1
|
Hasan MM, Kawabata T, Yan C, Sekiya R, Goto S, Urata Y, Li TS. Ionizing radiation induces mild and dose-independent damage to mitochondria in newt cells. Exp Cell Res 2025; 448:114575. [PMID: 40280319 DOI: 10.1016/j.yexcr.2025.114575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 04/15/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
In addition to remarkable regenerative abilities, newts demonstrate a heightened tolerance to radiation compared to mammals. Mitochondria play profound role in cell survival when cells undergo environmental stresses. Thus, our study sought to elucidate the impact of ionizing radiation (IR) on the mitochondria of a newt model Pleurodeles waltl. Primary cells derived from limb tissue of P. waltl were exposed to 0, 5, 10, or 15 Gy X-ray and analyzed at 24h post-irradiation (PIR). Analysis using MitoTracker Red labeling revealed a maximal (p < 0.001) in mitochondrial fission in cells exposed to 5 Gy IR, while mitochondrial fission in cells exposed to 10 and 15 Gy IR was comparable (p < 0.01). Mitochondrial superoxide levels increased in a reverse dose-dependent manner; notably, cells treated with 5 Gy IR produced significantly (p < 0.05) higher mitochondrial superoxide. Mitochondrial membrane potential (ΔΨm) decreased significantly (p < 0.01) with similar extent across all IR-treated groups. Though ΔΨm declined, the ATP content was not changed due to IR. Result from the MTT assay indicated no impairment in mitochondrial activity. Cell counting data suggest negligible impact of IR on viability of cells; however, the phase contrast imaging revealed senescent like morphology of cells. Taken together, cells of P. waltl show mild changes in morphology and function of the mitochondria in response to IR, but seem highly tolerant.
Collapse
Affiliation(s)
- Md Mahmudul Hasan
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan; Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Tsuyoshi Kawabata
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan; Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Chen Yan
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Reiko Sekiya
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan; Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Shinji Goto
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan; Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Yoshishige Urata
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan; Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
| |
Collapse
|
2
|
Feldman TB, Yakovleva MA, Ostrovsky MA. Retinoids in lipofuscin granules from retinal pigment epithelium as biomarkers of the damaging effect of ionizing radiation. Exp Eye Res 2025; 252:110270. [PMID: 39922526 DOI: 10.1016/j.exer.2025.110270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/05/2024] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
Lipofuscin granules accumulate in the retinal pigment epithelium with age, especially in patients with visual diseases, including progressive age-related macular degeneration. Retinoids (bisretinoids and their oxidation products) are major sources of lipofuscin granule fluorescence. The aim of this work was to analyze the radiation-mediated oxidation of retinoids in lipofuscin granules obtained from the human cadaver eye retinal pigment epithelium. Fluorescent and chromatographic analyses of retinoids were performed before and after irradiation of lipofuscin granules with accelerated protons. The fluorescent properties of chloroform extracts from irradiated lipofuscin granules exhibited an increase in fluorescence intensity in the short-wavelength region of 555 nm. This change is associated with an increase in the quantity of retinoid oxidation cytotoxic products after accelerated proton exposure. The radiation-induced oxidation of retinoids caused a noticeable change in its fluorescent properties allows us to consider this phenomenon as a potential opportunity for non-invasively assessment of the degree of radiation exposure and its relative biological effect in humans. Thus, this research proposes a new strategy for assessing the extent of radiation exposure to humans, which evaluates the effects of ionizing radiation on human eye tissues. This approach is based on the principles of the modern non-invasive method of fundus autofluorescence used in ophthalmology for the diagnosis of the retina and retinal pigment epithelium degenerative diseases.
Collapse
Affiliation(s)
- Tatiana B Feldman
- Department of Molecular Physiology, Biological Faculty, Lomonosov Moscow State University, Leninskiye Gory 1, Moscow, 119234, Russia; Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, Moscow, 119334, Russia.
| | - Marina A Yakovleva
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, Moscow, 119334, Russia
| | - Mikhail A Ostrovsky
- Department of Molecular Physiology, Biological Faculty, Lomonosov Moscow State University, Leninskiye Gory 1, Moscow, 119234, Russia; Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, Moscow, 119334, Russia
| |
Collapse
|
3
|
Xie Y, Liu X, Xie D, Zhang W, Zhao H, Guan H, Zhou PK. Voltage-dependent anion channel 1 mediates mitochondrial fission and glucose metabolic reprogramming in response to ionizing radiation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174246. [PMID: 38955266 DOI: 10.1016/j.scitotenv.2024.174246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
The ionizing radiation (IR) represents a formidable challenge as an environmental factor to mitochondria, leading to disrupt cellular energy metabolism and posing health risks. Although the deleterious impacts of IR on mitochondrial function are recognized, the specific molecular targets remain incompletely elucidated. In this study, HeLa cells subjected to γ-rays exhibited concomitant oxidative stress, mitochondrial structural alterations, and diminished ATP production capacity. The γ-rays induced a dose-dependent induction of mitochondrial fission, simultaneously manifested by an elevated S616/S637 phosphorylation ratio of the dynamin-related protein 1 (DRP1) and a reduction in the expression of the mitochondrial fusion protein mitofusin 2 (MFN2). Knockdown of DRP1 effectively mitigated γ-rays-induced mitochondrial network damage, implying that DRP1 phosphorylation may act as an effector of radiation-induced mitochondrial damage. The mitochondrial outer membrane protein voltage-dependent anion channel 1 (VDAC1) was identified as a crucial player in IR-induced mitochondrial damage. The VDAC1 inhibitor 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), counteracts the excessive mitochondrial fission induced by γ-rays, consequently rebalancing the glycolytic and oxidative phosphorylation equilibrium. This metabolic shift was uncovered to enhance glycolytic capacity, thus fortifying cellular resilience and elevating the radiosensitivity of cancer cells. These findings elucidate the intricate regulatory mechanisms governing mitochondrial morphology under radiation response. It is anticipated that the development of targeted drugs directed against VDAC1 may hold promise in augmenting the sensitivity of tumor cells to radiotherapy and chemotherapy.
Collapse
Affiliation(s)
- Ying Xie
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, PR China; Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, PR China
| | - Xiaochang Liu
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Dafei Xie
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Wen Zhang
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Hongling Zhao
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Hua Guan
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China.
| | - Ping-Kun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China.
| |
Collapse
|
4
|
Tak H, Cha S, Hong Y, Jung M, Ryu S, Han S, Jeong SM, Kim W, Lee EK. The miR-30-5p/TIA-1 axis directs cellular senescence by regulating mitochondrial dynamics. Cell Death Dis 2024; 15:404. [PMID: 38858355 PMCID: PMC11164864 DOI: 10.1038/s41419-024-06797-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/12/2024]
Abstract
Senescent cells exhibit a diverse spectrum of changes in their morphology, proliferative capacity, senescence-associated secretory phenotype (SASP) production, and mitochondrial homeostasis. These cells often manifest with elongated mitochondria, a hallmark of cellular senescence. However, the precise regulatory mechanisms orchestrating this phenomenon remain predominantly unexplored. In this study, we provide compelling evidence for decreases in TIA-1, a pivotal regulator of mitochondrial dynamics, in models of both replicative senescence and ionizing radiation (IR)-induced senescence. The downregulation of TIA-1 was determined to trigger mitochondrial elongation and enhance the expression of senescence-associated β-galactosidase, a marker of cellular senescence, in human foreskin fibroblast HS27 cells and human keratinocyte HaCaT cells. Conversely, the overexpression of TIA-1 mitigated IR-induced cellular senescence. Notably, we identified the miR-30-5p family as a novel factor regulating TIA-1 expression. Augmented expression of the miR-30-5p family was responsible for driving mitochondrial elongation and promoting cellular senescence in response to IR. Taken together, our findings underscore the significance of the miR-30-5p/TIA-1 axis in governing mitochondrial dynamics and cellular senescence.
