1
|
Yu M, Wang F, Gang H, Liu C. Research progress of nanog gene in fish. Mol Genet Genomics 2024; 299:88. [PMID: 39313603 DOI: 10.1007/s00438-024-02182-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 09/07/2024] [Indexed: 09/25/2024]
Abstract
Nanog is a crucial regulatory factor in maintaining the self-renewal and pluripotency of embryonic stem cells. It is involved in various biological processes, such as early embryonic development, cell reprogramming, cell cycle regulation, the proliferation and migration of primordial germ cells. While research on this gene has primarily focused on mammals, there has been a growing interest in studying nanog in fish. However, there is a notable lack of comprehensive reviews regarding this gene in fish, which is essential for guiding future research. This review aims to provide a thorough summary of the gene's structure, expression patterns, functions and regulatory mechanisms in fish. The findings suggest that nanog probably has both conserved and divergent functions in regulating cell pluripotency, early embryonic development, and germ cell development in teleosts compared to other species, including mammals. These insights lay the foundation for future research and applications of the nanog gene, providing a new perspective for understanding the evolution and conserved charactristics of teleost nanog.
Collapse
Affiliation(s)
- Miao Yu
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Engineering Laboratory of Henan Province for Aquatic Animal Disease Control, Observation and Research Station On Water Ecosystem in Danjiangkou Reservoir of Henan Province, College of Fisheries, Henan Normal University, Xinxiang, 453007, China.
| | - Fangyuan Wang
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Engineering Laboratory of Henan Province for Aquatic Animal Disease Control, Observation and Research Station On Water Ecosystem in Danjiangkou Reservoir of Henan Province, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Huihui Gang
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Engineering Laboratory of Henan Province for Aquatic Animal Disease Control, Observation and Research Station On Water Ecosystem in Danjiangkou Reservoir of Henan Province, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Chuanhu Liu
- School of 3D Printing, Xinxiang University, Xinxiang, 453003, China.
| |
Collapse
|
2
|
Elgun T, Yurttas AG, Cinar K, Ozcelik S, Gul A. Effect of aza-BODIPY-photodynamic therapy on the expression of carcinoma-associated genes and cell death mode. Photodiagnosis Photodyn Ther 2023; 44:103849. [PMID: 37863378 DOI: 10.1016/j.pdpdt.2023.103849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND Breast cancer is the most common cancer affecting women worldwide.Photodynamic therapy(PDT) has now proven to be a promising form of cancer therapy due to its targeted and low cytotoxicity to healthy cells and tissues.PDT is a technique used to create cell death localized by light after application of a light-sensitive agent.Aza-BODIPY is a promising photosensitizer for use in PDT. Our results showed that aza-BODIPY-PDT induced apoptosis, probably through p53 and caspase3 in MCF-7 cells. Future studies should delineate the molecular mechanisms underlying aza-BODIPY-PDT-induced cell death for a better understanding of the signaling pathways modulated by the therapy so that this novel technology could be implemented in the clinic for treating breast cancer. AIM In this study,we aimed to determine the change in the expression levels of 88 carcinoma-associated genes induced by aza-BODIPY-PDT were analyzed so as to understand the specific pathways that are modulated by aza-BODIPY-PDT. MATERIAL METHOD In this study,the molecular basis of the anti-cancer activity of aza-BODIPY-PDT was investigated.Induction of apoptosis and necrosis in MCF-7 breast cancer cells after treatment with aza- BODIPY derivative with phthalonitrile substituents (aza-BODIPY) followed by light exposure was evaluated by Annexin V 7- Aminoactinomycin D (7-AAD) flow cytometry. RESULTS Aza-BODIPY-PDT induced cell death in MCF-7 cells treated with aza-BODIPY-PDT; flow cytometry revealed that 28 % of the cells died by apoptosis. Seven of the 88 carcinoma-associated genes that were assayed were differentially expressed -EGF, LEF1, WNT1, TCF7, and TGFBR2 were downregulated, and CASP3 and TP53 were upregulated - in cells subjected to aza-BODIPY-PDT.This made us think that the aza-BODIPY-PDT induced caspase 3 and p53-mediated apoptosis in MCF7 cells. CONCLUSION In our study,it was determined that the application of aza-BODIPY-PDT to MCF7 cells had a negative effect on cell connectivity and cell cycle.The fact that the same effect was not observed in control cells and MCF7 cells in the dark field of aza-BODIPY indicates that aza-BODIPY has a strong phodynamic anticancer effect.
Collapse
Affiliation(s)
- Tugba Elgun
- Department of Medical Biology, Faculty of Medicine, Biruni University, Istanbul, Turkey
| | - Asiye Gok Yurttas
- Department of Biochemistry, Faculty of Pharmacy, Istanbul Health and Technology University, Istanbul, Turkey.
