNATIONAL 2015; 2015:645603. [PMID: 25879034 PMCID: PMC4388018 DOI: 10.1155/2015/645603] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/13/2015] [Indexed: 12/21/2022]
Abstract
The effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on central nervous system consists of changing expression of estrogen receptors, whereas the result of chronic inflammatory reaction caused by dioxin is occurrence of destructive changes in various organs connected with disturbed metabolism of connective tissue and damage of cells. The aim of the study was to determine the effect of dioxins on function, ultrastructure, and cytological and histological structure of hippocampus, particularly on expression of estrogen receptors in central nervous system as well as to define protective influence of tocopherol (TCP) and acetylsalicylic acid (ASA) on the decrease in activity of proinflammatory effects in central nervous system. It was shown that TCDD contributes to destructive and inflammatory changes along with demyelization of myelin sheaths and atrophy of estrogen receptors in hippocampus. Dioxin contributes to atrophy of estrogen receptors in hippocampus, in which also destructive and inflammatory changes were found along with demyelination of myelin sheaths. Histopathological and ultrastructural image of hippocampus areas in rats, in which both TCP and ASA were used, is characterized by poorly expressed degenerative changes and smaller inflammatory reactivity. Using both TCP and ASA has a protective effect on functions of central nervous system.
Collapse
|
26
|
Lee YH, Lin CH, Hsu PC, Sun YY, Huang YJ, Zhuo JH, Wang CY, Gan YL, Hung CC, Kuan CY, Shie FS. Aryl hydrocarbon receptor mediates both proinflammatory and anti-inflammatory effects in lipopolysaccharide-activated microglia. Glia 2015; 63:1138-54. [PMID: 25690886 DOI: 10.1002/glia.22805] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 01/21/2015] [Indexed: 12/27/2022]
Abstract
The aryl hydrocarbon receptor (AhR) regulates peripheral immunity; but its role in microglia-mediated neuroinflammation in the brain remains unknown. Here, we demonstrate that AhR mediates both anti-inflammatory and proinflammatory effects in lipopolysaccharide (LPS)-activated microglia. Activation of AhR by its ligands, formylindolo[3,2-b]carbazole (FICZ) or 3-methylcholanthrene (3MC), attenuated LPS-induced microglial immune responses. AhR also showed proinflammatory effects, as evidenced by the findings that genetic silence of AhR ameliorated the LPS-induced microglial immune responses and LPS-activated microglia-mediated neurotoxicity. Similarly, LPS-induced expressions of tumor necrosis factor α (TNFα) and inducible nitric oxide synthase (iNOS) were reduced in the cerebral cortex of AhR-deficient mice. Intriguingly, LPS upregulated and activated AhR in the absence of AhR ligands via the MEK1/2 signaling pathway, which effects were associated with a transient inhibition of cytochrome P450 1A1 (CYP1A1). Although AhR ligands synergistically enhance LPS-induced AhR activation, leading to suppression of LPS-induced microglial immune responses, they cannot do so on their own in microglia. Chromatin immunoprecipitation results further revealed that LPS-FICZ co-treatment, but not LPS alone, not only resulted in co-recruitment of both AhR and NFκB onto the κB site of TNFα gene promoter but also reduced LPS-induced AhR binding to the DRE site of iNOS gene promoter. Together, we provide evidence showing that microglial AhR, which can be activated by LPS, exerts bi-directional effects on the regulation of LPS-induced neuroinflammation, depending on the availability of external AhR ligands. These findings confer further insights into the potential link between environmental factors and the inflammatory brain disorders.