Collapse
Affiliation(s)
- Hyosun Tak
- Department of Biochemistry, The Catholic University of Korea, Seoul, 06591, South Korea
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, 69008, France
| | - Seongho Cha
- Department of Biochemistry, The Catholic University of Korea, Seoul, 06591, South Korea
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Youlim Hong
- Department of Biochemistry, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Myeongwoo Jung
- Department of Biochemistry, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Seungyeon Ryu
- Department of Biochemistry, The Catholic University of Korea, Seoul, 06591, South Korea
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Sukyoung Han
- Department of Biochemistry, The Catholic University of Korea, Seoul, 06591, South Korea
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Seung Min Jeong
- Department of Biochemistry, The Catholic University of Korea, Seoul, 06591, South Korea
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, 06591, South Korea
- Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Wook Kim
- Department of Molecular Science & Technology, Ajou University, Suwon, 16499, South Korea
| | - Eun Kyung Lee
- Department of Biochemistry, The Catholic University of Korea, Seoul, 06591, South Korea.
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, 06591, South Korea.
- Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea.
| |
Collapse
|
5
|
Whitcomb LA, Cao X, Thomas D, Wiese C, Pessin AS, Zhang R, Wu JC, Weil MM, Chicco AJ. Mitochondrial reactive oxygen species impact human fibroblast responses to protracted γ-ray exposures. Int J Radiat Biol 2024; 100:890-902. [PMID: 38631047 PMCID: PMC11471570 DOI: 10.1080/09553002.2024.2338518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/06/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024]
Abstract
Purpose: Continuous exposure to ionizing radiation at a low dose rate poses significant health risks to humans on deep space missions, prompting the need for mechanistic studies to identify countermeasures against its deleterious effects. Mitochondria are a major subcellular locus of radiogenic injury, and may trigger secondary cellular responses through the production of reactive oxygen species (mtROS) with broader biological implications. Methods and Materials: To determine the contribution of mtROS to radiation-induced cellular responses, we investigated the impacts of protracted γ-ray exposures (IR; 1.1 Gy delivered at 0.16 mGy/min continuously over 5 days) on mitochondrial function, gene expression, and the protein secretome of human HCA2-hTERT fibroblasts in the presence and absence of a mitochondria-specific antioxidant mitoTEMPO (MT; 5 µM). Results: IR increased fibroblast mitochondrial oxygen consumption (JO2) and H2O2 release rates (JH2O2) under energized conditions, which corresponded to higher protein expression of NADPH Oxidase (NOX) 1, NOX4, and nuclear DNA-encoded subunits of respiratory chain Complexes I and III, but depleted mtDNA transcripts encoding subunits of the same complexes. This was associated with activation of gene programs related to DNA repair, oxidative stress, and protein ubiquination, all of which were attenuated by MT treatment along with radiation-induced increases in JO2 and JH2O2. IR also increased secreted levels of interleukin-8 and Type I collagens, while decreasing Type VI collagens and enzymes that coordinate assembly and remodeling of the extracellular matrix. MT treatment attenuated many of these effects while augmenting others, revealing complex effects of mtROS in fibroblast responses to IR. Conclusion: These results implicate mtROS production in fibroblast responses to protracted radiation exposure, and suggest potentially protective effects of mitochondrial-targeted antioxidants against radiogenic tissue injury in vivo.
Collapse
Affiliation(s)
- Luke A. Whitcomb
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Xu Cao
- Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA, USA
| | - Dilip Thomas
- Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA, USA
| | - Claudia Wiese
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Alissa S. Pessin
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Robert Zhang
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Joseph C. Wu
- Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA, USA
| | - Michael M. Weil
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Adam J. Chicco
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
6
|
Wang Q, Liu C. Mitophagy plays a "double-edged sword" role in the radiosensitivity of cancer cells. J Cancer Res Clin Oncol 2024; 150:14. [PMID: 38238458 PMCID: PMC10796536 DOI: 10.1007/s00432-023-05515-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/13/2023] [Indexed: 01/22/2024]
Abstract
Mitochondria are organelles with double-membrane structure of inner and outer membrane, which provides main energy support for cell growth and metabolism. Reactive oxygen species (ROS) mainly comes from mitochondrial and can cause irreversible damage to cells under oxidative stress. Thus, mitochondrial homeostasis is the basis for maintaining the normal physiological function of cells and mitophagy plays a pivotal role in the maintenance of mitochondrial homeostasis. At present, to enhance the sensitivity of cancer cells to radiotherapy and chemotherapy by regulating mitochondria has increasingly become a hot spot of cancer therapy. It is particularly important to study the effect of ionizing radiation (IR) on mitochondria and the role of mitophagy in the radiosensitivity of cancer cells. Most of the existing reviews have focused on mitophagy-related molecules or pathways and the impact of mitophagy on diseases. In this review, we mainly focus on discussing the relationship between mitophagy and radiosensitivity of cancer cells around mitochondria and IR.
Collapse
Affiliation(s)
- Qian Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730030, Gansu, China
| | - Chengxin Liu
- Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, Shandong First Medical University, Jinan, 250117, Shandong, China.
| |
Collapse
|
7
|
Wang L, Rivas R, Wilson A, Park YM, Walls S, Yu T, Miller AC. Dose-Dependent Effects of Radiation on Mitochondrial Morphology and Clonogenic Cell Survival in Human Microvascular Endothelial Cells. Cells 2023; 13:39. [PMID: 38201243 PMCID: PMC10778067 DOI: 10.3390/cells13010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
To better understand radiation-induced organ dysfunction at both high and low doses, it is critical to understand how endothelial cells (ECs) respond to radiation. The impact of irradiation (IR) on ECs varies depending on the dose administered. High doses can directly damage ECs, leading to EC impairment. In contrast, the effects of low doses on ECs are subtle but more complex. Low doses in this study refer to radiation exposure levels that are below those that cause immediate and necrotic damage. Mitochondria are the primary cellular components affected by IR, and this study explored their role in determining the effect of radiation on microvascular endothelial cells. Human dermal microvascular ECs (HMEC-1) were exposed to varying IR doses ranging from 0.1 Gy to 8 Gy (~0.4 Gy/min) in the AFRRI 60-Cobalt facility. Results indicated that high doses led to a dose-dependent reduction in cell survival, which can be attributed to factors such as DNA damage, oxidative stress, cell senescence, and mitochondrial dysfunction. However, low doses induced a small but significant increase in cell survival, and this was achieved without detectable DNA damage, oxidative stress, cell senescence, or mitochondrial dysfunction in HMEC-1. Moreover, the mitochondrial morphology was assessed, revealing that all doses increased the percentage of elongated mitochondria, with low doses (0.25 Gy and 0.5 Gy) having a greater effect than high doses. However, only high doses caused an increase in mitochondrial fragmentation/swelling. The study further revealed that low doses induced mitochondrial elongation, likely via an increase in mitochondrial fusion protein 1 (Mfn1), while high doses caused mitochondrial fragmentation via a decrease in optic atrophy protein 1 (Opa1). In conclusion, the study suggests, for the first time, that changes in mitochondrial morphology are likely involved in the mechanism for the radiation dose-dependent effect on the survival of microvascular endothelial cells. This research, by delineating the specific mechanisms through which radiation affects endothelial cells, offers invaluable insights into the potential impact of radiation exposure on cardiovascular health.
Collapse
Affiliation(s)
- Li Wang
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA; (L.W.); (R.R.); (A.W.); (S.W.)
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (Y.M.P.); (T.Y.)
| | - Rafael Rivas
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA; (L.W.); (R.R.); (A.W.); (S.W.)
| | - Angelo Wilson
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA; (L.W.); (R.R.); (A.W.); (S.W.)
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (Y.M.P.); (T.Y.)
| | - Yu Min Park
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (Y.M.P.); (T.Y.)
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Shannon Walls
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA; (L.W.); (R.R.); (A.W.); (S.W.)
| | - Tianzheng Yu
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (Y.M.P.); (T.Y.)
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Alexandra C. Miller
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA; (L.W.); (R.R.); (A.W.); (S.W.)