| | - Kamil Cinar
- Department of Physics, Faculty of Basic Sciences, Gebze Technical University, Istanbul, Turkey
| | - Sennur Ozcelik
- Department of Chemistry, Istanbul Technical University, Istanbul, Turkey
| | - Ahmet Gul
- Department of Chemistry, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
3
|
Pavičić I, Rokić F, Vugrek O. Effects of S-Adenosylhomocysteine Hydrolase Downregulation on Wnt Signaling Pathway in SW480 Cells. Int J Mol Sci 2023; 24:16102. [PMID: 38003292 PMCID: PMC10671441 DOI: 10.3390/ijms242216102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
S-adenosylhomocysteine hydrolase (AHCY) deficiency results mainly in hypermethioninemia, developmental delay, and is potentially fatal. In order to shed new light on molecular aspects of AHCY deficiency, in particular any changes at transcriptome level, we enabled knockdown of AHCY expression in the colon cancer cell line SW480 to simulate the environment occurring in AHCY deficient individuals. The SW480 cell line is well known for elevated AHCY expression, and thereby represents a suitable model system, in particular as AHCY expression is regulated by MYC, which, on the other hand, is involved in Wnt signaling and the regulation of Wnt-related genes, such as the β-catenin co-transcription factor LEF1 (lymphoid enhancer-binding factor 1). We selected LEF1 as a potential target to investigate its association with S-adenosylhomocysteine hydrolase deficiency. This decision was prompted by our analysis of RNA-Seq data, which revealed significant changes in the expression of genes related to the Wnt signaling pathway and genes involved in processes responsible for epithelial-mesenchymal transition (EMT) and cell proliferation. Notably, LEF1 emerged as a common factor in these processes, showing increased expression both on mRNA and protein levels. Additionally, we show alterations in interconnected signaling pathways linked to LEF1, causing gene expression changes with broad effects on cell cycle regulation, tumor microenvironment, and implications to cell invasion and metastasis. In summary, we provide a new link between AHCY deficiency and LEF1 serving as a mediator of changes to the Wnt signaling pathway, thereby indicating potential connections of AHCY expression and cancer cell phenotype, as Wnt signaling is frequently associated with cancer development, including colorectal cancer (CRC).
Collapse
Affiliation(s)
| | | | - Oliver Vugrek
- Laboratory for Advanced Genomics, Divison of Molecular Medicine, Institute Ruđer Bošković, Bijenička Cesta 54, 10000 Zagreb, Croatia; (I.P.); (F.R.)
| |
Collapse
|
4
|
Yuan L, Roy B, Ratna P, Uhler C, Shivashankar GV. Lateral confined growth of cells activates Lef1 dependent pathways to regulate cell-state transitions. Sci Rep 2022; 12:17318. [PMID: 36243826 PMCID: PMC9569372 DOI: 10.1038/s41598-022-21596-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 09/29/2022] [Indexed: 01/10/2023] Open
Abstract
Long-term sustained mechano-chemical signals in tissue microenvironment regulate cell-state transitions. In recent work, we showed that laterally confined growth of fibroblasts induce dedifferentiation programs. However, the molecular mechanisms underlying such mechanically induced cell-state transitions are poorly understood. In this paper, we identify Lef1 as a critical somatic transcription factor for the mechanical regulation of de-differentiation pathways. Network optimization methods applied to time-lapse RNA-seq data identify Lef1 dependent signaling as potential regulators of such cell-state transitions. We show that Lef1 knockdown results in the down-regulation of fibroblast de-differentiation and that Lef1 directly interacts with the promoter regions of downstream reprogramming factors. We also evaluate the potential upstream activation pathways of Lef1, including the Smad4, Atf2, NFkB and Beta-catenin pathways, thereby identifying that Smad4 and Atf2 may be critical for Lef1 activation. Collectively, we describe an important mechanotransduction pathway, including Lef1, which upon activation, through progressive lateral cell confinement, results in fibroblast de-differentiation.
Collapse
Affiliation(s)
- Luezhen Yuan
- Division of Biology and Chemistry, Paul Scherrer Institut, 5232, Villigen, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, 8092, Zurich, Switzerland
- Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore
| | - Bibhas Roy
- Division of Biology and Chemistry, Paul Scherrer Institut, 5232, Villigen, Switzerland
- Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore
- Institute of Molecular Oncology, Italian Foundation for Cancer Research, 20139, Milan, Italy
| | - Prasuna Ratna
- Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore
| | - Caroline Uhler
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - G V Shivashankar
- Division of Biology and Chemistry, Paul Scherrer Institut, 5232, Villigen, Switzerland.
- Department of Health Sciences and Technology, ETH Zurich, 8092, Zurich, Switzerland.
- Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore.
- Institute of Molecular Oncology, Italian Foundation for Cancer Research, 20139, Milan, Italy.
| |
Collapse
|
5
|
The Core Stem Genes SOX2, POU5F1/OCT4, and NANOG Are Expressed in Human Parathyroid Tumors and Modulated by MEN1, YAP1, and β-catenin Pathways Activation. Biomedicines 2021; 9:biomedicines9060637. [PMID: 34199594 PMCID: PMC8227846 DOI: 10.3390/biomedicines9060637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 12/19/2022] Open
Abstract
Tumors of the parathyroid glands are the second most common endocrine neoplasia. Epigenetic studies revealed an embryonic signature involved in parathyroid tumorigenesis. Here, we investigated the expression of the stem core genes SOX2, POU5F1/OCT4, and NANOG. Rare cells within normal parathyroid glands expressed POU5F1/OCT4 and NANOG, while SOX2 was undetectable. Nuclear SOX2 expression was detectable in 18% of parathyroid adenomas (PAds, n = 34) involving 5–30% of cells, while OCT4 and NANOG were expressed at the nuclear level in a more consistent subset of PAds involving 15–40% of cells. Most parathyroid carcinomas expressed the core stem genes. SOX2-expressing cells co-expressed parathormone (PTH). In PAds-derived primary cultures, silencing of the tumor suppressor gene MEN1 induced the expression of SOX2, likely through a MEN1/HAR1B/SOX2 axis, while calcium-sensing receptor activation increased SOX2 mRNA levels through YAP1 activation. In addition, inducing nuclear β-catenin accumulation in PAds-derived primary cultures by short-term incubation with lithium chloride (LiCl), SOX2 and POU5F1/OCT4 expression levels increased, while NANOG transcripts were reduced, and LiCl long-term incubation induced an opposite pattern of gene expression. In conclusion, detection of the core stem genes in parathyroid tumors supports their embryogenic signature, which is modulated by crucial genes involved in parathyroid tumorigenesis.