Collapse
Affiliation(s)
- Yi-Hsuan Lee
- Institute of Physiology, National Yang-Ming University, Taipei, Taiwan; Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Liu Y, She W, Wang F, Li J, Wang J, Jiang W. 3, 3'-Diindolylmethane alleviates steatosis and the progression of NASH partly through shifting the imbalance of Treg/Th17 cells to Treg dominance. Int Immunopharmacol 2014; 23:489-498. [PMID: 25281898 DOI: 10.1016/j.intimp.2014.09.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/17/2014] [Accepted: 09/18/2014] [Indexed: 12/20/2022]
Abstract
This study was designed to discuss the effects of 3, 3'-diindolylmethane (DIM) on methionine-choline-deficient (MCD)-diet induced mouse nonalcoholic steatohepatitis (NASH) and the potential mechanisms. NASH mice were administrated with or without DIM at different concentrations for 8 weeks. Both the in-vivo and in-vitro effects of DIM on Treg/Th17 imbalance during NASH progression were analyzed. The in-vivo blocking of CD25 or IL-17 was performed to respectively deplete respective function of Treg or Th17 subset. Besides, with the assistance of AhR antagonist CH223191 and anti-TLR4 neutralizing antibody, we designed the in-vitro DIM-incubation experiments to discuss the roles of aryl hydrocarbon receptor (AhR) (CYP1A1, CYP1B1) and toll-like receptor 4 (TLR4) on DIM's effects when shifting Treg/Th17 imbalance. Notably, in NASH mouse models, DIM alleviated hepatic steatosis and inflammation, and shifted the Treg/Th17 imbalance from MCD diet-induced Th17 dominance to Treg dominance. In-vitro, DIM not only significantly up-regulated the mRNAs of Foxp3 (Treg-specific) in purified spleen CD4(+) T cells, but also enhanced the immunosuppressive function of these Treg cells. Besides, DIM significantly up-regulated the proteins of CYP1A1 and CYP1B1 whereas down-regulated those of TLR4 on CD4(+) T cells from MCD-diet mice. Moreover, blocking AhR attenuated while blocking TLR4 enhanced the effects of DIM when regulating Treg/Th17 imbalance. Conclusively, DIM could be used as a potential therapeutic candidate to treat NASH based on its dramatic induction of Treg dominance to alleviate intra-hepatic inflammation, suggesting us a clue that the dietary cruciferous vegetables (containing abundant DIM) might exist as a protective factor for patients with NASH-related liver diseases.
Collapse
Affiliation(s)
- Yun Liu
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Weimin She
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Fuping Wang
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jing Li
- Department of Gastroenterology, Tongji Hospital Tongji University, Shanghai China
| | - Jiyao Wang
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wei Jiang
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
28
|
Nguyen NT, Nakahama T, Le DH, Van Son L, Chu HH, Kishimoto T. Aryl hydrocarbon receptor and kynurenine: recent advances in autoimmune disease research. Front Immunol 2014; 5:551. [PMID: 25400638 PMCID: PMC4212680 DOI: 10.3389/fimmu.2014.00551] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 10/16/2014] [Indexed: 12/13/2022] Open
Abstract
Aryl hydrocarbon receptor (AHR) is thought to be a crucial factor in the regulation of immune responses. Many AHR-mediated immunoregulatory mechanisms have been discovered, and this knowledge may enhance our understanding of the molecular pathogenesis of autoimmune inflammatory syndromes such as collagen-induced arthritis, experimental autoimmune encephalomyelitis, and experimental colitis. Recent findings have elucidated the critical link between AHR and indoleamine 2,3-dioxygenase (IDO) in the development of regulatory T cells and Th17 cells, which are key factors in a variety of human autoimmune diseases. Induction of IDO and IDO-mediated tryptophan catabolism, together with its downstream products such as kynurenine, is an important immunoregulatory mechanism underlying immunosuppression, tolerance, and immunity. Recent studies revealed that induction of IDO depends on AHR expression. This review summarizes the most current findings regarding the functions of AHR and IDO in immune cells as they relate to the pathogenesis of autoimmune diseases in response to various stimuli. We also discuss the potential link between AHR and IDO/tryptophan metabolites, and the involvement of several novel related factors (such as microRNA) in the development of autoimmune diseases. These novel factors represent potential therapeutic targets for the treatment of autoimmune disorders.
