1
|
Kondo M, Nakamura Y, Kato Y, Nishimura A, Fukata M, Moriyama S, Ito T, Umezawa K, Urano Y, Akaike T, Akashi K, Kanda Y, Nishida M. Inorganic sulfides prevent osimertinib-induced mitochondrial dysfunction in human iPS cell-derived cardiomyocytes. J Pharmacol Sci 2024; 156:69-76. [PMID: 39179336 DOI: 10.1016/j.jphs.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/05/2024] [Accepted: 07/22/2024] [Indexed: 08/26/2024] Open
Abstract
Despite the widespread recognition of the global concern regarding the onset of cardiovascular diseases in a significant number of patients following cancer treatment, definitive strategies for prevention and treatment remain elusive. In this study, we established systems to evaluate the influence of anti-cancer drugs on the quality control of mitochondria, pivotal for energy metabolism, using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Osimertinib, an epidermal growth factor receptor tyrosine kinase inhibitor used for treatment in lung cancer, reportedly increases the risk of cardiovascular disease. However, its underlying mechanism is largely unknown. Here, we found that the treatment of hiPSC-CMs with osimertinib and doxorubicin, but not trastuzumab and cisplatin, revealed a concentration-dependent impairment of respiratory function accompanied by mitochondrial fission. We previously reported the significant role of sulfur metabolism in maintaining mitochondrial quality in the heart. Co-treatment with various inorganic sulfur donors (Na2S, Na2S2, Na2S3) alongside anti-cancer drugs demonstrated that Na2S attenuated the cardiotoxicity of osimertinib but not doxorubicin. Osimertinib decreased intracellular reduced sulfur levels, while Na2S treatment suppressed the sulfur leakage, suggesting its potential in mitigating osimertinib-induced cardiotoxicity. These results imply the prospect of inorganic sulfides, such as Na2S, as a seed for precision pharmacotherapy to alleviate osimertinib's cardiotoxic effects.
Collapse
Affiliation(s)
- Moe Kondo
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan; Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yuya Nakamura
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yuri Kato
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Akiyuki Nishimura
- National Institute for Physiological Sciences, National Institutes of Natural Sciences (NINS), Okazaki, 444-8787, Japan; Exploratory Research Center on Life and Living Systems, NINS, Okazaki, 444-8787, Japan; SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan
| | - Mitsuhiro Fukata
- Department of Hematology, Oncology and Cardiovascular Medicine, Kyushu University Hospital, Fukuoka, 812-8582, Japan
| | - Shohei Moriyama
- Department of Hematology, Oncology and Cardiovascular Medicine, Kyushu University Hospital, Fukuoka, 812-8582, Japan
| | - Tomoya Ito
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Keitaro Umezawa
- Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, 173-0015, Japan
| | - Yasuteru Urano
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan; Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Takaaki Akaike
- Graduate School of Medicine, Tohoku University, Sendai, 980-8575, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences (NIHS), Kanagawa, 210-9501, Japan
| | - Motohiro Nishida
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan; National Institute for Physiological Sciences, National Institutes of Natural Sciences (NINS), Okazaki, 444-8787, Japan; Exploratory Research Center on Life and Living Systems, NINS, Okazaki, 444-8787, Japan; SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan.
| |
Collapse
|
2
|
Hou H, Xu Y, Xie M, Chen R. Exploring the potential molecular mechanism of trastuzumab-induced cardiotoxicity based on RNA sequencing and bioinformatics analysis. Biochem Pharmacol 2023; 208:115388. [PMID: 36563885 DOI: 10.1016/j.bcp.2022.115388] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
The cardiotoxicity of trastuzumab (TRZ) seriously affects the prognosis of breast cancer patients, but the underlying mechanisms remains to be elucidated. This study aimed to investigate the potential molecular mechanisms of TRZ-induced cardiotoxicity based on RNA sequencing (RNA-Seq) and bioinformatics analysis. Kunming mice were exposed to 10 mg/kg TRZ for 6 and 10 days, followed by echocardiography, histopathology and serum biochemical analysis to evaluate the cardiotoxicity model. The results showed no significant changes after 6 days administration of TRZ. After 10 days administration of TRZ, the mice showed cardiac dysfunction, myocardial injury and fibrosis, and the serum levels of LDH, CK, CK-MB and cTnI were increased compared to the control [CON (Day 10)] group, indicating the cardiotoxicity model was successfully established. We compared gene expression levels in mice cardiac tissues by RNA-Seq and screened out 593 differentially expressed genes (DEGs). Results based on Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, protein-protein interaction (PPI) network analysis and RT-PCR revealed that the CD74/STAT1 signaling pathway might play an important role in TRZ-induced cardiotoxicity. In the TRZ group, the protein expressions of CD74, p-STAT1 (Tyr) and p-STAT1 (Ser) were increased. The TUNEL staining showed increased apoptosis of cardiomyocytes. In addition, an increased expressions of Bax, Caspase-3, IFN-γ and TNF-α and a decreased expression of Bcl-2 were observed in Western blot results, indicating the apoptosis and inflammation levels were increased. These findings suggested that TRZ may induce cardiotoxicity in mice by activating the CD74/STAT1 signaling pathway, which might be related to the induction of apoptosis and inflammation.