Collapse
|
6
|
Alemohammad H, Asadzadeh Z, Motafakker Azad R, Hemmat N, Najafzadeh B, Vasefifar P, Najafi S, Baradaran B. Signaling pathways and microRNAs, the orchestrators of NANOG activity during cancer induction. Life Sci 2020; 260:118337. [PMID: 32841661 DOI: 10.1016/j.lfs.2020.118337] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022]
Abstract
Cancer stem cells (CSCs) are a small part of cancer cells inside the tumor that have similar characteristics to normal stem cells. CSCs stimulate tumor initiation and progression in a variety of cancers. Several transcription factors such as NANOG, SOX2, and OCT4 maintain the characteristics of CSCs and their upregulation is seen in many malignancies resulting in increased metastasis, invasion, and recurrence. Among these factors, NANOG plays an important role in regulating the self-renewal and pluripotency of CSCs and the clinical significance of NANOG has been suggested as a marker of CSCs in many cancers. The up and down-regulation of NANOG is associated with several important signaling pathways, including JAK/STAT, Wnt/β-catenin, Notch, TGF-β, Hedgehog, and several microRNAs (miRNAs). In this review, we will investigate the function of NANOG in CSCs and the molecular mechanism of its regulation by signaling pathways and miRNAs. We will also investigate targeting NANOG with different techniques, which is a promising treatment strategy for cancer treatment.
Collapse
Affiliation(s)
- Hajar Alemohammad
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Basira Najafzadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Parisa Vasefifar
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Transplantation of hMSCs Genome Edited with LEF1 Improves Cardio-Protective Effects in Myocardial Infarction. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 19:1186-1197. [PMID: 32069701 PMCID: PMC7019046 DOI: 10.1016/j.omtn.2020.01.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/18/2019] [Accepted: 01/08/2020] [Indexed: 12/19/2022]
Abstract
Stem cell-based therapy is one of the most attractive approaches to ischemic heart diseases, such as myocardial infarction (MI). We evaluated the cardio-protective effects of the human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) stably expressing lymphoid enhancer-binding factor 1 (LEF1; LEF1/hUCB-MSCs) in a rat model of MI. LEF1 overexpression in hUCB-MSCs promoted cell-proliferation and anti-apoptotic effects in hypoxic conditions. For the application of its therapeutic effects in vivo, the LEF1 gene was introduced into an adeno-associated virus integration site 1 (AAVS1) locus, known as a safe harbor site on chromosome 19 by CRISPR/Cas9-mediated gene integration in hUCB-MSCs. Transplantation of LEF1/hUCB-MSCs onto the infarction region in the rat model significantly improved overall survival. The cardio-protective effect of LEF1/hUCB-MSCs was proven by echocardiogram parameters, including greatly improved left-ventricle ejection fraction (EF) and fractional shortening (FS). Moreover, histology and immunohistochemistry successfully presented reduced MI region and fibrosis by LEF1/hUCB-MSCs. We found that these overall positive effects of LEF1/hUCB-MSCs are attributed by increased proliferation and survival of stem cells in oxidative stress conditions and by the secretion of various growth factors by LEF1. In conclusion, this study suggests that the stem cell-based therapy, conjugated with genome editing of transcription factor LEF1, which promotes cell survival, could be an effective therapeutic strategy for cardiovascular disease.
Collapse
|
8
|
Patra SK, Vemulawada C, Soren MM, Sundaray JK, Panda MK, Barman HK. Molecular characterization and expression patterns of Nanog gene validating its involvement in the embryonic development and maintenance of spermatogonial stem cells of farmed carp, Labeo rohita. J Anim Sci Biotechnol 2018; 9:45. [PMID: 29992021 PMCID: PMC5994655 DOI: 10.1186/s40104-018-0260-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 04/25/2018] [Indexed: 12/24/2022] Open
Abstract
Background The homeobox containing transcription factor Nanog plays crucial roles in embryonic development/proliferation and/or maintenance of spermatogonial stem cells (SSCs) via interacting with transcription factors such as Oct4 and Sox2 in mammals. However, knowledge of its exact mechanistic pathways remains unexploited. Very little is known about teleost Nanog. Information on the Nanog gene of farmed rohu carp (Labeo rohita) is lacking. We cloned and characterized the Nanog gene of rohu carp to understand the expression pattern in early developmental stages and also deduced the genomic organization including promoter elements. Results Rohu Nanog (LrNanog) cDNA comprised an open reading frame of 1,161 nucleotides bearing a structural homeodomain; whereas, the genomic structure contained four exons and three introns suggesting that it is homologous to mammalian counterparts. Phylogenetically, it was closely related to freshwater counterparts. Protein sequence (386 AA of 42.65 kDa) comparison revealed its low similarity with other vertebrate counterparts except that of the conserved homeodomain. Tissue distribution analysis revealed the existence of LrNanog transcripts only in adult gonads. The heightened abundances in the ovary and proliferating spermatogonia suggested its participations in maternal inheritance and male germ cell development. The potentiating abundances from fertilized egg onwards peaking at blastula stage vis- à-vis decreasing levels from gastrula stage onwards demonstrated its role in embryonic stem cell development. We also provided evidence of its presence in SSCs by western blotting analysis. Further, the promoter region was characterized, predicting a basal core promoter and other consensus elements. Conclusion The molecular characterization of LrNanog and its documented expression profiling at transcript and protein levels are indicative of its functional linkage with embryonic/spermatogonial stem cell maintenance. This is the first report of LrNanog genomic organization including its promoter sequence information with predicted regulatory elements of a large-bodied carp species. This will be useful for elucidating its mechanism expression in future. Nanog could be used as a potential biomarker for proliferating carp SSCs.