Collapse
Affiliation(s)
- Nam Trung Nguyen
- Laboratory of Immune Regulation, WPI-Immunology Frontier Research Center, Osaka University , Suita , Japan ; National Key Laboratory of Gene Technology, Institute of Biotechnology, Vietnam Academy of Science and Technology , Hanoi , Vietnam
| | - Taisuke Nakahama
- Laboratory of Immune Regulation, WPI-Immunology Frontier Research Center, Osaka University , Suita , Japan ; Department of RNA Biology and Neuroscience, Graduate School of Medicine Osaka University , Suita , Japan
| | - Duc Hoang Le
- National Key Laboratory of Gene Technology, Institute of Biotechnology, Vietnam Academy of Science and Technology , Hanoi , Vietnam
| | - Le Van Son
- National Key Laboratory of Gene Technology, Institute of Biotechnology, Vietnam Academy of Science and Technology , Hanoi , Vietnam
| | - Ha Hoang Chu
- National Key Laboratory of Gene Technology, Institute of Biotechnology, Vietnam Academy of Science and Technology , Hanoi , Vietnam
| | - Tadamitsu Kishimoto
- Laboratory of Immune Regulation, WPI-Immunology Frontier Research Center, Osaka University , Suita , Japan
| |
Collapse
|
29
|
AhR and Arnt differentially regulate NF-κB signaling and chemokine responses in human bronchial epithelial cells. Cell Commun Signal 2014; 12:48. [PMID: 25201625 PMCID: PMC4222560 DOI: 10.1186/s12964-014-0048-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 07/13/2014] [Indexed: 11/29/2022] Open
Abstract
Background The aryl hydrocarbon receptor (AhR) has gradually emerged as a regulator of inflammation in the lung and other tissues. AhR may interact with the p65-subunit of the nuclear factor (NF)-κB transcription factors, but reported outcomes of AhR/NF-κB-interactions are conflicting. Some studies suggest that AhR possess pro-inflammatory activities while others suggest that AhR may be anti-inflammatory. The present study explored the impact of AhR and its binding partner AhR nuclear translocator (Arnt) on p65-activation and two differentially regulated chemokines, CXCL8 (IL-8) and CCL5 (RANTES), in human bronchial epithelial cells (BEAS-2B). Results Cells were exposed to CXCL8- and CCL5-inducing chemicals, 1-nitropyrene (1-NP) and 1-aminopyrene (1-AP) respectively, or the synthetic double-stranded RNA analogue, polyinosinic-polycytidylic acid (Poly I:C) which induced both chemokines. Only CXCL8, and not CCL5, appeared to be p65-dependent. Yet, constitutively active unligated AhR suppressed both CXCL8 and CCL5, as shown by siRNA knock-down and the AhR antagonist α-naphthoflavone. Moreover, AhR suppressed activation of p65 by TNF-α and Poly I:C as assessed by luciferase-assay and p65-phosphorylation at serine 536, without affecting basal p65-activity. In contrast, Arnt suppressed only CXCL8, but did not prevent the p65-activation directly. However, Arnt suppressed expression of the NF-κB-subunit RelB which is under transcriptional regulation by p65. Furthermore, AhR-ligands alone at high concentrations induced a moderate CXCL8-response, without affecting CCL5, but suppressed both CXCL8 and CCL5-responses by Poly I:C. Conclusion AhR and Arnt may differentially and independently regulate chemokine-responses induced by both inhaled pollutants and pulmonary infections. Constitutively active, unligated AhR suppressed the activation of p65, while Arnt may possibly interfere with the action of activated p65. Moreover, ligand-activated AhR suppressed CXCL8 and CCL5 responses by other agents, but AhR ligands alone induced CXCL8 responses when given at sufficiently high concentrations, thus underscoring the duality of AhR in regulation of inflammation. We propose that AhR-signaling may be a weak activator of p65-signaling that suppresses p65-activity induced by strong activators of NF-κB, but that its anti-inflammatory properties also are due to interference with additional pathways.