Collapse
Affiliation(s)
- Huan Hou
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Ying Xu
- Department of Pharmacy, Yancheng Third People's Hospital, Yancheng, Jiangsu 224008, China
| | - Meilin Xie
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Rong Chen
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China.
| |
Collapse
|
3
|
Modeling Precision Cardio-Oncology: Using Human-Induced Pluripotent Stem Cells for Risk Stratification and Prevention. Curr Oncol Rep 2021; 23:77. [PMID: 33937943 PMCID: PMC8088904 DOI: 10.1007/s11912-021-01066-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2021] [Indexed: 11/12/2022]
Abstract
Purpose of Review Cardiovascular toxicity is a leading cause of mortality among cancer survivors and has become increasingly prevalent due to improved cancer survival rates. In this review, we synthesize evidence illustrating how common cancer therapeutic agents, such as anthracyclines, human epidermal growth factors receptors (HER2) monoclonal antibodies, and tyrosine kinase inhibitors (TKIs), have been evaluated in cardiomyocytes (CMs) derived from human-induced pluripotent stem cells (hiPSCs) to understand the underlying mechanisms of cardiovascular toxicity. We place this in the context of precision cardio-oncology, an emerging concept for personalizing the prevention and management of cardiovascular toxicities from cancer therapies, accounting for each individual patient’s unique factors. We outline steps that will need to be addressed by multidisciplinary teams of cardiologists and oncologists in partnership with regulators to implement future applications of hiPSCs in precision cardio-oncology. Recent Findings Current prevention of cardiovascular toxicity involves routine screenings and management of modifiable risk factors for cancer patients, as well as the initiation of cardioprotective medications. Despite recent advancements in precision cardio-oncology, knowledge gaps remain and limit our ability to appropriately predict with precision which patients will develop cardiovascular toxicity. Investigations using patient-specific CMs facilitate pharmacological discovery, mechanistic toxicity studies, and the identification of cardioprotective pathways. Studies with hiPSCs demonstrate that patients with comorbidities have more frequent adverse responses, compared to their counterparts without cardiac disease. Further studies utilizing hiPSC modeling should be considered, to evaluate the impact and mitigation of known cardiovascular risk factors, including blood pressure, body mass index (BMI), smoking status, diabetes, and physical activity in their role in cardiovascular toxicity after cancer therapy. Future real-world applications will depend on understanding the current use of hiPSC modeling in order for oncologists and cardiologists together to inform their potential to improve our clinical collaborative practice in cardio-oncology. Summary When applying such in vitro characterization, it is hypothesized that a safety score can be assigned to each individual to determine who has a greater probability of developing cardiovascular toxicity. Using hiPSCs to create personalized models and ultimately evaluate the cardiovascular toxicity of individuals’ treatments may one day lead to more patient-specific treatment plans in precision cardio-oncology while reducing cardiovascular disease (CVD) morbidity and mortality.
Collapse
|
4
|
Grabowska ME, Chun B, Moya R, Saucerman JJ. Computational model of cardiomyocyte apoptosis identifies mechanisms of tyrosine kinase inhibitor-induced cardiotoxicity. J Mol Cell Cardiol 2021; 155:66-77. [PMID: 33667419 DOI: 10.1016/j.yjmcc.2021.02.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/21/2021] [Accepted: 02/25/2021] [Indexed: 12/16/2022]
Abstract
Despite clinical observations of cardiotoxicity among cancer patients treated with tyrosine kinase inhibitors (TKIs), the molecular mechanisms by which these drugs affect the heart remain largely unknown. Mechanistic understanding of TKI-induced cardiotoxicity has been limited in part due to the complexity of tyrosine kinase signaling pathways and the multi-targeted nature of many of these drugs. TKI treatment has been associated with reactive oxygen species generation, mitochondrial dysfunction, and apoptosis in cardiomyocytes. To gain insight into the mechanisms mediating TKI-induced cardiotoxicity, this study constructs and validates a computational model of cardiomyocyte apoptosis, integrating intrinsic apoptotic and tyrosine kinase signaling pathways. The model predicts high levels of apoptosis in response to sorafenib, sunitinib, ponatinib, trastuzumab, and gefitinib, and lower levels of apoptosis in response to nilotinib and erlotinib, with the highest level of apoptosis induced by sorafenib. Knockdown simulations identified AP1, ASK1, JNK, MEK47, p53, and ROS as positive functional regulators of sorafenib-induced apoptosis of cardiomyocytes. Overexpression simulations identified Akt, IGF1, PDK1, and PI3K among the negative functional regulators of sorafenib-induced cardiomyocyte apoptosis. A combinatorial screen of the positive and negative regulators of sorafenib-induced apoptosis revealed ROS knockdown coupled with overexpression of FLT3, FGFR, PDGFR, VEGFR, or KIT as a particularly potent combination in reducing sorafenib-induced apoptosis. Network simulations of combinatorial treatment with sorafenib and the antioxidant N-acetyl cysteine (NAC) suggest that NAC may protect cardiomyocytes from sorafenib-induced apoptosis.