Collapse
Affiliation(s)
- Swagat K Patra
- 1Fish Genetics and Biotechnology Division, ICAR - Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, Odisha 751002 India
| | - Chakrpani Vemulawada
- 1Fish Genetics and Biotechnology Division, ICAR - Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, Odisha 751002 India
| | - Meenati M Soren
- 1Fish Genetics and Biotechnology Division, ICAR - Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, Odisha 751002 India
| | - Jitendra K Sundaray
- 1Fish Genetics and Biotechnology Division, ICAR - Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, Odisha 751002 India
| | - Manoj K Panda
- 2Center of Biotechnology, Siksha 'O' Anusandhan University, Bhubaneswar, India
| | - Hirak K Barman
- 1Fish Genetics and Biotechnology Division, ICAR - Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, Odisha 751002 India
| |
Collapse
|
9
|
Gao J, Wang X, Zhang Q. Evolutionary Conservation of pou5f3 Genomic Organization and Its Dynamic Distribution during Embryogenesis and in Adult Gonads in Japanese Flounder Paralichthys olivaceus. Int J Mol Sci 2017; 18:ijms18010231. [PMID: 28124980 PMCID: PMC5297860 DOI: 10.3390/ijms18010231] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 01/09/2017] [Accepted: 01/17/2017] [Indexed: 01/06/2023] Open
Abstract
Octamer-binding transcription factor 4 (Oct4) is a member of POU (Pit-Oct-Unc) transcription factor family Class V that plays a crucial role in maintaining the pluripotency and self-renewal of stem cells. Though it has been deeply investigated in mammals, its lower vertebrate homologue, especially in the marine fish, is poorly studied. In this study, we isolated the full-length sequence of Paralichthys olivaceus pou5f3 (Popou5f3), and we found that it is homologous to mammalian Oct4. We identified two transcript variants with different lengths of 3′-untranslated regions (UTRs) generated by alternative polyadenylation (APA). Quantitative real-time RT-PCR (qRT-PCR), in situ hybridization (ISH) and immunohistochemistry (IHC) were implemented to characterize the spatial and temporal expression pattern of Popou5f3 during early development and in adult tissues. Our results show that Popou5f3 is maternally inherited, abundantly expressed at the blastula and early gastrula stages, then greatly diminishes at the end of gastrulation. It is hardly detectable from the heart-beating stage onward. We found that Popou5f3 expression is restricted to the adult gonads, and continuously expresses during oogenesis while its dynamics are downregulated during spermatogenesis. Additionally, numerous cis-regulatory elements (CRE) on both sides of the flanking regions show potential roles in regulating the expression of Popou5f3. Taken together, these findings could further our understanding of the functions and evolution of pou5f3 in lower vertebrates, and also provides fundamental information for stem cell tracing and genetic manipulation in Paralichthys olivaceus.
Collapse
Affiliation(s)
- Jinning Gao
- College of Marine Life Science, Ocean University of China, Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Qingdao 266003, China.
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China.
| | - Xubo Wang
- College of Marine Life Science, Ocean University of China, Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Qingdao 266003, China.
| | - Quanqi Zhang
- College of Marine Life Science, Ocean University of China, Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Qingdao 266003, China.
| |
Collapse
|
10
|
Luft S, Arrizabalaga O, Kulish I, Nasonova E, Durante M, Ritter S, Schroeder IS. Ionizing Radiation Alters Human Embryonic Stem Cell Properties and Differentiation Capacity by Diminishing the Expression of Activin Receptors. Stem Cells Dev 2016; 26:341-352. [PMID: 27937745 DOI: 10.1089/scd.2016.0277] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Exposure of the embryo to ionizing radiation (IR) is detrimental as it can cause genotoxic stress leading to immediate and latent consequences such as functional defects, malformations, or cancer. Human embryonic stem (hES) cells can mimic the preimplantation embryo and help to assess the biological effects of IR during early development. In this study, we describe the alterations H9 hES cells exhibit after X-ray irradiation in respect to cell cycle progression, apoptosis, genomic stability, stem cell signaling, and their capacity to differentiate into definitive endoderm. Early postirradiation, hES cells responded with an arrest in G2/M phase, elevated apoptosis, and increased chromosomal aberrations. Significant downregulation of stem cell signaling markers of the TGF beta-, Wnt-, and Hedgehog pathways was observed. Most prominent were alterations in the expression of activin receptors. However, hES cells responded differently depending on the culture conditions chosen for maintenance. Enzymatically passaged cells were less sensitive to IR than mechanically passaged ones showing fewer apoptotic cells and fewer changes in the stem cell signaling 24 h after irradiation, but displayed higher levels of chromosomal aberrations. Even though many of the observed changes were transient, surviving hES cells, which were differentiated 4 days postirradiation, showed a lower efficiency to form definitive endoderm than their mock-irradiated counterparts. This was demonstrated by lower expression levels of SOX17 and microRNA miR-375. In conclusion, hES cells are a suitable tool for the IR risk assessment during early human development. However, careful choice of the culture methods and a vigorous monitoring of the stem cell quality are mandatory for the use of these cells. Exposure to IR influences the stem cell properties of hES cells even when immediate radiation effects are overcome. This warrants consideration in the risk assessment of radiation effects during the earliest stages of human development.