- Department of Radiation Science and Radiology, Uniformed Services University Health Sciences, Bethesda, MD 20889, USA
- Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| |
Collapse
|
8
|
Zhang S, Deng Z, Qiu Y, Lu G, Wu J, Huang H. FGIN-1-27 Mitigates Radiation-induced Mitochondrial Hyperfunction and Cellular Hyperactivation in Cultured Astrocytes. Neuroscience 2023; 535:23-35. [PMID: 37913861 DOI: 10.1016/j.neuroscience.2023.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/04/2023] [Accepted: 10/21/2023] [Indexed: 11/03/2023]
Abstract
Radiation-induced brain injury (RBI) poses a significant challenge in the context of radiotherapy for intracranial tumors, necessitating a comprehensive understanding of the cellular and molecular mechanisms involved. While prior investigations have underscored the role of astrocyte activation and excessive vascular endothelial growth factor production in microvascular damage associated with RBI, there remains a scarcity of studies examining the impact of radiation on astrocytes, particularly regarding organelles such as mitochondria. Thus, our study aimed to elucidate alterations in astrocyte and mitochondrial functionality following radiation exposure, with a specific focus on evaluating the potential ameliorative effects of translocator protein 18 kDa(TSPO) ligands. In this study, cultured astrocytes were subjected to X-ray irradiation, and their cellular states and mitochondrial functions were examined and compared to control cells. Our findings revealed that radiation-induced astrocytic hyperactivation, transforming them into the neurotoxic A1-type, concomitant with reduced cell proliferation. Additionally, radiation triggered mitochondrial hyperfunction, heightened the mitochondrial membrane potential, and increased oxidative metabolite production. However, following treatment with FGIN-1-27, a TSPO ligand, we observed a restoration of mitochondrial function and a reduction in oxidative metabolite production. Moreover, this intervention mitigated astrocyte hyperactivity, decreased the number of A1-type astrocytes, and restored cell proliferative capacity. In conclusion, our study has unveiled additional manifestations of radiation-induced astrocyte dysfunction and validated that TSPO ligands may serve as a promising therapeutic strategy to mitigate this dysfunction. It has potential clinical implications for the treatment of RBI.
Collapse
Affiliation(s)
- Shifeng Zhang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No. 58 Zhongshan Road 2, Guangzhou 510080, China
| | - Zhezhi Deng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No. 58 Zhongshan Road 2, Guangzhou 510080, China
| | - Yuemin Qiu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No. 58 Zhongshan Road 2, Guangzhou 510080, China
| | - Gengxin Lu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No. 58 Zhongshan Road 2, Guangzhou 510080, China
| | - Junyu Wu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No. 58 Zhongshan Road 2, Guangzhou 510080, China
| | - Haiwei Huang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No. 58 Zhongshan Road 2, Guangzhou 510080, China.
| |
Collapse
|
9
|
Noguchi M, Ihara T, Suzuki K, Yokoya A. Temporal Dynamic Regulation of Autophagy and Senescence Induction in Response to Radiation Exposure. Radiat Res 2023; 200:538-547. [PMID: 37902247 DOI: 10.1667/rade-23-00173.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/14/2023] [Indexed: 10/31/2023]
Abstract
Autophagy and senescence are closely related cellular responses to genotoxic stress, and play significant roles in the execution of cellular responses to radiation exposure. However, little is known about their interplay in the fate-decision of cells receiving lethal doses of radiation. Here, we report that autophagy precedes the establishment of premature senescence in normal human fibroblasts exposed to lethal doses of radiation. Activation of the p53-dependent DNA damage response caused sustained dephosphorylation of RB proteins and consequent cell cycle arrest, concurrently with Ulk1 dephosphorylation at Ser638 by PPM1D, which promoted autophagy induction 1-2 days after irradiation. In addition, mitochondrial fragmentation became obvious 1-2 days after irradiation, and autophagy was further enhanced. However, Ulk1 levels decreased significantly after 2 days, resulting in lower LC3-II levels. An autophagic flux assay using chloroquine (CQ) also revealed that the flux in irradiated cells gradually decreased over 30 days. In contrast, lysosomal augmentation started at 1 day, became significantly upregulated after 5 days, and continued for over 30 days. After a rapid decrease in autophagy, p16 expression increased and senescence was established, but autophagic activity remained reduced. These results demonstrated that X-ray irradiation triggered two processes, autophagy and senescence, with the former being temporary and regulated by DNA damage response and mitophagy, and the latter being sustained and regulated by persistent cell cycle arrest. The interplay between autophagy and senescence seems to be essential for the proper implementation of the cellular response to radiation exposure.
Collapse
Affiliation(s)
- Miho Noguchi
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | - Tomokazu Ihara
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
- Graduate School of Science and Engineering, Ibaraki University, 2-1-1, Bunkyo, Mito-shi, Ibaraki 310-8512, Japan
| | - Keiji Suzuki
- Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki-shi, Nagasaki 852-8523, Japan
| | - Akinari Yokoya
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
- Graduate School of Science and Engineering, Ibaraki University, 2-1-1, Bunkyo, Mito-shi, Ibaraki 310-8512, Japan
| |
Collapse
|
10
|
Feldman T, Yakovleva M, Utina D, Ostrovsky M. Short-Term and Long-Term Effects after Exposure to Ionizing Radiation and Visible Light on Retina and Retinal Pigment Epithelium of Mouse Eye. Int J Mol Sci 2023; 24:17049. [PMID: 38069372 PMCID: PMC10707529 DOI: 10.3390/ijms242317049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
A comparative in vivo study of the effects of ionizing radiation (accelerated protons) and visible light (400-700 nm) on the retina and retinal pigment epithelium (RPE) of the mouse eye was carried out. Using the methods of fluorescence spectroscopy and high-performance liquid chromatography (HPLC), we analyzed the relative composition of retinoids in chloroform extracts obtained from the retinas and RPEs immediately after exposure of animals to various types of radiation and 4.5 months after they were exposed and maintained under standard conditions throughout the period. The fluorescent properties of chloroform extracts were shown to change upon exposure to various types of radiation. This fact indicates the accumulation of retinoid oxidation and degradation products in the retina and RPE. The data from fluorescence and HPLC analyses of retinoids indicate that when exposed to ionizing radiation, retinoid oxidation processes similar to photooxidation occur. Both ionizing radiation and high-intensity visible light have been shown to be characterized by long-term effects. The action of any type of radiation is assumed to activate the mechanism of enhanced reactive oxygen species production, resulting in a long-term damaging effect.
Collapse
Affiliation(s)
- Tatiana Feldman
- Department of Biology, Lomonosov Moscow State University, Leninskiye Gory 1, Moscow 119234, Russia;
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, Moscow 119334, Russia;
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, Moscow 119334, Russia
| | - Marina Yakovleva
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, Moscow 119334, Russia;
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, Moscow 119334, Russia
| | - Dina Utina
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna 141980, Russia;
| | - Mikhail Ostrovsky
- Department of Biology, Lomonosov Moscow State University, Leninskiye Gory 1, Moscow 119234, Russia;
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, Moscow 119334, Russia;
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, Moscow 119334, Russia
| |
Collapse
|
11
|
Park JD, Jang HJ, Choi SH, Jo GH, Choi JH, Hwang S, Park W, Park KS. The ELK3-DRP1 axis determines the chemosensitivity of triple-negative breast cancer cells to CDDP by regulating mitochondrial dynamics. Cell Death Discov 2023; 9:237. [PMID: 37422450 DOI: 10.1038/s41420-023-01536-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/20/2023] [Accepted: 06/28/2023] [Indexed: 07/10/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is the most lethal form of breast cancer. TNBC patients have higher rates of metastasis and restricted therapy options. Although chemotherapy is the conventional treatment for TNBC, the frequent occurrence of chemoresistance significantly lowers the efficacy of treatment. Here, we demonstrated that ELK3, an oncogenic transcriptional repressor that is highly expressed in TNBC, determined the chemosensitivity of two representative TNBC cell lines (MDA-MB231 and Hs578T) to cisplatin (CDDP) by regulating mitochondrial dynamics. We observed that the knockdown of ELK3 in MDA-MB231 and Hs578T rendered these cell lines more susceptible to the effects of CDDP. We further demonstrated that the chemosensitivity of TNBC cells was caused by the CDDP-mediated acceleration of mitochondrial fission, excessive mitochondrial reactive oxygen species production, and subsequent DNA damage. In addition, we identified DNM1L, a gene encoding the dynamin-related protein 1 (a major regulator of mitochondrial fission), as a direct downstream target of ELK3. Based on these results, we propose that the suppression of ELK3 expression could be used as a potential therapeutic strategy for overcoming the chemoresistance or inducing the chemosensitivity of TNBC.