Collapse
Affiliation(s)
- Monika E Grabowska
- Department of Biomedical Engineering, University of Virginia; Charlottesville, Virginia 22908, USA
| | - Bryan Chun
- Department of Biomedical Engineering, University of Virginia; Charlottesville, Virginia 22908, USA
| | - Raquel Moya
- Department of Biomedical Engineering, University of Virginia; Charlottesville, Virginia 22908, USA
| | - Jeffrey J Saucerman
- Department of Biomedical Engineering, University of Virginia; Charlottesville, Virginia 22908, USA.
| |
Collapse
|
5
|
Ma W, Wei S, Zhang B, Li W. Molecular Mechanisms of Cardiomyocyte Death in Drug-Induced Cardiotoxicity. Front Cell Dev Biol 2020; 8:434. [PMID: 32582710 PMCID: PMC7283551 DOI: 10.3389/fcell.2020.00434] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 05/08/2020] [Indexed: 01/08/2023] Open
Abstract
Homeostatic regulation of cardiomyocytes plays a crucial role in maintaining the normal physiological activity of cardiac tissue. Severe cardiotoxicity results in cardiac diseases including but not limited to arrhythmia, myocardial infarction and myocardial hypertrophy. Drug-induced cardiotoxicity limits or forbids further use of the implicated drugs. Such drugs that are currently available in the clinic include anti-tumor drugs (doxorubicin, cisplatin, trastuzumab, etc.), antidiabetic drugs (rosiglitazone and pioglitazone), and an antiviral drug (zidovudine). This review focused on cardiomyocyte death forms and related mechanisms underlying clinical drug-induced cardiotoxicity, including apoptosis, autophagy, necrosis, necroptosis, pryoptosis, and ferroptosis. The key proteins involved in cardiomyocyte death signaling were discussed and evaluated, aiming to provide a theoretical basis and target for the prevention and treatment of drug-induced cardiotoxicity in the clinical practice.
Collapse
Affiliation(s)
- Wanjun Ma
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Shanshan Wei
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Wenqun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
6
|
Kitani T, Ong SG, Lam CK, Rhee JW, Zhang JZ, Oikonomopoulos A, Ma N, Tian L, Lee J, Telli ML, Witteles RM, Sharma A, Sayed N, Wu JC. Human-Induced Pluripotent Stem Cell Model of Trastuzumab-Induced Cardiac Dysfunction in Patients With Breast Cancer. Circulation 2020; 139:2451-2465. [PMID: 30866650 DOI: 10.1161/circulationaha.118.037357] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Molecular targeted chemotherapies have been shown to significantly improve the outcomes of patients who have cancer, but they often cause cardiovascular side effects that limit their use and impair patients' quality of life. Cardiac dysfunction induced by these therapies, especially trastuzumab, shows a distinct cardiotoxic clinical phenotype in comparison to the cardiotoxicity induced by conventional chemotherapies. METHODS We used the human induced pluripotent stem cell-derived cardiomyocyte (iPSC-CM) platform to determine the underlying cellular mechanisms in trastuzumab-induced cardiac dysfunction. We assessed the effects of trastuzumab on structural and functional properties in iPSC-CMs from healthy individuals and performed RNA-sequencing to further examine the effect of trastuzumab on iPSC-CMs. We also generated human induced pluripotent stem cells from patients receiving trastuzumab and examined whether patients' phenotype could be recapitulated in vitro by using patient-specific iPSC-CMs. RESULTS We found that clinically relevant doses of trastuzumab significantly impaired the contractile and calcium-handling properties of iPSC-CMs without inducing cardiomyocyte death or sarcomeric disorganization. RNA-sequencing and subsequent functional analysis revealed mitochondrial dysfunction and altered the cardiac energy metabolism pathway as primary causes of trastuzumab-induced cardiotoxic phenotype. Human iPSC-CMs generated from patients who received trastuzumab and experienced severe cardiac dysfunction were more vulnerable to trastuzumab treatment than iPSC-CMs generated from patients who did not experience cardiac dysfunction following trastuzumab therapy. It is important to note that metabolic modulation with AMP-activated protein kinase activators could avert the adverse effects induced by trastuzumab. CONCLUSIONS Our results indicate that alterations in cellular metabolic pathways in cardiomyocytes could be a key mechanism underlying the development of cardiac dysfunction following trastuzumab therapy; therefore, targeting the altered metabolism may be a promising therapeutic approach for trastuzumab-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Tomoya Kitani
- Stanford Cardiovascular Institute, CA (T.K., C.K.L., J.-W.R., J.Z.Z., A.O., N.M., L.T., R.M.W., N.S., J.C.W.).,Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA (T.K., C.K.L., J.-W.R., J.Z.Z., A.O., N.M., L.T., N.S., J.C.W.).,Department of Medicine, Division of Cardiology (T.K., C.K.L., J.-W.R., J.Z.Z., A.O., N.M., L.T., R.M.W., N.S., J.C.W.), Stanford University School of Medicine, CA
| | - Sang-Ging Ong
- Departments of Pharmacology and Medicine, University of Illinois College of Medicine, Chicago (S.-G.P)
| | - Chi Keung Lam
- Stanford Cardiovascular Institute, CA (T.K., C.K.L., J.-W.R., J.Z.Z., A.O., N.M., L.T., R.M.W., N.S., J.C.W.).,Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA (T.K., C.K.L., J.-W.R., J.Z.Z., A.O., N.M., L.T., N.S., J.C.W.).,Department of Medicine, Division of Cardiology (T.K., C.K.L., J.-W.R., J.Z.Z., A.O., N.M., L.T., R.M.W., N.S., J.C.W.), Stanford University School of Medicine, CA
| | - June-Wha Rhee