Collapse
Affiliation(s)
- Sabine Luft
- 1 Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research , Darmstadt, Germany
| | - Onetsine Arrizabalaga
- 1 Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research , Darmstadt, Germany
| | - Ireen Kulish
- 1 Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research , Darmstadt, Germany .,2 Technical University Darmstadt , Darmstadt, Germany
| | - Elena Nasonova
- 1 Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research , Darmstadt, Germany .,3 Laboratory of Radiation Biology, Joint Institute for Nuclear Research , Dubna, Russia
| | - Marco Durante
- 1 Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research , Darmstadt, Germany
| | - Sylvia Ritter
- 1 Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research , Darmstadt, Germany
| | - Insa S Schroeder
- 1 Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research , Darmstadt, Germany
| |
Collapse
|
11
|
Gao L, Zhao M, Ye W, Huang J, Chu J, Yan S, Wang C, Zeng R. Inhibition of glycogen synthase kinase-3 (GSK3) promotes the neural differentiation of full-term amniotic fluid-derived stem cells towards neural progenitor cells. Tissue Cell 2016; 48:312-20. [PMID: 27346451 DOI: 10.1016/j.tice.2016.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/10/2016] [Accepted: 06/01/2016] [Indexed: 01/28/2023]
Abstract
The amniotic fluid has a heterogeneous population of cells. Some human amniotic fluid-derived stem (hAFS) cells have been shown to harbor the potential to differentiate into neural cells. However, the neural differentiation efficiency of hAFS cells remains low. In this study, we isolated CD117-positive hAFS cells from amniotic fluid and then examined the pluripotency of these cells through the formation of embryoid bodies (EBs). Additionally, we induced the neural differentiation of these cells using neuroectodermal medium. This study revealed that the GSK3-beta inhibitor SB216763 was able to stimulate the proliferation of CD117-positive hAFS cells without influencing their undifferentiated state. Moreover, SB216763 can efficiently promote the neural differentiation of CD117-positive hAFS cells towards neural progenitor cells in the presence of DMEM/F12 and N2 supplement. These findings provide an easy and low-cost method to maintain the proliferation of hAFS cells, as well as induce an efficacious generation of neural progenitor cells from hAFS cells. Such induction of the neural commitment of hAFS cells may provide an option for the treatment of neurodegenerative diseases by hAFS cells-based therapies.
Collapse
Affiliation(s)
- Liyang Gao
- Stem Cell Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| | - Mingyan Zhao
- Stem Cell Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Wei Ye
- Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jinzhi Huang
- Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jiaqi Chu
- Stem Cell Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shouquan Yan
- Stem Cell Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Chaojun Wang
- Department of Spinal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Rong Zeng
- Department of Spinal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| |
Collapse
|
12
|
CHIR99021 enhances Klf4 Expression through β-Catenin Signaling and miR-7a Regulation in J1 Mouse Embryonic Stem Cells. PLoS One 2016; 11:e0150936. [PMID: 26938105 PMCID: PMC4777400 DOI: 10.1371/journal.pone.0150936] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 02/21/2016] [Indexed: 11/19/2022] Open
Abstract
Understanding the mechanisms that regulate pluripotency of embryonic stem cells (ESCs) is important to ensure their safe clinical use. CHIR99021 (CHIR)-induced activation of Wnt/β-catenin signaling promotes self-renewal in mouse ESCs (mESCs). β-catenin functions individually or cooperates with transcription factors to activate stemness factors such as c-Myc, Esrrb, Pou5f1, and Nanog. However the relationship between the core pluripotent factor, Kruppel-like factor 4 (also known as GKLF or EZF) and Wnt/β-catenin signaling, remains ambiguous in J1 mESCs. DNA microarray analysis revealed that CHIR-treatment promoted pluripotency-maintaining transcription factors and repressed germ layer specification markers. CHIR also promoted genes related to the development of extracellular regions and the plasma membrane to maintain pluripotency of J1 mESCs. Among the CHIR-regulated genes, Klf4 has not been reported previously. We identified a novel cis element in the Klf4 gene that was activated by β-catenin in J1 mESCs. We determined that β-catenin interacted with this cis element, identifying Klf4 as a β-catenin target gene in this context. Moreover, several microRNAs that targeted the 3′-UTR of Klf4 mRNA were identified, with miR-7a being down-regulated by CHIR in a β-catenin-independent manner in J1 mESCs. These data collectively suggest that CHIR enhances Klf4 expression by repressing miR-7a expression or canonical Wnt pathway activation.