Collapse
|
30
|
Bode M, Mackman N. Regulation of tissue factor gene expression in monocytes and endothelial cells: Thromboxane A2 as a new player. Vascul Pharmacol 2014; 62:57-62. [PMID: 24858575 DOI: 10.1016/j.vph.2014.05.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 05/12/2014] [Accepted: 05/12/2014] [Indexed: 10/25/2022]
Abstract
Tissue factor (TF) is the primary activator of the coagulation cascade. Under normal conditions, endothelial cells (ECs) and blood cells, such as monocytes, do not express TF. However, bacterial lipopolysaccharide (LPS) induces TF expression in monocytes and this leads to disseminated intravascular coagulation during endotoxemia and sepsis. A variety of stimuli induce TF expression in ECs in vitro, although it is unclear how much TF is expressed by the endothelium in vivo. LPS induction of TF gene expression in monocytic cells and ECs is mediated by various intracellular signaling pathways and the transcription factors NF-ĸB, AP-1 and Egr-1. In contrast, vascular endothelial cell growth factor (VEGF) induces TF gene expression in ECs via the transcription factors NFAT and Egr-1. Similarly, oxidized phospholipids (such as 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphorylcholine) induce TF expression in ECs and possibly monocytes via NFAT and Egr-1. Thromboxane A2 (TXA2) can now be added to the list of stimuli that induce TF gene expression in both monocytes and ECs. Interestingly, inhibition of the TX-prostanoid (TP) receptor also reduces TF expression in with tumor necrosis factor (TNF)-α stimulated ECs and LPS stimulated monocytes, which suggests that TP receptor antagonist may be useful in reducing pathologic TF expression in the vasculature and blood.
Collapse
Affiliation(s)
- Michael Bode
- University of North Carolina, Division of Cardiology, Department of Medicine, 160 Dental Circle, CB #7075, 6025 Burnett-Womack-Bldg., Chapel Hill, NC 27514-7075, USA
| | - Nigel Mackman
- University of North Carolina, Division of Hematology and Oncology, Department of Medicine, UNC McAllister Heart Institute, 98 Manning Drive, Mary Ellen Jones Bldg., CB #7035, Room 335, Chapel Hill, NC 27599, USA.
| |
Collapse
|
31
|
Huang S, Chen P, Shui X, He Y, Wang H, Zheng J, Zhang L, Li J, Xue Y, Chen C, Lei W. Baicalin attenuates transforming growth factor-β1-induced human pulmonary artery smooth muscle cell proliferation and phenotypic switch by inhibiting hypoxia inducible factor-1α and aryl hydrocarbon receptor expression. J Pharm Pharmacol 2014; 66:1469-77. [PMID: 24835111 DOI: 10.1111/jphp.12273] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 04/13/2014] [Indexed: 12/20/2022]
Abstract
Abstract
Objectives
Baicalin, a natural flavone, has antithrombotic, antihyperlipidemic and antiinflammortory activity. It can also inhibit cancer cell proliferation and reduce brain cell apoptosis. This study aimed to elucidate the effect of baicalin on the excessive proliferation of human pulmonary arterial smooth muscle cells (HPASMCs) induced by transforming growth factor-β1 (TGF-β1) and to investigate the roles of hypoxia inducible factor-1α (HIF-1α) and aryl hydrocarbon receptor (AhR) in mediating this TGF-β1-induced excessive proliferation of HPASMCs.
Methods
TGF-β1-induced proliferation of HPASMCs was assayed using the CCK8 method. The cellular phenotype was identified by immunocytochemical staining. Expression of HIF-1α and AhR mRNA was determined by real-time quantitative PCR.