Collapse
Affiliation(s)
- Joo Dong Park
- Department of Biomedical Science, CHA University, Seongnam, Republic of Korea
| | - Hye Jung Jang
- Department of Biomedical Science, CHA University, Seongnam, Republic of Korea
| | - Seung Hee Choi
- Department of Biomedical Science, CHA University, Seongnam, Republic of Korea
| | - Gae Hoon Jo
- Department of Biomedical Science, CHA University, Seongnam, Republic of Korea
| | - Jin-Ho Choi
- Department of Biomedical Science, CHA University, Seongnam, Republic of Korea
| | - Sohyun Hwang
- Department of Biomedical Science, CHA University, Seongnam, Republic of Korea
| | - Wooram Park
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Kyung-Soon Park
- Department of Biomedical Science, CHA University, Seongnam, Republic of Korea.
| |
Collapse
|
12
|
Ye C, Chen P, Xu B, Jin Y, Pan Y, Wu T, Du Y, Mao J, Wu R. Abnormal expression of fission and fusion genes and the morphology of mitochondria in eutopic and ectopic endometrium. Eur J Med Res 2023; 28:209. [PMID: 37393390 DOI: 10.1186/s40001-023-01180-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 06/21/2023] [Indexed: 07/03/2023] Open
Abstract
Mitochondria play a pivotal role in physiological and metabolic function of the cell. Mitochondrial dynamics orchestrate mitochondrial function and morphology, involving fission and fusion as well as ultrastructural remodeling. Mounting evidence unravels the close link between mitochondria and endometriosis. However, how mitochondrial architecture changes through fission and fusion in eutopic and ectopic tissues of women with ovarian endometriosis remains unknown. We detected the expression of fission and fusion genes and the morphology of mitochondria in eutopic and ectopic endometrium in ovarian endometriosis. The results showed that the expression of DRP1 and LCLAT1 was upregulated in eutopic endometrial stromal cells (ESCs), and the expression of DRP1, OPA1, MFN1, MFN2, and LCLAT1 was significantly downregulated in ectopic ESCs, and reduced number of mitochondria, wider cristae width and narrower cristae junction width was observed, but there was no difference in cell survival rate. The altered mitochondrial dynamics and morphology might, respectively, provide an advantage for migration and adhesion in eutopic ESCs and be the adaptive response in ectopic endometrial cells to survive under hypoxic and oxidative stress environment.
Collapse
Affiliation(s)
- Chaoshuang Ye
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, 310006, China
| | - Pei Chen
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, 310006, China
| | - Bingning Xu
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, 310006, China
| | - Yang Jin
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, 310006, China
| | - Yongchao Pan
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, 310006, China
| | - Tianyu Wu
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, 310006, China
| | - Yongjiang Du
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, 310006, China
| | - Jingxia Mao
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, 310006, China
| | - Ruijin Wu
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, 310006, China.
| |
Collapse
|
13
|
Shimura T. Mitochondrial Signaling Pathways Associated with DNA Damage Responses. Int J Mol Sci 2023; 24:ijms24076128. [PMID: 37047099 PMCID: PMC10094106 DOI: 10.3390/ijms24076128] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/14/2023] [Accepted: 03/23/2023] [Indexed: 04/14/2023] Open
Abstract
Under physiological and stress conditions, mitochondria act as a signaling platform to initiate biological events, establishing communication from the mitochondria to the rest of the cell. Mitochondrial adenosine triphosphate (ATP), reactive oxygen species, cytochrome C, and damage-associated molecular patterns act as messengers in metabolism, oxidative stress response, bystander response, apoptosis, cellular senescence, and inflammation response. In this review paper, the mitochondrial signaling in response to DNA damage was summarized. Mitochondrial clearance via fusion, fission, and mitophagy regulates mitochondrial quality control under oxidative stress conditions. On the other hand, damaged mitochondria release their contents into the cytoplasm and then mediate various signaling pathways. The role of mitochondrial dysfunction in radiation carcinogenesis was discussed, and the recent findings on radiation-induced mitochondrial signaling and radioprotective agents that targeted mitochondria were presented. The analysis of the mitochondrial radiation effect, as hypothesized, is critical in assessing radiation risks to human health.
Collapse
Affiliation(s)
- Tsutomu Shimura
- Department of Environmental Health, National Institute of Public Health, Wako 351-0197, Saitama, Japan
| |
Collapse
|
14
|
Mitochondrial Metabolism in X-Irradiated Cells Undergoing Irreversible Cell-Cycle Arrest. Int J Mol Sci 2023; 24:ijms24031833. [PMID: 36768155 PMCID: PMC9916319 DOI: 10.3390/ijms24031833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Irreversible cell-cycle-arrested cells not undergoing cell divisions have been thought to be metabolically less active because of the unnecessary consumption of energy for cell division. On the other hand, they might be actively involved in the tissue microenvironment through an inflammatory response. In this study, we examined the mitochondria-dependent metabolism in human cells irreversibly arrested in response to ionizing radiation to confirm this possibility. Human primary WI-38 fibroblast cells and the BJ-5ta fibroblast-like cell line were exposed to 20 Gy X-rays and cultured for up to 9 days after irradiation. The mitochondrial morphology and membrane potential were evaluated in the cells using the mitochondrial-specific fluorescent reagents MitoTracker Green (MTG) and 5,5',6,6'-tetraethyl-benzimidazolylcarbocyanine iodide (JC-1), respectively. The ratio of the mean MTG-stained total mitochondrial area per unit cell area decreased for up to 9 days after X-irradiation. The fraction of the high mitochondrial membrane potential area visualized by JC-1 staining reached its minimum 2 days after irradiation and then increased (particularly, WI-38 cells increased 1.8-fold the value of the control). Their chronological changes indicate that the mitochondrial volume in the irreversible cell-cycle-arrested cells showed significant increase concurrently with cellular volume expansion, indicating that the mitochondria-dependent energy metabolism was still active. These results indicate that the energy metabolism in X-ray-induced senescent-like cells is active compared to nonirradiated normal cells, even though they do not undergo cell divisions.
Collapse
|
15
|
Mitra S, Dash R, Sohel M, Chowdhury A, Munni YA, Ali C, Hannan MA, Islam T, Moon IS. Targeting Estrogen Signaling in the Radiation-induced Neurodegeneration: A Possible Role of Phytoestrogens. Curr Neuropharmacol 2023; 21:353-379. [PMID: 35272592 PMCID: PMC10190149 DOI: 10.2174/1570159x20666220310115004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/01/2022] [Accepted: 03/06/2022] [Indexed: 11/22/2022] Open
Abstract
Radiation for medical use is a well-established therapeutic method with an excellent prognosis rate for various cancer treatments. Unfortunately, a high dose of radiation therapy comes with its own share of side effects, causing radiation-induced non-specific cellular toxicity; consequently, a large percentage of treated patients suffer from chronic effects during the treatment and even after the post-treatment. Accumulating data evidenced that radiation exposure to the brain can alter the diverse cognitive-related signaling and cause progressive neurodegeneration in patients because of elevated oxidative stress, neuroinflammation, and loss of neurogenesis. Epidemiological studies suggested the beneficial effect of hormonal therapy using estrogen in slowing down the progression of various neuropathologies. Despite its primary function as a sex hormone, estrogen is also renowned for its neuroprotective activity and could manage radiation-induced side effects as it regulates many hallmarks of neurodegenerations. Thus, treatment with estrogen and estrogen-like molecules or modulators, including phytoestrogens, might be a potential approach capable of neuroprotection in radiation-induced brain degeneration. This review summarized the molecular mechanisms of radiation effects and estrogen signaling in the manifestation of neurodegeneration and highlighted the current evidence on the phytoestrogen mediated protective effect against radiationinduced brain injury. This existing knowledge points towards a new area to expand to identify the possible alternative therapy that can be taken with radiation therapy as adjuvants to improve patients' quality of life with compromised cognitive function.