Collapse
|
13
|
Atkinson SP, Lako M, Armstrong L. Potential for pharmacological manipulation of human embryonic stem cells. Br J Pharmacol 2014; 169:269-89. [PMID: 22515554 DOI: 10.1111/j.1476-5381.2012.01978.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The therapeutic potential of human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) is vast, allowing disease modelling, drug discovery and testing and perhaps most importantly regenerative therapies. However, problems abound; techniques for cultivating self-renewing hESCs tend to give a heterogeneous population of self-renewing and partially differentiated cells and general include animal-derived products that can be cost-prohibitive for large-scale production, and effective lineage-specific differentiation protocols also still remain relatively undefined and are inefficient at producing large amounts of cells for therapeutic use. Furthermore, the mechanisms and signalling pathways that mediate pluripotency and differentiation are still to be fully appreciated. However, over the recent years, the development/discovery of a range of effective small molecule inhibitors/activators has had a huge impact in hESC biology. Large-scale screening techniques, coupled with greater knowledge of the pathways involved, have generated pharmacological agents that can boost hESC pluripotency/self-renewal and survival and has greatly increased the efficiency of various differentiation protocols, while also aiding the delineation of several important signalling pathways. Within this review, we hope to describe the current uses of small molecule inhibitors/activators in hESC biology and their potential uses in the future.
Collapse
|
14
|
Ravindran G, Sawant SS, Hague A, Kingsley K, Devaraj H. Association of differential β-catenin expression with Oct-4 and Nanog in oral squamous cell carcinoma and their correlation with clinicopathological factors and prognosis. Head Neck 2014; 37:982-93. [PMID: 24700702 DOI: 10.1002/hed.23699] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 02/20/2014] [Accepted: 03/28/2014] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The re-expression of pluripotent markers (Oct-4 and Nanog) and the reactivation of stem cell-related pathways in oral carcinoma have been well researched. However, the relationship between the stem cell signaling molecule β-catenin and pluripotent markers Oct-4 and Nanog in oral cancer is yet to be studied in detail. Therefore, we have investigated the correlation among Oct-4, Nanog, and β-catenin in oral squamous cell carcinoma, which, in turn, could provide valuable insight into its prognostic significance. METHODS The immunohistochemical analysis was performed for 60 cases of oral cancer to study the expression pattern of Oct-4, Nanog, and β-catenin. Whereas immunofluorescence analysis was used to investigate the co-localization of β-catenin with Oct-4 and Nanog in oral carcinoma tissues and H314 cell line. Finally, co-immunoprecipitation analysis was used to study the possible interaction between β-catenin and Oct-4 in oral carcinoma cells. RESULTS β-catenin, Oct-4, and Nanog showed significant correlation with lymph node metastasis, stage, grade, and prognosis in oral squamous cell carcinoma. Interestingly, a significant positive correlation was found among the expression of Oct-4, Nanog, and β-catenin. Moreover, the interaction between β-catenin and Oct-4 was observed in oral cancer. CONCLUSION The positive correlation among Oct-4, Nanog, and β-catenin suggests their coordinated role in maintaining proliferation in oral carcinoma cells. The interaction between β-catenin and Oct-4 may be a crucial event in oral carcinogenesis. On the other hand, β-catenin, Oct-4, and Nanog could be used as independent prognostic markers of oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Gokulan Ravindran
- Unit of Biochemistry, Department of Zoology, University of Madras, Guindy Campus, Chennai, Tamil Nadu, India
| | - Sharada S Sawant
- Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, India
| | - Angela Hague
- School of Oral and Dental Sciences, University of Bristol, United Kingdom
| | - Karl Kingsley
- School of Dental Medicine, University of Nevada, Las Vegas, Nevada
| | - Halagowder Devaraj
- Unit of Biochemistry, Department of Zoology, University of Madras, Guindy Campus, Chennai, Tamil Nadu, India
| |
Collapse
|
15
|
Reece AS, Hulse GK. Impact of lifetime opioid exposure on arterial stiffness and vascular age: cross-sectional and longitudinal studies in men and women. BMJ Open 2014; 4:e004521. [PMID: 24889849 PMCID: PMC4054659 DOI: 10.1136/bmjopen-2013-004521] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE To characterise and compare the potentiation of arterial stiffness and vascular ageing by opioids in men and women. DESIGN Cross-sectional and longitudinal studies of 576 clinical controls and 687 opioid-dependent patients (ODP) on 710 and 1305 occasions, respectively, over a total of 2382 days (6.52 years), 2006-2011. Methodology Radial pulse wave analysis with Atcor SphygmoCor system (Sydney). SETTING Primary care. CONTROLS General practice patients with non-cardiovascular disorders, and university student controls. ODP: Patients undergoing clinical management of their opioid dependence. CONTROLS had lower chronological ages (CAs) than ODP (30.0±0.5 vs 34.5±0.3, mean±SEM, p<0.0001). 69.6% and 67.7% participants were men, and 16% and 92.3% were smokers (p<0.0001) for controls and ODP, respectively. 86.3%, 10.3% and 3.4% of ODP were treated with buprenorphine (6.98±0.21 mg), methadone (63.04±4.01 mg) or implant naltrexone, respectively. Body mass index (BMI) was depressed in ODP. INTERVENTIONS Nil. PRIMARY OUTCOME MEASURES Vascular Reference Age (RA) and the ratio of vascular age to chronological age (RA/CA). SECONDARY OUTCOME MEASURES Arterial stiffness including Augmentation Index. RESULTS After BMI adjustment, RA in ODP was higher as a function of CA and of time (both p<0.05). Modelled mean RA in control and ODP was 35.6 and 36.3 years (+1.97%) in men, and 34.5 and 39.2 years (+13.43%) in women, respectively. Changes in RA and major arterial stiffness indices were worse in women both as a factor (p = 0.0036) and in interaction with CA (p = 0.0040). Quadratic, cubic and quartic functions of opioid exposure duration outperformed linear models with RA/CA over CA and over time. The opioid dose-response relationship persisted longitudinally after multiple adjustments from p=0.0013 in men and p=0.0073 in women. CONCLUSIONS Data show that lifetime opioid exposure, an interactive cardiovascular risk factor, particularly in women, is related to linear, quadratic, cubic and quartic functions of treatment duration and is consistent with other literature of accelerated ageing in patients with OD.