Key findings
TGF-β1 promoted significantly HPASMC proliferation (P < 0.05) and induced a phenotypic switch from the contractile to synthetic type. Baicalin inhibited this TGF-β1-induced phenotypic switch and consequently the excessive growth of HPASMCs in a time-dependent and dose-dependent manner (P < 0.05). Furthermore, baicalin attenuated the abnormal proliferation of HPASMCs through suppression of the HIF-1α and AhR pathways.
Conclusions
Our study shows that baicalin has the potential to be used as a novel drug in the treatment of pulmonary arterial hypertension pathology by antagonizing HIF-1α and AhR expression and subsequently decreasing HPASMC proliferation and the phenotypic switch.
Collapse
Affiliation(s)
- Shian Huang
- Laboratory of Cardiovascular Remodeling and Pharmaceutical Biotechnology, Department of Cardiovascular, The Affiliated Hospital, Guangdong Medical College, Zhanjiang, China
| | - Puwen Chen
- Laboratory of Cardiovascular Remodeling and Pharmaceutical Biotechnology, Department of Cardiovascular, The Affiliated Hospital, Guangdong Medical College, Zhanjiang, China
| | - Xiaorong Shui
- Vascular Surgery Laboratory, The Affiliated Hospital, Guangdong Medical College, Zhanjiang, China
| | - Yuan He
- Laboratory of Cardiovascular Remodeling and Pharmaceutical Biotechnology, Department of Cardiovascular, The Affiliated Hospital, Guangdong Medical College, Zhanjiang, China
| | - Heyong Wang
- Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jing Zheng
- Laboratory of Cardiovascular Remodeling and Pharmaceutical Biotechnology, Department of Cardiovascular, The Affiliated Hospital, Guangdong Medical College, Zhanjiang, China
- Department of Obstetrics and Gynecology, University of Wisconsin–Madison, Madison, WI, USA
| | - Liangqing Zhang
- Laboratory of Cardiovascular Remodeling and Pharmaceutical Biotechnology, Department of Cardiovascular, The Affiliated Hospital, Guangdong Medical College, Zhanjiang, China
| | - Jianwen Li
- Vascular Surgery Laboratory, The Affiliated Hospital, Guangdong Medical College, Zhanjiang, China
| | - Yiqiang Xue
- Laboratory of Cardiovascular Remodeling and Pharmaceutical Biotechnology, Department of Cardiovascular, The Affiliated Hospital, Guangdong Medical College, Zhanjiang, China
| | - Can Chen
- Laboratory of Cardiovascular Remodeling and Pharmaceutical Biotechnology, Department of Cardiovascular, The Affiliated Hospital, Guangdong Medical College, Zhanjiang, China
| | - Wei Lei
- Laboratory of Cardiovascular Remodeling and Pharmaceutical Biotechnology, Department of Cardiovascular, The Affiliated Hospital, Guangdong Medical College, Zhanjiang, China
| |
Collapse
|
32
|
Vogel CFA, Khan EM, Leung PSC, Gershwin ME, Chang WLW, Wu D, Haarmann-Stemmann T, Hoffmann A, Denison MS. Cross-talk between aryl hydrocarbon receptor and the inflammatory response: a role for nuclear factor-κB. J Biol Chem 2014; 289:1866-75. [PMID: 24302727 PMCID: PMC3894361 DOI: 10.1074/jbc.m113.505578] [Citation(s) in RCA: 212] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 11/26/2013] [Indexed: 01/13/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) is involved in the regulation of immune responses, T-cell differentiation, and immunity. Here, we show that inflammatory stimuli such as LPS induce the expression of AhR in human dendritic cells (DC) associated with an AhR-dependent increase of CYP1A1 (cytochrome P4501A1). In vivo data confirmed the elevated expression of AhR by LPS and the LPS-enhanced 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-mediated induction of CYP1A1 in thymus of B6 mice. Inhibition of nuclear factor-κB (NF-κB) repressed both normal and LPS-enhanced, TCDD-inducible, AhR-dependent gene expression and canonical pathway control of RelA-regulated AhR-responsive gene expression. LPS-mediated induction of AhR was NF-κB-dependent, as shown in mouse embryonic fibroblasts (MEFs) derived from Rel null mice. AhR expression and TCDD-mediated induction of CYP1A1 was significantly reduced in RelA-deficient MEF compared with wild type MEF cells and ectopic expression of RelA restored the expression of AhR and induction of CYP1A1 in MEF RelA null cells. Promoter analysis of the human AhR gene identified three putative NF-κB-binding elements upstream of the transcription start site. Mutation analysis of the AhR promoter identified one NF-κB site as responsible for mediating the induction of AhR expression by LPS and electrophoretic shift assays demonstrated that this NF-κB motif is recognized by the RelA/p50 heterodimer. Our results show for the first time that NF-κB RelA is a critical component regulating the expression of AhR and the induction of AhR-dependent gene expression in immune cells illustrating the interaction of AhR and NF-κB signaling.