Collapse
Affiliation(s)
- Sarmistha Mitra
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju38066, Republic of Korea
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju38066, Republic of Korea
| | - Md. Sohel
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh
| | - Apusi Chowdhury
- Department of Pharmaceutical Science, North-South University, Dhaka-12 29, Bangladesh
| | - Yeasmin Akter Munni
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju38066, Republic of Korea
| | - Chayan Ali
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala SE-751 08, Sweden
| | - Md. Abdul Hannan
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju38066, Republic of Korea
| |
Collapse
|
16
|
Mitra S, Dash R, Munni YA, Selsi NJ, Akter N, Uddin MN, Mazumder K, Moon IS. Natural Products Targeting Hsp90 for a Concurrent Strategy in Glioblastoma and Neurodegeneration. Metabolites 2022; 12:1153. [PMID: 36422293 PMCID: PMC9697676 DOI: 10.3390/metabo12111153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 09/16/2023] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most common aggressive, resistant, and invasive primary brain tumors that share neurodegenerative actions, resembling many neurodegenerative diseases. Although multiple conventional approaches, including chemoradiation, are more frequent in GBM therapy, these approaches are ineffective in extending the mean survival rate and are associated with various side effects, including neurodegeneration. This review proposes an alternative strategy for managing GBM and neurodegeneration by targeting heat shock protein 90 (Hsp90). Hsp90 is a well-known molecular chaperone that plays essential roles in maintaining and stabilizing protein folding to degradation in protein homeostasis and modulates signaling in cancer and neurodegeneration by regulating many client protein substrates. The therapeutic benefits of Hsp90 inhibition are well-known for several malignancies, and recent evidence highlights that Hsp90 inhibitors potentially inhibit the aggressiveness of GBM, increasing the sensitivity of conventional treatment and providing neuroprotection in various neurodegenerative diseases. Herein, the overview of Hsp90 modulation in GBM and neurodegeneration progress has been discussed with a summary of recent outcomes on Hsp90 inhibition in various GBM models and neurodegeneration. Particular emphasis is also given to natural Hsp90 inhibitors that have been evidenced to show dual protection in both GBM and neurodegeneration.
Collapse
Affiliation(s)
- Sarmistha Mitra
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Yeasmin Akter Munni
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Nusrat Jahan Selsi
- Product Development Department, Popular Pharmaceuticals Ltd., Dhaka 1207, Bangladesh
| | - Nasrin Akter
- Department of Clinical Pharmacy and Molecular Pharmacology, East West University Bangladesh, Dhaka 1212, Bangladesh
| | - Md Nazim Uddin
- Department of Pharmacy, Southern University Bangladesh, Chittagong 4000, Bangladesh
| | - Kishor Mazumder
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh
- School of Optometry and Vision Science, UNSW Medicine, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| |
Collapse
|
17
|
Feldman T, Ostrovskiy D, Yakovleva M, Dontsov A, Borzenok S, Ostrovsky M. Lipofuscin-Mediated Photic Stress Induces a Dark Toxic Effect on ARPE-19 Cells. Int J Mol Sci 2022; 23:12234. [PMID: 36293088 PMCID: PMC9602730 DOI: 10.3390/ijms232012234] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 12/25/2023] Open
Abstract
Lipofuscin granules from retinal pigment epithelium (RPE) cells contain bisretinoid fluorophores, which are photosensitizers and are phototoxic to cells. In the presence of oxygen, bisretinoids are oxidized to form various products, containing aldehydes and ketones, which are also potentially cytotoxic. In a prior study, we identified that bisretinoid oxidation and degradation products have both hydrophilic and amphiphilic properties, allowing their diffusion through the lipofuscin granule membrane into the RPE cell cytoplasm, and are thiobarbituric acid (TBA)-active. The purpose of the present study was to determine if these products exhibit a toxic effect to the RPE cell also in the absence of light. The experiments were performed using the lipofuscin-fed ARPE-19 cell culture. The RPE cell viability analysis was performed with the use of flow cytofluorimetry and laser scanning confocal microscopy. The results obtained indicated that the cell viability of the lipofuscin-fed ARPE-19 sample was clearly reduced not immediately after visible light irradiation for 18 h, but after 4 days maintaining in the dark. Consequently, we could conclude that bisretinoid oxidation products have a damaging effect on the RPE cell in the dark and can be considered as an aggravating factor in age-related macular degeneration progression.
Collapse
Affiliation(s)
- Tatiana Feldman
- Department of Biology, Lomonosov Moscow State University, Leninskiye Gory 1, 119234 Moscow, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, 119334 Moscow, Russia
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia
| | - Dmitriy Ostrovskiy
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia
- Sv. Fyodorov Eye Microsurgery Complex, 59a Beskudnikovsky bld., 127486 Moscow, Russia
| | - Marina Yakovleva
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, 119334 Moscow, Russia
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia
| | - Alexander Dontsov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, 119334 Moscow, Russia
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia
| | - Sergey Borzenok
- Sv. Fyodorov Eye Microsurgery Complex, 59a Beskudnikovsky bld., 127486 Moscow, Russia
| | - Mikhail Ostrovsky
- Department of Biology, Lomonosov Moscow State University, Leninskiye Gory 1, 119234 Moscow, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, 119334 Moscow, Russia
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia
| |
Collapse
|
18
|
Feldman TB, Dontsov AE, Yakovleva MA, Ostrovsky MA. Photobiology of lipofuscin granules in the retinal pigment epithelium cells of the eye: norm, pathology, age. Biophys Rev 2022; 14:1051-1065. [PMID: 36124271 PMCID: PMC9481861 DOI: 10.1007/s12551-022-00989-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/26/2022] [Indexed: 01/10/2023] Open
Abstract
Lipofuscin granules (LGs) are accumulated in the retinal pigment epithelium (RPE) cells. The progressive LG accumulation can somehow lead to pathology and accelerate the aging process. The review examines composition, spectral properties and photoactivity of LGs isolated from the human cadaver eyes. By use of atomic force microscopy and near-field microscopy, we have revealed the fluorescent heterogeneity of LGs. We have discovered the generation of reactive oxygen species by LGs, and found that LGs and melanolipofuscin granules are capable of photoinduced oxidation of lipids. It was shown that A2E, as the main fluorophore (bisretinoid) of LGs, is much less active as an oxidation photosensitizer than other fluorophores (bisretinoids) of LGs. Photooxidized products of bisretinoids pose a much greater danger to the cell than non-oxidized one. Our studies of the fluorescent properties of LGs and their fluorophores (bisretinoids) showed for the first time that their spectral characteristics change (shift to the short-wavelength region) in pathology and after exposure to ionizing radiation. By recording the fluorescence spectra and fluorescence decay kinetics of oxidized products of LG fluorophores, it is possible to improve the methods of early diagnosis of degenerative diseases. Lipofuscin ("aging pigment") is not an inert "slag". The photoactivity of LGs can pose a significant danger to the RPE cells. Fluorescence characteristics of LGs are a tool to detect early stages of degeneration in the retina and RPE.