Collapse
Affiliation(s)
- Albert Stuart Reece
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Gary Kenneth Hulse
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
16
|
Identification and characterization of a nanog homolog in Japanese flounder (Paralichthys olivaceus). Gene 2013; 531:411-21. [PMID: 24013085 DOI: 10.1016/j.gene.2013.08.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 07/28/2013] [Accepted: 08/10/2013] [Indexed: 02/06/2023]
Abstract
The homeodomain-containing transcription factor nanog plays a key role in maintaining the pluripotency and self-renewal of embryonic stem cells in mammals. Stem cells offered as a significant and effective tool for generation of transgenic animals and preservation of genetic resources. The molecular genetic organization and expression of nanog gene in marine fish have not been reported yet. In this study, we isolated and characterized the flounder nanog gene as a first step towards understanding the mechanism of the plurpotency of fish stem cells and develop a potential molecular marker to identify the stem cells in vivo and in vitro. Phylogenetic, gene structure and chromosome synteny analysis provided the evidence that Po-nanog is homologous to the mammalian nanog gene. Protein sequence comparison showed that flounder Nanog shared low similarity with other vertebrate orthologs except for a conserved homeodomain. Quantitative RT-PCR analysis showed that flounder nanog was maternally expressed, and the transcripts were present from the one-cell stage to the neurula stage with the peaking at blastula stage. Whole mount in situ hybridization analyses demonstrated that the transcripts were present in all blastomeres of the early embryo. Tissue distribution analysis indicated that nanog was detectable only in gonads. Further, the expression was significantly high in ovary than in testis. In situ hybridization revealed that the transcripts were located in the cytoplasm of the oogonia and oocytes in ovary, only in the spermatogonia but no spermatocytes or spermatids in testis. The promoter region was also analyzed to have several basal core promoter elements and transcription factor binding sites. All these results suggest that Po-Nanog may have a conservative function between teleosts and mammals.
Collapse
|
17
|
Reece AS, Hulse GK. Reduction in arterial stiffness and vascular age by naltrexone-induced interruption of opiate agonism: a cohort study. BMJ Open 2013; 3:bmjopen-2013-002610. [PMID: 23524044 PMCID: PMC3612814 DOI: 10.1136/bmjopen-2013-002610] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE To prospectively assess if opiate antagonist treatment or the opiate-free status could reverse opiate-related vasculopathy. DESIGN Longitudinal Open Observational, Serial 'N of One', over 6.5 years under various treatment conditions: opiate dependence, naltrexone and opiate-free. SETTING Primary care, Australia. PARTICIPANTS 20 opiate-dependent patients (16 males: 16 cases of buprenorphine 4.11±1.17 mg, two of methadone 57.5±12.5 mg and two of heroin 0.75±0.25 g). INTERVENTION Studies of central arterial stiffness and vascular reference age (RA) were performed longitudinally by SphygmoCor Pulse Wave Analysis (AtCor, Sydney). PRIMARY OUTCOMES Primary outcome was vascular age and arterial stiffness accrual under different treatment conditions. RESULTS The mean chronological age (CA) was 33.62±2.03 years. The opiate-free condition was associated with a lower apparent vascular age both in itself (males: p=0.0402 and females: p=0.0360) and in interaction with time (males: p=0.0001 and females: p=0.0004), and confirmed with other measures of arterial stiffness. The mean modelled RA was 38.82, 37.73 and 35.05 years in the opiate, naltrexone and opiate-free conditions, respectively. The opiate-free condition was superior to opiate agonism after full multivariate adjustment (p=0.0131), with modelled RA/CA of 1.0173, 0.9563 and 0.8985 (reductions of 6.1% and 11.9%, respectively). CONCLUSIONS Data demonstrate that opiate-free status improves vascular age and arterial stiffness in previous chronic opiate users. The role of opiate antagonist treatment in achieving these outcomes requires future clarification and offers hope of novel therapeutic remediation.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Unit for Research and Education in Alcohol and Drugs, School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, Perth, Western Australia, Australia
| | | |
Collapse
|
18
|
Ibrahim EE, Babaei-Jadidi R, Saadeddin A, Spencer-Dene B, Hossaini S, Abuzinadah M, Li N, Fadhil W, Ilyas M, Bonnet D, Nateri AS. Embryonic NANOG activity defines colorectal cancer stem cells and modulates through AP1- and TCF-dependent mechanisms. Stem Cells 2013; 30:2076-87. [PMID: 22851508 DOI: 10.1002/stem.1182] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Embryonic NANOG (NANOG1) is considered as an important regulator of pluripotency while NANOGP8 (NANOG-pseudogene) plays a role in tumorigenesis. Herein, we show NANOG is expressed from both NANOG1 and NANOGP8 in human colorectal cancers (CRC). Enforced NANOG1-expression increases clonogenic potential and tumor formation in xenograft models, although it is expressed only in a small subpopulation of tumor cells and is colocalized with endogenous nuclear β-catenin(High) . Moreover, single NANOG1-CRCs form spherical aggregates, similar to the embryoid body of embryonic stem cells (ESCs), and express higher levels of stem-like Wnt-associated target genes. Furthermore, we show that NANOG1-expression is positively regulated by c-JUN and β-catenin/TCF4. Ectopic expression of c-Jun in murine Apc(Min/+) -ESCs results in the development of larger xenograft tumors with higher cell density compared to controls. Chromatin immunoprecipitation assays demonstrate that c-JUN binds to the NANOG1-promoter via the octamer M1 DNA element. Collectively, our data suggest that β-Catenin/TCF4 and c-JUN together drive a subpopulation of CRC tumor cells that adopt a stem-like phenotype via the NANOG1-promoter.