- Stanford Cardiovascular Institute, CA (T.K., C.K.L., J.-W.R., J.Z.Z., A.O., N.M., L.T., R.M.W., N.S., J.C.W.).,Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA (T.K., C.K.L., J.-W.R., J.Z.Z., A.O., N.M., L.T., N.S., J.C.W.).,Department of Medicine, Division of Cardiology (T.K., C.K.L., J.-W.R., J.Z.Z., A.O., N.M., L.T., R.M.W., N.S., J.C.W.), Stanford University School of Medicine, CA
| | - Joe Z Zhang
- Stanford Cardiovascular Institute, CA (T.K., C.K.L., J.-W.R., J.Z.Z., A.O., N.M., L.T., R.M.W., N.S., J.C.W.).,Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA (T.K., C.K.L., J.-W.R., J.Z.Z., A.O., N.M., L.T., N.S., J.C.W.).,Department of Medicine, Division of Cardiology (T.K., C.K.L., J.-W.R., J.Z.Z., A.O., N.M., L.T., R.M.W., N.S., J.C.W.), Stanford University School of Medicine, CA
| | - Angelos Oikonomopoulos
- Stanford Cardiovascular Institute, CA (T.K., C.K.L., J.-W.R., J.Z.Z., A.O., N.M., L.T., R.M.W., N.S., J.C.W.).,Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA (T.K., C.K.L., J.-W.R., J.Z.Z., A.O., N.M., L.T., N.S., J.C.W.).,Department of Medicine, Division of Cardiology (T.K., C.K.L., J.-W.R., J.Z.Z., A.O., N.M., L.T., R.M.W., N.S., J.C.W.), Stanford University School of Medicine, CA
| | - Ning Ma
- Stanford Cardiovascular Institute, CA (T.K., C.K.L., J.-W.R., J.Z.Z., A.O., N.M., L.T., R.M.W., N.S., J.C.W.).,Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA (T.K., C.K.L., J.-W.R., J.Z.Z., A.O., N.M., L.T., N.S., J.C.W.).,Department of Medicine, Division of Cardiology (T.K., C.K.L., J.-W.R., J.Z.Z., A.O., N.M., L.T., R.M.W., N.S., J.C.W.), Stanford University School of Medicine, CA
| | - Lei Tian
- Stanford Cardiovascular Institute, CA (T.K., C.K.L., J.-W.R., J.Z.Z., A.O., N.M., L.T., R.M.W., N.S., J.C.W.).,Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA (T.K., C.K.L., J.-W.R., J.Z.Z., A.O., N.M., L.T., N.S., J.C.W.).,Department of Medicine, Division of Cardiology (T.K., C.K.L., J.-W.R., J.Z.Z., A.O., N.M., L.T., R.M.W., N.S., J.C.W.), Stanford University School of Medicine, CA
| | - Jaecheol Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea (J.L.)
| | - Melinda L Telli
- Division of Oncology (M.L.T.), Stanford University School of Medicine, CA
| | - Ronald M Witteles
- Stanford Cardiovascular Institute, CA (T.K., C.K.L., J.-W.R., J.Z.Z., A.O., N.M., L.T., R.M.W., N.S., J.C.W.).,Department of Medicine, Division of Cardiology (T.K., C.K.L., J.-W.R., J.Z.Z., A.O., N.M., L.T., R.M.W., N.S., J.C.W.), Stanford University School of Medicine, CA
| | - Arun Sharma
- Department of Genetics, Harvard Medical School, Boston, MA (A.S.)
| | - Nazish Sayed
- Stanford Cardiovascular Institute, CA (T.K., C.K.L., J.-W.R., J.Z.Z., A.O., N.M., L.T., R.M.W., N.S., J.C.W.).,Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA (T.K., C.K.L., J.-W.R., J.Z.Z., A.O., N.M., L.T., N.S., J.C.W.).,Department of Medicine, Division of Cardiology (T.K., C.K.L., J.-W.R., J.Z.Z., A.O., N.M., L.T., R.M.W., N.S., J.C.W.), Stanford University School of Medicine, CA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, CA (T.K., C.K.L., J.-W.R., J.Z.Z., A.O., N.M., L.T., R.M.W., N.S., J.C.W.).,Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA (T.K., C.K.L., J.-W.R., J.Z.Z., A.O., N.M., L.T., N.S., J.C.W.).,Stanford Cancer Institute, CA (J.C.W.).,Department of Medicine, Division of Cardiology (T.K., C.K.L., J.-W.R., J.Z.Z., A.O., N.M., L.T., R.M.W., N.S., J.C.W.), Stanford University School of Medicine, CA
| |
Collapse
|
7
|
Saleme B, Gurtu V, Zhang Y, Kinnaird A, Boukouris AE, Gopal K, Ussher JR, Sutendra G. Tissue-specific regulation of p53 by PKM2 is redox dependent and provides a therapeutic target for anthracycline-induced cardiotoxicity. Sci Transl Med 2019; 11:eaau8866. [PMID: 30728290 DOI: 10.1126/scitranslmed.aau8866] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/28/2018] [Indexed: 12/14/2022]
Abstract
Chemotherapy-induced cardiotoxicity (CIC) is a common clinical problem that compromises effective anticancer therapies. Many chemotherapeutics (including anthracyclines, such as doxorubicin) induce the proapoptotic transcription factor p53 in the tumor and nonspecifically in the heart, promoting heart failure. Although inhibition of p53 shows benefit in preclinical heart failure models, it would not be an attractive adjuvant therapy for CIC, because it would prevent tumor regression. A p53-targeting therapy that would decrease chemotherapy-induced apoptosis in the myocardium and, at the same time, enhance apoptosis in the tumor would be ideal. Here, we propose that differences in oxygen tension between the myocardium and the tumor could provide a platform for redox-dependent tissue-specific therapies. We show by coimmunoprecipitation and mass spectrometry that the redox-regulated pyruvate kinase muscle 2 (PKM2) directly binds with p53 and that the redox status of cysteine-423 of tetrameric (but not monomeric) PKM2 is critical for the differential regulation of p53 transcriptional activity. Tetrameric PKM2 suppresses p53 transcriptional activity and apoptosis in a high oxidation state but enhances them in a low oxidation one. We show that the oxidation state (along with cysteine-423 oxidation) is higher in the heart compared to the tumor of the same animal. Treatment with TEPP-46 (a compound that stabilizes tetrameric PKM2) suppressed doxorubicin-induced cardiomyocyte apoptosis, preventing cardiac dysfunction, but enhanced cancer cell apoptosis and tumor regression in the same animals in lung cancer models. Thus, our work suggests that redox-dependent differences in common proteins expressed in the myocardium and tumor can be exploited therapeutically for tissue selectivity in CIC.