Collapse
Affiliation(s)
- T. B. Feldman
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - A. E. Dontsov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - M. A. Yakovleva
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - M. A. Ostrovsky
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
19
|
Park JD, Kim KS, Choi SH, Jo GH, Choi JH, Park SW, Ko ES, Lee M, Lee DK, Jang HJ, Hwang S, Jung HY, Park KS. ELK3 modulates the antitumor efficacy of natural killer cells against triple negative breast cancer by regulating mitochondrial dynamics. J Immunother Cancer 2022; 10:jitc-2022-004825. [PMID: 35858708 PMCID: PMC9305827 DOI: 10.1136/jitc-2022-004825] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2022] [Indexed: 11/05/2022] Open
Abstract
Background Triple negative breast cancer (TNBC) is the most lethal subtype of breast cancer due to its aggressive behavior and frequent development of resistance to chemotherapy. Although natural killer (NK) cell-based immunotherapy is a promising strategy for overcoming barriers to cancer treatment, the therapeutic efficacy of NK cells against TNBC is below expectations. E26 transformation-specific transcription factor ELK3 (ELK3) is highly expressed in TNBCs and functions as a master regulator of the epithelial-mesenchymal transition. Methods Two representative human TNBC cell lines, MDA-MB231 and Hs578T, were exposed to ELK3-targeting shRNA or an ELK3-expressing plasmid to modulate ELK3 expression. The downstream target genes of ELK3 were identified using a combined approach comprising gene expression profiling and molecular analysis. The role of ELK3 in determining the immunosensitivity of TNBC to NK cells was investigated in terms of mitochondrial fission–fusion transition and reactive oxygen species concentration both in vitro and in vivo. Results ELK3-dependent mitochondrial fission–fusion status was linked to the mitochondrial superoxide concentration in TNBCs and was a main determinant of NK cell-mediated immune responses. We identified mitochondrial dynamics proteins of 51 (Mid51), a major mediator of mitochondrial fission, as a direct downstream target of ELK3 in TNBCs. Also, we demonstrated that expression of ELK3 correlated inversely with that of Mid51, and that the ELK3-Mid51 axis is associated directly with the status of mitochondrial dynamics. METABRIC analysis revealed that the ELK3-Mid51 axis has a direct effect on the immune score and survival of patients with TNBC. Conclusions Taken together, the data suggest that NK cell responses to TNBC are linked directly to ELK3 expression levels, shedding new light on strategies to improve the efficacy of NK cell-based immunotherapy of TNBC.
Collapse
Affiliation(s)
- Joo Dong Park
- Department of Biomedical Science, CHA University, Seongnam-si, Korea (the Republic of)
| | - Kwang-Soo Kim
- Department of Neurosurgery, Lou and Jean Malnati Brain Tumor Institute, Robert H Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Seung Hee Choi
- Department of Biomedical Science, CHA University, Seongnam-si, Korea (the Republic of)
| | - Gae Hoon Jo
- Department of Biomedical Science, CHA University, Seongnam-si, Korea (the Republic of)
| | - Jin-Ho Choi
- Department of Biomedical Science, CHA University, Seongnam-si, Korea (the Republic of)
| | - Si-Won Park
- Department of Biomedical Science, CHA University, Seongnam-si, Korea (the Republic of)
| | - Eun-Su Ko
- Department of Biomedical Science, CHA University, Seongnam-si, Korea (the Republic of)
| | - Minwook Lee
- Department of Biomedical Science, CHA University, Seongnam-si, Korea (the Republic of)
| | - Dae-Keum Lee
- Department of Biomedical Science, CHA University, Seongnam-si, Korea (the Republic of)
| | - Hye Jung Jang
- Department of Biomedical Science, CHA University, Seongnam-si, Korea (the Republic of)
| | - Sohyun Hwang
- Department of Biomedical Science, CHA University, Seongnam-si, Korea (the Republic of)
| | - Hae-Yun Jung
- Department of Biomedical Science, CHA University, Seongnam-si, Korea (the Republic of)
| | - Kyung-Soon Park
- Department of Biomedical Science, CHA University, Seongnam-si, Korea (the Republic of)
| |
Collapse
|
20
|
Fakhri S, Piri S, Moradi SZ, Khan H. Phytochemicals Targeting Oxidative Stress, Interconnected Neuroinflammatory, and Neuroapoptotic Pathways Following Radiation. Curr Neuropharmacol 2022; 20:836-856. [PMID: 34370636 PMCID: PMC9881105 DOI: 10.2174/1570159x19666210809103346] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/19/2021] [Accepted: 06/28/2021] [Indexed: 11/22/2022] Open
Abstract
The radiation for therapeutic purposes has shown positive effects in different contexts; however, it can increase the risk of many age-related and neurodegenerative diseases such as Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and Parkinson's disease (PD). These different outcomes highlight a dose-response phenomenon called hormesis. Prevailing studies indicate that high doses of radiation could play several destructive roles in triggering oxidative stress, neuroapoptosis, and neuroinflammation in neurodegeneration. However, there is a lack of effective treatments in combating radiation-induced neurodegeneration, and the present drugs suffer from some drawbacks, including side effects and drug resistance. Among natural entities, polyphenols are suggested as multi-target agents affecting the dysregulated pathogenic mechanisms in neurodegenerative disease. This review discusses the destructive effects of radiation on the induction of neurodegenerative diseases by dysregulating oxidative stress, apoptosis, and inflammation. We also describe the promising effects of polyphenols and other candidate phytochemicals in preventing and treating radiation-induced neurodegenerative disorders, aiming to find novel/potential therapeutic compounds against such disorders.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran;,Address correspondence to these author at the Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; E-mail: Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan; E-mail:
| | - Sana Piri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran;,These authors have contributed equally to this work.
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran;,Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran;,These authors have contributed equally to this work.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan,Address correspondence to these author at the Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; E-mail: Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan; E-mail:
| |
Collapse
|
21
|
Read GH, Bailleul J, Vlashi E, Kesarwala AH. Metabolic response to radiation therapy in cancer. Mol Carcinog 2022; 61:200-224. [PMID: 34961986 PMCID: PMC10187995 DOI: 10.1002/mc.23379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 11/11/2022]
Abstract
Tumor metabolism has emerged as a hallmark of cancer and is involved in carcinogenesis and tumor growth. Reprogramming of tumor metabolism is necessary for cancer cells to sustain high proliferation rates and enhanced demands for nutrients. Recent studies suggest that metabolic plasticity in cancer cells can decrease the efficacy of anticancer therapies by enhancing antioxidant defenses and DNA repair mechanisms. Studying radiation-induced metabolic changes will lead to a better understanding of radiation response mechanisms as well as the identification of new therapeutic targets, but there are few robust studies characterizing the metabolic changes induced by radiation therapy in cancer. In this review, we will highlight studies that provide information on the metabolic changes induced by radiation and oxidative stress in cancer cells and the associated underlying mechanisms.
Collapse
Affiliation(s)
- Graham H. Read
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Justine Bailleul
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Erina Vlashi
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California
| | - Aparna H. Kesarwala
- Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
22
|
Xin L, Sun J, Zhai X, Chen X, Wan J, Tian H. Repeated radon exposure induced lung damage via oxidative stress-mediated mitophagy in human bronchial epithelial cells and mice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 90:103812. [PMID: 35033684 DOI: 10.1016/j.etap.2022.103812] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
This study aimed to investigate the potential molecular mechanism underlying radon-induced lung damage. Our results showed that long-term radon exposure induced mitochondrial damage and redox imbalance in BEAS-2B cells and a time-dependent lung pathological injury in mice. The activation of Nrf-2 and its down-stream antioxidants, and the gene expression of the indicated markers at different stages of autophagy were found to be induced with the increasing of radon exposure time. Changes in the gene expression of PINK-1, Parkin, and p62 induced by radon showed differences in mechanisms of mitophagy activation and profiles of autophagic flux between BEAS-2B cells and mice. Our findings not only demonstrated that long-term radon exposure induced damages to bronchial epithelial cells and the mice lung through increasing oxidative stress, decreasing mitochondrial function and activating mitophagy with different profiles of autophagic flux, but also revealed Nrf-2 as a central regulator of mitochondrial homeostasis and lung damage.
Collapse
Affiliation(s)
- Lili Xin
- School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, China
| | - Jiaojiao Sun
- School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, China
| | - Xuedi Zhai
- School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, China
| | - Xiaoyu Chen
- School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, China
| | - Jianmei Wan
- Medical College of Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, China
| | - Hailin Tian
- School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, China.
| |
Collapse
|
23
|
Yakovleva MA, Feldman TB, Lyakhova KN, Utina DM, Kolesnikova IA, Vinogradova YV, Molokanov AG, Ostrovsky MA. Ionized Radiation-Mediated Retinoid Oxidation in the Retina and Retinal Pigment Epithelium of the Murine Eye. Radiat Res 2021; 197:270-279. [PMID: 34879150 DOI: 10.1667/rade-21-00069.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 10/15/2021] [Indexed: 11/03/2022]
Abstract
The present study evaluated the effects of proton and gamma-ray ionizing radiation on the mouse eye. The aim of this work was to analyze radiation-mediated retinoid oxidation in the retina and retinal pigment epithelium (RPE). The findings from this analysis can be used to develop a noninvasive method for rapid assessment of the effects of ionizing radiation. Comparative fluorescence and chromatographic analyses of retinoids before and after irradiations were performed. The fluorescent properties of chloroform extracts from irradiated mouse retina and RPE exhibited an increase in fluorescence intensity in the short-wave region of the spectrum (λ < 550 nm). This change is due to increased retinal and RPE retinoid oxidation and degradation products after radiation exposure. Comparative analyses of radiation effects demonstrated that the effect of proton exposure on the retina and RPE was higher than that of gamma-ray exposure. The present study revealed a new approach to assessing the level of radiation exposure in ocular tissues.