Collapse
Affiliation(s)
- Elsayed E Ibrahim
- Cancer Genetics and Stem Cell Group, Division of Pre-Clinical Oncology, University of Nottingham, Nottingham, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Thaler R, Zwerina J, Rumpler M, Spitzer S, Gamsjaeger S, Paschalis EP, Klaushofer K, Varga F. Homocysteine induces serum amyloid A3 in osteoblasts via unlocking RGD-motifs in collagen. FASEB J 2012; 27:446-63. [PMID: 23085993 DOI: 10.1096/fj.12-208058] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Hyperhomocysteinemia is a risk factor for osteoporotic fractures. Homocysteine (Hcys) inhibits collagen cross-linking and consequently decreases bone extracellular matrix (ECM) quality. Serum amyloid A (A-SAA), an acute-phase protein family, plays an important role in chronic and inflammatory diseases and up-regulates MMP13, which plays an important role in bone development and remodeling. Here, we investigate the effect of Hcys on expression of SAA3, a member of the A-SAA gene family, in osteoblasts characterizing underlying mechanisms and possible consequences on bone metabolism. MC3T3-E1 osteoblast-like cells were cultured up to 21 d with Hcys (low millimolar range) or reseeded onto ECM resulting from untreated or Hcys-treated MC3T3-E1 cells. Fourier-transformed infrared spectroscopy and a discriminative antibody were used to characterize the resulting ECM. Gene expression and signaling pathways were analyzed by gene chip, quantitative RT-PCR, and immunoblotting. Transcriptional regulation of Saa3 was studied by promoter transfection assays, chromatin immunoprecipitation, and immunofluorescence microscopy. Hcys treatment resulted in reduced collagen cross-linking, uncovering of RGD-motifs, and activation of the PTK2-PXN-CTNNB1 pathway followed by RELA activation. These signaling events led to increased SAA3 expression followed by the production of MMP13 and several chemokines, including Ccl5, Ccl2, Cxcl10, and Il6. Our data suggest Saa3 as link between hyperhomocysteinemia and development of osteoporosis.
Collapse
Affiliation(s)
- Roman Thaler
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of Wiener Gebietskrankenkasse and Allgemeine Unfallversicherungsanstalt Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Kirby LA, Schott JT, Noble BL, Mendez DC, Caseley PS, Peterson SC, Routledge TJ, Patel NV. Glycogen synthase kinase 3 (GSK3) inhibitor, SB-216763, promotes pluripotency in mouse embryonic stem cells. PLoS One 2012; 7:e39329. [PMID: 22745733 PMCID: PMC3383737 DOI: 10.1371/journal.pone.0039329] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 05/18/2012] [Indexed: 11/18/2022] Open
Abstract
Canonical Wnt/β-catenin signaling has been suggested to promote self-renewal of pluripotent mouse and human embryonic stem cells. Here, we show that SB-216763, a glycogen synthase kinase-3 (GSK3) inhibitor, can maintain mouse embryonic stem cells (mESCs) in a pluripotent state in the absence of exogenous leukemia inhibitory factor (LIF) when cultured on mouse embryonic fibroblasts (MEFs). MESCs maintained with SB-216763 for one month were morphologically indistinguishable from LIF-treated mESCs and expressed pluripotent-specific genes Oct4, Sox2, and Nanog. Furthermore, Nanog immunostaining was more homogenous in SB-216763-treated colonies compared to LIF. Embryoid bodies (EBs) prepared from these mESCs expressed early-stage markers for all three germ layers, and could efficiently differentiate into cardiac-like cells and MAP2-immunoreactive neurons. To our knowledge, SB-216763 is the first GSK3 inhibitor that can promote self-renewal of mESC co-cultured with MEFs for more than two months.
Collapse
Affiliation(s)
- Leslie A. Kirby
- Department of Biological Science, California State University – Fullerton, Fullerton, California, United States of America
| | - Jason T. Schott
- Department of Biological Science, California State University – Fullerton, Fullerton, California, United States of America
| | - Brenda L. Noble
- Department of Biological Science, California State University – Fullerton, Fullerton, California, United States of America
| | - Daniel C. Mendez
- Department of Biological Science, California State University – Fullerton, Fullerton, California, United States of America
| | - Paul S. Caseley
- Department of Biological Science, California State University – Fullerton, Fullerton, California, United States of America
| | - Sarah C. Peterson
- Department of Biological Science, California State University – Fullerton, Fullerton, California, United States of America
| | - Tyler J. Routledge
- Department of Biological Science, California State University – Fullerton, Fullerton, California, United States of America
| | - Nilay V. Patel
- Department of Biological Science, California State University – Fullerton, Fullerton, California, United States of America
- Center for Applied Biotechnology Studies, California State University – Fullerton, Fullerton, California, United States of America
- * E-mail:
| |
Collapse
|