Collapse
Affiliation(s)
- Bruno Saleme
- Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2J7, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta T6G 2J7, Canada
| | - Vikram Gurtu
- Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2J7, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta T6G 2J7, Canada
| | - Yongneng Zhang
- Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2J7, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta T6G 2J7, Canada
| | - Adam Kinnaird
- Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2J7, Canada
- Department of Surgery, University of Alberta, Edmonton, Alberta T6G 1Z1, Canada
| | - Aristeidis E Boukouris
- Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2J7, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta T6G 2J7, Canada
| | - Keshav Gopal
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta T6G 2J7, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2H1, Canada
| | - John R Ussher
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta T6G 2J7, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2H1, Canada
| | - Gopinath Sutendra
- Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2J7, Canada.
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta T6G 2J7, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Alberta T6G 2J7, Canada
| |
Collapse
|
8
|
Choe JC, Choi JH, Choi JH, Ahn J, Park JS, Lee HW, Oh JH, Lee HC, Cha KS, Hong TJ. Prolonged electromechanical delay as an early predictor of trastuzumab-induced cardiotoxicity in patients undergoing treatment for breast cancer. Clin Cardiol 2018; 41:1308-1314. [PMID: 30239009 DOI: 10.1002/clc.23022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 07/02/2018] [Accepted: 07/03/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND We aimed to investigate if left ventricular electromechanical delay (LVEMD) prolongation predicts trastuzumab-induced cardiotoxicity (TIC) in breast cancer patients. HYPOTHESIS LVEMD prolongation on serial echocardiograms could be an indicator of subclinical TIC. METHODS We included 237 breast cancer patients receiving trastuzumab chemotherapy, who underwent echocardiography at baseline and at 6 and 12 months after trastuzumab initiation. LVEMD was defined as the time from electrical activation to myocardial contraction. TIC was defined as left ventricular ejection fraction (LVEF) worsening to <55%, either as symptomatic decrease of ≥5% or asymptomatic decrease of ≥10%. RESULTS During a mean follow-up of 547 days, TIC occurred in 27 patients (11.4%). Changes in the time intervals from QRS onset on electrocardiography to the beginning and peak of transaortic flow on pulsed-wave Doppler echocardiography (ie, ΔLVEMDi and ΔLVEMDp, respectively) were independent predictors of TIC. On receiver operating characteristic curve analysis, the optimal cutoff value for TIC prediction was 23 milliseconds for ΔLVEMDi (sensitivity, 0.85; specificity, 0.78; area under the curve [AUC], 0.882) and 21 milliseconds for ΔLVEMDp (sensitivity, 0.96; specificity, 0.68; AUC, 0.860). The C-index for TIC prediction increased significantly after adding ΔLVEMDi and ΔLVEMDp to conventional models that included clinical variables, baseline LVEF, and changes in global longitudinal peak systolic strain. Similarly, adding ΔLVEMDi or ΔLVEMDp to conventional models provided significant improvement in discrimination capability for TIC prediction (integrated discrimination improvement and continuous net reclassification improvement index). CONCLUSION ΔLVEMDi and ΔLVEMDp may serve as predictors of subclinical cardiac dysfunction in breast cancer patients receiving trastuzumab.
Collapse
Affiliation(s)
- Jeong Cheon Choe
- Department of Cardiology and Medical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Jung Hyun Choi
- Department of Cardiology and Medical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Jong Hyun Choi
- Department of Cardiology and Medical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Jinhee Ahn
- Department of Cardiology and Medical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Jin Sup Park
- Department of Cardiology and Medical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Hye Won Lee
- Department of Cardiology and Medical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Jun-Hyok Oh
- Department of Cardiology and Medical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Han Cheol Lee
- Department of Cardiology and Medical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Kwang Soo Cha
- Department of Cardiology and Medical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Taek Jong Hong
- Department of Cardiology and Medical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| |
Collapse
|
9
|
Dokmanovic M, King KE, Mohan N, Endo Y, Wu WJ. Cardiotoxicity of ErbB2-targeted therapies and its impact on drug development, a spotlight on trastuzumab. Expert Opin Drug Metab Toxicol 2017; 13:755-766. [PMID: 28571477 DOI: 10.1080/17425255.2017.1337746] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Trastuzumab, a therapeutic monoclonal antibody directed against ErbB2, is often noted as a successful example of targeted therapy. Trastuzumab improved outcomes for many patients with ErbB2-positive breast and gastric cancers, however, cardiac side effects [e.g., left ventricular dysfunction and congestive heart failure (CHF)] were reported in the early phase clinical studies. This finding, subsequently corroborated by multiple clinical studies, raised concerns that the observed cardiotoxicity induced by trastuzumab might adversely impact the clinical development of other therapeutics targeting ErbB family members. Areas covered: In this review we summarize both basic research and clinical findings regarding trastuzumab-induced cardiotoxicity and assess if there has been an impact of trastuzumab-induced cardiotoxicity on the development of other agents targeting ErbB family members. Expert opinion: There are a number of scientific gaps that are critically important to address for the continued success of HER2-targeted agents. These include: 1) elucidating the molecular mechanisms contributing to cardiotoxicity; 2) developing relevant preclinical testing systems for predicting cardiotoxicity; 3) developing clinical strategies to identify patients at risk of cardiotoxicity; and 4) enhancing management of clinical symptoms of cardiotoxicity.