Collapse
Affiliation(s)
- Marina A Yakovleva
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana B Feldman
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia.,Department of Molecular Physiology, Biological Faculty, Moscow State University, Moscow, Russia
| | - Kristina N Lyakhova
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Dubna, Moscow region, Russia
| | - Dina M Utina
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Dubna, Moscow region, Russia
| | - Inna A Kolesnikova
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Dubna, Moscow region, Russia
| | - Yuliya V Vinogradova
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Dubna, Moscow region, Russia
| | - Alexander G Molokanov
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Dubna, Moscow region, Russia
| | - Mikhail A Ostrovsky
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia.,Department of Molecular Physiology, Biological Faculty, Moscow State University, Moscow, Russia.,Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Dubna, Moscow region, Russia
| |
Collapse
|
24
|
Averbeck D, Rodriguez-Lafrasse C. Role of Mitochondria in Radiation Responses: Epigenetic, Metabolic, and Signaling Impacts. Int J Mol Sci 2021; 22:ijms222011047. [PMID: 34681703 PMCID: PMC8541263 DOI: 10.3390/ijms222011047] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/24/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022] Open
Abstract
Until recently, radiation effects have been considered to be mainly due to nuclear DNA damage and their management by repair mechanisms. However, molecular biology studies reveal that the outcomes of exposures to ionizing radiation (IR) highly depend on activation and regulation through other molecular components of organelles that determine cell survival and proliferation capacities. As typical epigenetic-regulated organelles and central power stations of cells, mitochondria play an important pivotal role in those responses. They direct cellular metabolism, energy supply and homeostasis as well as radiation-induced signaling, cell death, and immunological responses. This review is focused on how energy, dose and quality of IR affect mitochondria-dependent epigenetic and functional control at the cellular and tissue level. Low-dose radiation effects on mitochondria appear to be associated with epigenetic and non-targeted effects involved in genomic instability and adaptive responses, whereas high-dose radiation effects (>1 Gy) concern therapeutic effects of radiation and long-term outcomes involving mitochondria-mediated innate and adaptive immune responses. Both effects depend on radiation quality. For example, the increased efficacy of high linear energy transfer particle radiotherapy, e.g., C-ion radiotherapy, relies on the reduction of anastasis, enhanced mitochondria-mediated apoptosis and immunogenic (antitumor) responses.
Collapse
Affiliation(s)
- Dietrich Averbeck
- Laboratory of Cellular and Molecular Radiobiology, PRISME, UMR CNRS 5822/IN2P3, IP2I, Lyon-Sud Medical School, University Lyon 1, 69921 Oullins, France;
- Correspondence:
| | - Claire Rodriguez-Lafrasse
- Laboratory of Cellular and Molecular Radiobiology, PRISME, UMR CNRS 5822/IN2P3, IP2I, Lyon-Sud Medical School, University Lyon 1, 69921 Oullins, France;
- Department of Biochemistry and Molecular Biology, Lyon-Sud Hospital, Hospices Civils de Lyon, 69310 Pierre-Bénite, France
| |
Collapse
|
25
|
Gorbunov NV, Kiang JG. Brain Damage and Patterns of Neurovascular Disorder after Ionizing Irradiation. Complications in Radiotherapy and Radiation Combined Injury. Radiat Res 2021; 196:1-16. [PMID: 33979447 PMCID: PMC8297540 DOI: 10.1667/rade-20-00147.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 04/02/2021] [Indexed: 12/31/2022]
Abstract
Exposure to ionizing radiation, mechanical trauma, toxic chemicals or infections, or combinations thereof (i.e., combined injury) can induce organic injury to brain tissues, the structural disarrangement of interactive networks of neurovascular and glial cells, as well as on arrays of the paracrine and systemic destruction. This leads to subsequent decline in cognitive capacity and decompensation of mental health. There is an ongoing need for improvement in mitigating and treating radiation- or combined injury-induced brain injury. Cranial irradiation per se can cause a multifactorial encephalopathy that occurs in a radiation dose- and time-dependent manner due to differences in radiosensitivity among the various constituents of brain parenchyma and vasculature. Of particular concern are the radiosensitivity and inflammation susceptibility of: 1. the neurogenic and oligodendrogenic niches in the subependymal and hippocampal domains; and 2. the microvascular endothelium. Thus, cranial or total-body irradiation can cause a plethora of biochemical and cellular disorders in brain tissues, including: 1. decline in neurogenesis and oligodendrogenesis; 2. impairment of the blood-brain barrier; and 3. ablation of vascular capillary. These changes, along with cerebrovascular inflammation, underlie different stages of encephalopathy, from the early protracted stage to the late delayed stage. It is evident that ionizing radiation combined with other traumatic insults such as penetrating wound, burn, blast, systemic infection and chemotherapy, among others, can exacerbate the radiation sequelae (and vice versa) with increasing severity of neurogenic and microvascular patterns of radiation brain damage.
Collapse
Affiliation(s)
| | - Juliann G. Kiang
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
26
|
Shimura T. ATM-Mediated Mitochondrial Radiation Responses of Human Fibroblasts. Genes (Basel) 2021; 12:genes12071015. [PMID: 34208940 PMCID: PMC8305810 DOI: 10.3390/genes12071015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 01/15/2023] Open
Abstract
Ataxia telangiectasia (AT) is characterized by extreme sensitivity to ionizing radiation. The gene mutated in AT, Ataxia Telangiectasia Mutated (ATM), has serine/threonine protein kinase activity and mediates the activation of multiple signal transduction pathways involved in the processing of DNA double-strand breaks. Reactive oxygen species (ROS) created as a byproduct of the mitochondria's oxidative phosphorylation (OXPHOS) has been proposed to be the source of intracellular ROS. Mitochondria are uniquely vulnerable to ROS because they are the sites of ROS generation. ROS-induced mitochondrial mutations lead to impaired mitochondrial respiration and further increase the likelihood of ROS generation, establishing a vicious cycle of further ROS production and mitochondrial damage. AT patients and ATM-deficient mice display intrinsic mitochondrial dysfunction and exhibit constitutive elevations in ROS levels. ATM plays a critical role in maintaining cellular redox homeostasis. However, the precise mechanism of ATM-mediated mitochondrial antioxidants remains unclear. The aim of this review paper is to introduce our current research surrounding the role of ATM on maintaining cellular redox control in human fibroblasts. ATM-mediated signal transduction is important in the mitochondrial radiation response. Perturbation of mitochondrial redox control elevates ROS which are key mediators in the development of cancer by many mechanisms, including ROS-mediated genomic instability, tumor microenvironment formation, and chronic inflammation.