Collapse
Affiliation(s)
- Christoph F. A. Vogel
- From the Department of Environmental Toxicology
- Center for Health and the Environment
| | | | | | | | - W. L. William Chang
- Center for Comparative Medicine, University of California, Davis, California 95616
| | - Dalei Wu
- the Sanford-Burnham Medical Research Institute, Orlando, Florida 32827
| | | | - Alexander Hoffmann
- the Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90025
| | | |
Collapse
|
33
|
Indolic uremic solutes increase tissue factor production in endothelial cells by the aryl hydrocarbon receptor pathway. Kidney Int 2013; 84:733-44. [DOI: 10.1038/ki.2013.133] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 02/04/2013] [Accepted: 02/07/2013] [Indexed: 11/08/2022]
|
34
|
Safe S, Lee SO, Jin UH. Role of the aryl hydrocarbon receptor in carcinogenesis and potential as a drug target. Toxicol Sci 2013; 135:1-16. [PMID: 23771949 PMCID: PMC3748760 DOI: 10.1093/toxsci/kft128] [Citation(s) in RCA: 217] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 06/03/2013] [Indexed: 12/22/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is highly expressed in multiple organs and tissues, and there is increasing evidence that the AHR plays an important role in cellular homeostasis and disease. The AHR is expressed in multiple tumor types, in cancer cell lines, and in tumors from animal models, and the function of the AHR has been determined by RNA interference, overexpression, and inhibition studies. With few exceptions, knockdown of the AHR resulted in decreased proliferation and/or invasion and migration of cancer cell lines, and in vivo studies in mice overexpressing the constitutively active AHR exhibited enhanced stomach and liver cancers, suggesting a pro-oncogenic role for the AHR. In contrast, loss of the AHR in transgenic mice that spontaneously develop colonic tumors and in carcinogen-induced liver tumors resulted in increased carcinogenesis, suggesting that the receptor may exhibit antitumorigenic activity prior to tumor formation. AHR ligands also either enhanced or inhibited tumorigenesis, and these effects were highly tumor specific, demonstrating that selective AHR modulators that exhibit agonist or antagonist activities represent an important new class of anticancer agents that can be directed against multiple tumors.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843-4466, USA.