Collapse
Affiliation(s)
- Milos Dokmanovic
- a Division of Biotechnology Review and Research I, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research , U.S. Food and Drug Administration , Silver Spring , MD 20993 , USA
| | - Kathryn E King
- a Division of Biotechnology Review and Research I, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research , U.S. Food and Drug Administration , Silver Spring , MD 20993 , USA
| | - Nishant Mohan
- a Division of Biotechnology Review and Research I, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research , U.S. Food and Drug Administration , Silver Spring , MD 20993 , USA
| | - Yukinori Endo
- a Division of Biotechnology Review and Research I, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research , U.S. Food and Drug Administration , Silver Spring , MD 20993 , USA
| | - Wen Jin Wu
- a Division of Biotechnology Review and Research I, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research , U.S. Food and Drug Administration , Silver Spring , MD 20993 , USA
| |
Collapse
|
10
|
Belmonte F, Das S, Sysa-Shah P, Sivakumaran V, Stanley B, Guo X, Paolocci N, Aon MA, Nagane M, Kuppusamy P, Steenbergen C, Gabrielson K. ErbB2 overexpression upregulates antioxidant enzymes, reduces basal levels of reactive oxygen species, and protects against doxorubicin cardiotoxicity. Am J Physiol Heart Circ Physiol 2015; 309:H1271-80. [PMID: 26254336 DOI: 10.1152/ajpheart.00517.2014] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 07/31/2015] [Indexed: 11/22/2022]
Abstract
Levels of the HER2/ErbB2 protein in the heart are upregulated in some women during breast cancer therapy, and these women are at high risk for developing heart dysfunction after sequential treatment with anti-ErbB2/trastuzumab or doxorubicin. Doxorubicin is known to increase oxidative stress in the heart, and thus we considered the possibility that ErbB2 protein influences the status of cardiac antioxidant defenses in cardiomyocytes. In this study, we measured reactive oxygen species (ROS) in cardiac mitochondria and whole hearts from mice with cardiac-specific overexpression of ErbB2 (ErbB2(tg)) and found that, compared with control mice, high levels of ErbB2 in myocardium result in lower levels of ROS in mitochondria (P = 0.0075) and whole hearts (P = 0.0381). Neonatal cardiomyocytes isolated from ErbB2(tg) hearts have lower ROS levels and less cellular death (P < 0.0001) following doxorubicin treatment. Analyzing antioxidant enzyme levels and activities, we found that ErbB2(tg) hearts have increased levels of glutathione peroxidase 1 (GPx1) protein (P < 0.0001) and GPx activity (P = 0.0031) in addition to increased levels of two known GPx activators, c-Abl (P = 0.0284) and Arg (P < 0.0001). Interestingly, although mitochondrial ROS emission is reduced in the ErbB2(tg) hearts, oxygen consumption rates and complex I activity are similar to control littermates. Compared with these in vivo studies, H9c2 cells transfected with ErbB2 showed less cellular toxicity and produced less ROS (P < 0.0001) after doxorubicin treatment but upregulated GR activity (P = 0.0237) instead of GPx. Our study shows that ErbB2-dependent signaling contributes to antioxidant defenses and suggests a novel mechanism by which anticancer therapies involving ErbB2 antagonists can harm myocardial structure and function.
Collapse
Affiliation(s)
- Frances Belmonte
- Program in Molecular and Translational Toxicology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Samarjit Das
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Polina Sysa-Shah
- Department of Molecular and Comparative Pathobiology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Vidhya Sivakumaran
- Division of Cardiology, Johns Hopkins Medical Institutions, Baltimore, Maryland; and
| | - Brian Stanley
- Division of Cardiology, Johns Hopkins Medical Institutions, Baltimore, Maryland; and
| | - Xin Guo
- Department of Molecular and Comparative Pathobiology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Nazareno Paolocci
- Division of Cardiology, Johns Hopkins Medical Institutions, Baltimore, Maryland; and
| | - Miguel A Aon
- Division of Cardiology, Johns Hopkins Medical Institutions, Baltimore, Maryland; and
| | - Masaki Nagane
- Department of Radiology, EPR Center for the Study of Viable Systems, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Periannan Kuppusamy
- Department of Radiology, EPR Center for the Study of Viable Systems, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Charles Steenbergen
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kathleen Gabrielson
- Program in Molecular and Translational Toxicology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Molecular and Comparative Pathobiology, Johns Hopkins Medical Institutions, Baltimore, Maryland;
| |
Collapse
|
11
|
Baron KB, Brown JR, Heiss BL, Marshall J, Tait N, Tkaczuk KHR, Gottlieb SS. Trastuzumab-induced cardiomyopathy: incidence and associated risk factors in an inner-city population. J Card Fail 2014; 20:555-9. [PMID: 24905295 DOI: 10.1016/j.cardfail.2014.05.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/23/2014] [Accepted: 05/28/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Although it is known that trastuzumab causes cardiotoxicity, its extent and reversibility are still in question. Earlier studies have not evaluated consecutive patients with reproducible nuclear ventriculography. OBJECTIVE We sought to evaluate the baseline characteristics which predispose patients to increased risk of trastuzumab cardiotoxicity and to determine the natural history of the cardiotoxicity. METHODS AND RESULTS Left ventricular ejection fraction (LVEF) was measured in 76 women aged 36-73 years who had been treated with trastuzumab at the University of Maryland Greenebaum Cancer Center. LVEF was determined at baseline and then 3, 6, 9, and 12 months after treatment initiation. Cardiotoxicity was defined as ≥ 16% decrease in LVEF or ≥ 10% decrease in LVEF to <50%. There were no differences in comorbidities, earlier treatment, or demographics between patients with and without trastuzumab-induced cardiomyopathy except that African Americans were more likely to develop decreased LVEF (P < .05). Twenty-one patients (28%) met criteria for cardiotoxicity. Four of those patients were continued on trastuzumab and 17 patients had therapy withheld at some point. Only 1 patient developed symptomatic heart failure requiring inpatient hospitalization. LVEF improved in most patients regardless of whether or not trastuzumab was continued. CONCLUSIONS Decreased LVEF while undergoing trastuzumab therapy occurs frequently and is usually reversible. African Americans had a higher risk of developing decreased LVEF. These findings raise clinically important questions as to whether it is necessary to discontinue trastuzumab for asymptomatic decrease in LVEF and whether African Americans are more predisposed to a decrease in LVEF while receiving trastuzumab. Further studies carefully assessing LVEF should address these hypotheses.
Collapse
Affiliation(s)
- Kaitlin B Baron
- University of Maryland School of Medicine, Divisions of Cardiology and Hematology/Oncology, Department of Medicine, Baltimore, MD
| | - Jennifer R Brown
- University of Maryland School of Medicine, Divisions of Cardiology and Hematology/Oncology, Department of Medicine, Baltimore, MD
| | - Brian L Heiss
- University of Maryland School of Medicine, Divisions of Cardiology and Hematology/Oncology, Department of Medicine, Baltimore, MD
| | - Joanne Marshall
- University of Maryland School of Medicine, Divisions of Cardiology and Hematology/Oncology, Department of Medicine, Baltimore, MD
| | - Nancy Tait
- University of Maryland School of Medicine, Divisions of Cardiology and Hematology/Oncology, Department of Medicine, Baltimore, MD
| | - Katherine H R Tkaczuk
- University of Maryland School of Medicine, Divisions of Cardiology and Hematology/Oncology, Department of Medicine, Baltimore, MD
| | - Stephen S Gottlieb
- University of Maryland School of Medicine, Divisions of Cardiology and Hematology/Oncology, Department of Medicine, Baltimore, MD.
| |
Collapse
|
12
|
Heart remodeling induced by adjuvant trastuzumab-containing chemotherapy for breast cancer overexpressing human epidermal growth factor receptor type 2: A prospective study. Pharmacol Res 2013; 78:41-8. [DOI: 10.1016/j.phrs.2013.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 10/14/2013] [Accepted: 10/15/2013] [Indexed: 01/08/2023]
|
13
|
Aitelhaj M, Lkhouyaali S, Rais G, Mohtaram A, Raissouni S, Ghissassi B, Boutayeb S, Mrabti H, Bensouda Y, Errihani H. Cardiac safety of the adjuvant Trastuzumab in a Moroccan population: observational monocentric study of about 100 patients. BMC Res Notes 2013; 6:339. [PMID: 23985308 PMCID: PMC3765764 DOI: 10.1186/1756-0500-6-339] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 08/21/2013] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Trastuzumab is a humanized monoclonal antibody that binds to the extracellular domain of the human epidermal growth factor receptor 2 (HER 2) and inhibits carcinoma cellular proliferation. Its use as an adjuvant for a period of one year is currently an internationally recognised standard for the treatment of localized breast cancer. Its use is generally well tolerated, with the most salient side effect being a particular cardiotoxicity that is typically manifested by an asymptomatic decrease in the left ventricular ejection fraction (LVEF) requiring careful monitoring before and during treatment. To evaluate the cardiac safety of trastuzumab we conducted a retrospective observational study of patients with HER2-positive localized breast cancer treated with trastuzumab between May 2008 and May 2010 in Morocco. FINDINGS The study comprised of 100 patients. The average in LVEF before the start of trastuzumab was 70%, and at the end of treatment 66%, a decrease in absolute terms of 4%; this difference was statistically significant. 38% of the patients exhibited cardiotoxicity. 97% of our patients have completed treatment, of whom 23% with a provisional arrest because of a regressive fall in LVEF. A final arrest has been made in 3% of cases due to a non regressive reduction in LVEF. A symptomatic heart failure was found in three patients. Analysis of risk factors toxicity found a baseline LVEF higher in the patients who met cardiotoxicity than the rest of our sample. CONCLUSIONS The cardiac safety in our study seems comparable with the literature data but located in the upper range of levels of toxicity. Cardiotoxicity is the major complication of Trastuzumab, of which LV dysfunction is the most common. Most instances are transient, asymptomatic and reversible.