| | | | | |
Collapse
|
35
|
Esser C, Bargen I, Weighardt H, Haarmann-Stemmann T, Krutmann J. Functions of the aryl hydrocarbon receptor in the skin. Semin Immunopathol 2013; 35:677-91. [PMID: 23949496 DOI: 10.1007/s00281-013-0394-4] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 07/16/2013] [Indexed: 12/13/2022]
Abstract
Among other functions, the skin serves as the barrier against the environment and provides vital protection from physical or chemical harm and from infection. Skin cells express the aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor and sensor of environmental chemicals; at the same time, AHR ligands are abundant in skin from exogenous or endogenous sources. For example, solar radiation, in particular ultraviolet (UV) B, generates AHR ligands from tryptophan in the skin. Recent evidence has shown that AHR is involved in the (patho)physiology of skin including the regulation of skin pigmentation, photocarcinogenesis, and skin inflammation. We here provide a state-of-the-art summary of work which relates to the role of the AHR in (1) adaptive responses against environmental challenges such as UVB or topical chemicals and (2) intrinsic developmental roles for homeostasis of skin cells and (3) skin immunity. We also discuss the existing evidence that AHR antagonists or AHR ligands may be used for the prevention and/or treatment of skin disease.
Collapse
Affiliation(s)
- Charlotte Esser
- Leibniz-Research Institute for Environmental Medicine (IUF), Auf'm Hennekamp 50, 40225, Dusseldorf, Germany,
| | | | | | | | | |
Collapse
|
36
|
Gerbal-Chaloin S, Iankova I, Maurel P, Daujat-Chavanieu M. Nuclear receptors in the cross-talk of drug metabolism and inflammation. Drug Metab Rev 2013; 45:122-44. [PMID: 23330545 DOI: 10.3109/03602532.2012.756011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Inflammation and infection have long been known to affect the activity and expression of enzymes involved in hepatic and extrahepatic drug clearance. Significant advances have been made to elucidate the molecular mechanisms underlying the complex cross-talk between inflammation and drug-metabolism alterations. The emergent role of ligand-activated transcriptional regulators, belonging to the nuclear receptor (NR) superfamily, is now well established. The NRs, pregnane X receptor, constitutive androstane receptor, retinoic X receptor, glucocorticoid receptor, and hepatocyte nuclear factor 4, and the basic helix-loop-helix/Per-ARNT-Sim family member, aryl hydrocarbon receptor, are the main regulators of the detoxification function. According to the panel of mediators secreted during inflammation, a cascade of numerous signaling pathways is activated, including nuclear factor kappa B, mitogen-activated protein kinase, and the Janus kinase/signal transducer and activator of transcription pathways. Complex cross-talk is established between these signaling pathways regulating either constitutive or induced gene expression. In most cases, a mutual antagonism between xenosensor and inflammation signaling occurs. This review focuses on the molecular and cellular mechanisms implicated in this cross-talk.
Collapse
|
37
|
Nguyen NT, Hanieh H, Nakahama T, Kishimoto T. The roles of aryl hydrocarbon receptor in immune responses. Int Immunol 2013; 25:335-43. [PMID: 23580432 DOI: 10.1093/intimm/dxt011] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A number of recent studies have examined the functions of aryl hydrocarbon receptor (Ahr) in the immune system. Also known as dioxin receptor, Ahr is a ligand-activated transcription factor that serves as a receptor for various environmental toxins. The functions of Ahr in T cells depend on the specific ligand bound to the receptor. For instance, binding of 2,3,7,8-tetrachlorodibenzo-p-dioxin to Ahr suppresses experimental autoimmune encephalomyelitis (EAE) by promoting the development of Foxp3(+) Treg cells, whereas 6-formylindolo[3,2-b]carbazole enhances EAE by inducing the differentiation of IL-17-producing T cells. Furthermore, specifically deleting Ahr in T cells inhibits collagen-induced arthritis in mice. In macrophages and dendritic cells (DCs), Ahr is anti-inflammatory. In response to LPS, Ahr-deficient macrophages show increased production of pro-inflammatory cytokines, such as IL-6 and TNF-α, and Ahr-deficient DCs produce less of the anti-inflammatory cytokine IL-10. In this review, we discuss the roles of Ahr in macrophages and T cells. Moreover, studies examining Ahr activation in other cell types have revealed additional contributions to B cell and osteoblast/osteoclast differentiation. We also briefly summarize the current understanding of regulatory mechanisms underlying Ahr activation in various cells and discuss the potential clinical implications of cell-specific targeting of Ahr in pathologic conditions of the immune system.
Collapse
Affiliation(s)
- Nam Trung Nguyen
- Laboratory of Immune Regulation, WPI-Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
38
|
Stone TW, Stoy N, Darlington LG. An expanding range of targets for kynurenine metabolites of tryptophan. Trends Pharmacol Sci 2012; 34:136-43. [PMID: 23123095 DOI: 10.1016/j.tips.2012.09.006] [Citation(s) in RCA: 263] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 09/27/2012] [Accepted: 09/27/2012] [Indexed: 12/14/2022]
Abstract
The kynurenine pathway of tryptophan metabolism accounts for most of the tryptophan that is not committed to protein synthesis and includes compounds active in the nervous and immune systems. Kynurenine acts on the aryl hydrocarbon receptor, affecting the metabolism of xenobiotics and promoting carcinogenesis. Quinolinic acid is an agonist at N-methyl-D-aspartate receptors (NMDARs), but is also pro-oxidant, has immunomodulatory actions, and promotes the formation of hyperphosphorylated tau proteins. Kynurenic acid blocks NMDARs and α7-homomeric nicotinic cholinoceptors and is also an agonist at the orphan G-protein-coupled receptor GPR35. 3-Hydroxykynurenine and 3-hydroxyanthranilic acid have pronounced redox activity and regulate T cell function. Cinnabarinic acid can activate metabotropic glutamate receptors. This review highlights the increasing range of molecular targets for components of the kynurenine pathway in both the nervous and immune systems in relation to their relevance to disease and drug development.
Collapse
Affiliation(s)
- Trevor W Stone
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| | | | | |
Collapse
|
39
|
Esser C. Biology and function of the aryl hydrocarbon receptor: report of an international and interdisciplinary conference. Arch Toxicol 2012; 86:1323-9. [DOI: 10.1007/s00204-012-0818-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 02/07/2012] [Indexed: 12/31/2022]
|
40
|
Beamer CA, Seaver BP, Shepherd DM. Aryl hydrocarbon receptor (AhR) regulates silica-induced inflammation but not fibrosis. Toxicol Sci 2012; 126:554-68. [PMID: 22273745 DOI: 10.1093/toxsci/kfs024] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, is responsible for mediating a variety of pharmacological and toxicological effects caused by halogenated aromatic hydrocarbons such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). However, recent evidence has revealed that the AhR also has numerous physiological roles aside from xenobiotic metabolism, including regulation of immune and inflammatory signaling as well as normal development and homeostasis of several organs. To investigate the role of the AhR in crystalline silica (SiO(2))-induced inflammation and fibrosis, C57Bl/6 and AhR(-/)(-) mice were exposed to SiO(2) or vehicle. Similarly, C57Bl/6 mice were exposed to SiO(2) and TCDD either simultaneously or sequentially to assess whether AhR activation alters inflammation and fibrosis. SiO(2)-induced acute lung inflammation was more severe in AhR(-)(/-) mice; however, the fibrotic response of AhR(-)(/-) mice was attenuated compared with C57Bl/6 mice. In a model of chronic SiO(2) exposure, AhR activation by TCDD in C57Bl/6 mice resulted in reduced inflammation; however, the fibrotic response was not affected. Bone marrow-derived macrophages (BMM) from AhR(-)(/-) mice also produced higher levels of cytokines and chemokines in response to SiO(2). Analysis of gene expression revealed that BMM derived from AhR(-)(/-) mice exhibit increased levels of pro-interleukin (IL)-1β, IL-6, and Bcl-2, yet decreased levels of signal transducers and activators of transcription (STAT)2, STAT5a, and serpin B2 (Pai-2) in response to SiO(2).
Collapse
Affiliation(s)
- Celine A Beamer
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, The University of Montana, Missoula, Montana 59812, USA.
| | | | | |
Collapse
|