Collapse
Affiliation(s)
- Meryem Aitelhaj
- Medical oncology Department, National Institute of Oncology, Rabat, Morocco.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Lang XE, Wang X, Zhang KR, Lv JY, Jin JH, Li QS. Isoflurane preconditioning confers cardioprotection by activation of ALDH2. PLoS One 2013; 8:e52469. [PMID: 23468836 PMCID: PMC3585331 DOI: 10.1371/journal.pone.0052469] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Accepted: 11/13/2012] [Indexed: 12/22/2022] Open
Abstract
The volatile anesthetic, isoflurane, protects the heart from ischemia/reperfusion (I/R) injury. Aldehyde dehydrogenase 2 (ALDH2) is thought to be an endogenous mechanism against ischemia-reperfusion injury possibly through detoxification of toxic aldehydes. We investigated whether cardioprotection by isoflurane depends on activation of ALDH2.Anesthetized rats underwent 40 min of coronary artery occlusion followed by 120 min of reperfusion and were randomly assigned to the following groups: untreated controls, isoflurane preconditioning with and without an ALDH2 inhibitor, the direct activator of ALDH2 or a protein kinase C (PKCε) inhibitor. Pretreatment with isoflurane prior to ischemia reduced LDH and CK-MB levels and infarct size, while it increased phosphorylation of ALDH2, which could be blocked by the ALDH2 inhibitor, cyanamide. Isolated neonatal cardiomyocytes were treated with hypoxia followed by reoxygenation. Hypoxia/reoxygenation (H/R) increased cardiomyocyte apoptosis and injury which were attenuated by isoflurane and forced the activation of ALDH2. In contrast, the effect of isoflurane-induced protection was almost abolished by knockdown of ALDH2. Activation of ALDH2 and cardioprotection by isoflurane were substantially blocked by the PKCε inhibitor. Activation of ALDH2 by mitochondrial PKCε plays an important role in the cardioprotection of isoflurane in myocardium I/R injury.
Collapse
Affiliation(s)
- Xiao-E Lang
- Department of Cardiology, The First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiong Wang
- Department of Cardiology, The First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ke-Rang Zhang
- Department of Psychiatry, The First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ji-Yuan Lv
- Department of Cardiology, The First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jian-Hua Jin
- Department of Nuclear Medicine, The First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Qing-Shan Li
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
15
|
Abstract
Damage to heart cells leading to heart failure is a known complication of well-established cancer therapies including anthracycline antibiotics and radiation therapy, and the cardiovascular complications of these therapies has been controlled in large part through dose limitations and modifications of delivery methods. Recent research into the cellular and molecular mechanisms for the cardiovascular effects of these therapies may lead to other cardioprotective strategies that improve effectiveness of cancer treatments. Newer cancer therapies that have been developed based upon specifically targeting oncogene signaling also have been associated with heart failure. Rapid development of a detailed understanding of how these agents cause cardiac dysfunction promises to improve outcomes in cancer patients, as well as stimulate concepts of cardiovascular homeostasis that will likely accelerate development of cardiovascular therapies.
Collapse
|
16
|
Piotrowski G, Gawor R, Stasiak A, Gawor Z, Potemski P, Banach M. Cardiac complications associated with trastuzumab in the setting of adjuvant chemotherapy for breast cancer overexpressing human epidermal growth factor receptor type 2 - a prospective study. Arch Med Sci 2012; 8:227-35. [PMID: 22661994 PMCID: PMC3361034 DOI: 10.5114/aoms.2012.28549] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 05/24/2011] [Accepted: 06/11/2011] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Trastuzumab, a recombinant humanized monoclonal antibody, is targeted against the external domain of the human epidermal growth factor receptor type 2 (HER2). It improves efficacy of HER2-positive breast cancer treatment. The authors present their experience with patients (pts) treated with trastuzumab in the aspects of cardiac complications. MATERIAL AND METHODS We observed prospectively 253 women with early positive HER2 breast cancer treated with trastuzumab. Assessment of cardiovascular status, ECG and echocardiography was performed initially and every 3 months until 6(th) month during follow-up. RESULTS Cardiac complications developed in 52 pts (20.55%) and included: asymptomatic left ventricle dysfunction (43), symptomatic heart failure (6), new asymptomatic LBBB (1); new negative T-waves in ECG (2). There was a progressive decline in left ventricular ejection fraction (LVEF) during treatment. It was more enhanced in pts with cardiac complications. Following trastuzumab termination/discontinuation LVEF increased but at month 18 still remained significantly lower than initially in both groups (61.07 ±4.84 vs. 59.97 ±5.23 - no cardiac complications; p < 0.05; 58.14 ±4.08% vs. 53.08 ±5.74% - cardiac complications; p < 0.05). During 6-month follow-up 33 out of 46 pts experienced an improvement in left ventricular status. In 13 pts in whom trastuzumab was discontinued, it was restarted; 6 of them successfully completed total therapy. Univariate analysis revealed no association between any cardiovascular risk factor and the development of cardiotoxicity. CONCLUSIONS One out of five treated patients discontinues trastuzumab in an adjuvant setting due to cardiac complications. LV dysfunction is the most frequent. Routine cardiac monitoring should be obligatory.
Collapse
Affiliation(s)
- Grzegorz Piotrowski
- Department of Cardiology, M. Kopernik Specialist District Hospital, Lodz, Poland
| | - Rafał Gawor
- Department of Cardiology, M. Kopernik Specialist District Hospital, Lodz, Poland
| | - Arkadiusz Stasiak
- Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom
| | - Zenon Gawor
- Department of Cardiology, M. Kopernik Specialist District Hospital, Lodz, Poland
| | - Piotr Potemski
- Department of Chemotherapy, Medical University of Lodz, N. Copernicus Memorial Hospital, Lodz, Poland
| | - Maciej Banach
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, Poland
| |
Collapse
|