Collapse
Affiliation(s)
- Tsutomu Shimura
- Department of Environmental Health, National Institute of Public Health 2-3-6 Minami, Wako 351-0197, Saitama, Japan
| |
Collapse
|
27
|
Behl T, Kaur G, Sehgal A, Zengin G, Singh S, Ahmadi A, Bungau S. Flavonoids, the Family of Plant-derived Antioxidants making inroads into Novel Therapeutic Design against IR-induced Oxidative Stress in Parkinson's Disease. Curr Neuropharmacol 2021; 20:324-343. [PMID: 34030619 PMCID: PMC9413797 DOI: 10.2174/1570159x19666210524152817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/17/2021] [Accepted: 05/05/2021] [Indexed: 11/22/2022] Open
Abstract
Background: Ionizing radiation from telluric sources is unceasingly an unprotected pitfall to humans. Thus, the foremost contributors to human exposure are global and medical radiations. Various evidences assembled during preceding years reveal the pertinent role of ionizing radiation-induced oxidative stress in the progression of neurodegenerative insults, such as Parkinson’s disease, which have been contributing to increased proliferation and generation of reactive oxygen species. Objective: This review delineates the role of ionizing radiation-induced oxidative stress in Parkinson’s disease and proposes novel therapeutic interventions of flavonoid family, offering effective management and slowing down the progression of Parkinson’s disease. Methods: Published papers were searched in MEDLINE, PubMed, etc., published to date for in-depth database collection. Results: The oxidative damage may harm the non-targeted cells. It can also modulate the functions of the central nervous system, such as protein misfolding, mitochondria dysfunction, increased levels of oxidized lipids, and dopaminergic cell death, which accelerate the progression of Parkinson’s disease at the molecular, cellular, or tissue levels. In Parkinson’s disease, reactive oxygen species exacerbate the production of nitric oxides and superoxides by activated microglia, rendering death of dopaminergic neuronal cell through different mechanisms. Conclusion: Rising interest has extensively engrossed in the clinical trial designs based on the plant-derived family of antioxidants. They are known to exert multifarious impact on neuroprotection via directly suppressing ionizing radiation-induced oxidative stress and reactive oxygen species production or indirectly increasing the dopamine levels and activating the glial cells.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Gagandeep Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University Campus, Konya, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Amirhossein Ahmadi
- Pharmaceutical Sciences Research Centre, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari. Iran
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea. Romania
| |
Collapse
|
28
|
Jia J, Jin H, Nan D, Yu W, Huang Y. New insights into targeting mitochondria in ischemic injury. Apoptosis 2021; 26:163-183. [PMID: 33751318 DOI: 10.1007/s10495-021-01661-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2021] [Indexed: 12/15/2022]
Abstract
Stroke is the leading cause of adult disability and death worldwide. Mitochondrial dysfunction has been recognized as a marker of neuronal death during ischemic stroke. Maintaining the function of mitochondria is important for improving the survival of neurons and maintaining neuronal function. Damaged mitochondria induce neuronal cell apoptosis by releasing reactive oxygen species (ROS) and pro-apoptotic factors. Mitochondrial fission and fusion processes and mitophagy are of great importance to mitochondrial quality control. This paper reviews the dynamic changes in mitochondria, the roles of mitochondria in different cell types, and related signaling pathways in ischemic stroke. This review describes in detail the role of mitochondria in the process of neuronal injury and protection in cerebral ischemia, and integrates neuroprotective drugs targeting mitochondria in recent years, which may provide a theoretical basis for the progress of treatment of ischemic stroke. The potential of mitochondrial-targeted therapy is also emphasized, which provides valuable insights for clinical research.
Collapse
Affiliation(s)
- Jingjing Jia
- Department of Neurology, Peking University First Hospital, No.8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Haiqiang Jin
- Department of Neurology, Peking University First Hospital, No.8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Ding Nan
- Department of Neurology, Peking University First Hospital, No.8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Weiwei Yu
- Department of Neurology, Peking University First Hospital, No.8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Yining Huang
- Department of Neurology, Peking University First Hospital, No.8 Xishiku Street, Xicheng District, Beijing, 100034, China.
| |
Collapse
|
29
|
Wu Q, Fang L, Yang Y, Wang A, Chen X, Sun J, Wan J, Hong C, Tong J, Tao S, Tian H. Protection of melatonin against long-term radon exposure-caused lung injury. ENVIRONMENTAL TOXICOLOGY 2021; 36:472-483. [PMID: 33107683 DOI: 10.1002/tox.23052] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 09/04/2020] [Accepted: 10/18/2020] [Indexed: 06/11/2023]
Abstract
Radon is one of the major pathogenic factors worldwide. Recently, epidemiological studies have suggested that radon exposure plays an important role in lung injury, which could further cause cancer. However, the toxic effects and underlying mechanism on lung injury are still not clear. Here, we identified the detailed toxic effects of long-term radon exposure. Specifically, the manifestations were inflammatory response and cell apoptosis in dose- and time-dependent manners. In detail, it caused the mitochondrial dysfunction and oxidative stress as determined by the abnormal levels of mitochondrial DNA copy number, adenosine triphosphate, mitochondrial membrane potential, superoxide dismutase, and cycloxygenase-2. Furthermore, we found that melatonin treatment ameliorated mitochondrial dysfunction and attenuated the levels of oxidative stress caused by long-term radon exposure, which could further inhibit the lung tissue apoptosis as determined by the decreased levels of cleaved caspase 3. Our study would provide potential therapeutic application of melatonin on lung tissue injury caused by long-term radon exposure.
Collapse
Affiliation(s)
- Qianqian Wu
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Lijun Fang
- Shanghai Minhang District Center for Disease Prevention and Control, Shanghai, China
| | - Youjing Yang
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Aiqing Wang
- Medical College, Soochow University, Suzhou, China
| | - Xiaoyu Chen
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Jiaojiao Sun
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Jianmei Wan
- Medical College, Soochow University, Suzhou, China
| | | | - Jian Tong
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Shasha Tao
- School of Public Health, Medical College of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, China
| | - Hailin Tian
- School of Public Health, Medical College of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, China
| |
Collapse
|
30
|
Iwamoto KS, Sandstrom RE, Bryan M, Liu Y, Elgart SR, Sheng K, Steinberg ML, McBride WH, Low DA. Weak Magnetic Fields Enhance the Efficacy of Radiation Therapy. Adv Radiat Oncol 2021; 6:100645. [PMID: 33748547 PMCID: PMC7966835 DOI: 10.1016/j.adro.2021.100645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 12/02/2020] [Indexed: 11/17/2022] Open
Abstract
Purpose The clinical efficacy of radiation therapy is mechanistically linked to ionization-induced free radicals that cause cell and tissue injury through direct and indirect mechanisms. Free radical reaction dynamics are influenced by many factors and can be manipulated by static weak magnetic fields (WMF) that perturb singlet-triplet state interconversion. Our study exploits this phenomenon to directly increase ionizing radiation (IR) dose absorption in tumors by combining WMF with radiation therapy as a new and effective method to improve treatment. Methods and Materials Coils were custom made to produce both homogeneous and gradient magnetic fields. The gradient coil enabled simultaneous in vitro assessment of free radical/reactive oxygen species reactivity across multiple field strengths from 6 to 66 G. First, increases in IR-induced free radical concentrations using oxidant-sensitive fluorescent dyes in a cell-free system were measured and verified. Next, human and murine cancer cell lines were evaluated in in vitro and in vivo models after exposure to clinically relevant doses of IR in combination with WMF. Results Cellular responses to IR and WMF were field strength and cell line dependent. WMF was able to enhance IR effects on reactive oxygen species formation, DNA double-strand break formation, cell death, and tumor growth. Conclusions We demonstrate that the external presence of a magnetic field enhances radiation-induced cancer cell injury and death in vitro and in vivo. The effect extends beyond the timeframe when free radicals are induced in the presence of radiation into the window when endogenous free radicals are produced and therefore extends the applicability of this novel adjunct to cancer therapy in the context of radiation treatment.
Collapse
Affiliation(s)
- Keisuke S Iwamoto
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | | | - Mark Bryan
- Mark Bryan & Company LLC, Arcadia, California
| | - Yue Liu
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - S Robin Elgart
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Ke Sheng
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Michael L Steinberg
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - William H McBride
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Daniel A Low
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
31
|
Kataoka T, Kanzaki N, Sakoda A, Shuto H, Yano J, Naoe S, Tanaka H, Hanamoto K, Terato H, Mitsunobu F, Yamaoka K. Evaluation of the redox state in mouse organs following radon inhalation. JOURNAL OF RADIATION RESEARCH 2021; 62:206-216. [PMID: 33503655 PMCID: PMC7948851 DOI: 10.1093/jrr/rraa129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/03/2020] [Indexed: 05/30/2023]
Abstract
Radon inhalation activates antioxidative functions in mouse organs, thereby contributing to inhibition of oxidative stress-induced damage. However, the specific redox state of each organ after radon inhalation has not been reported. Therefore, in this study, we evaluated the redox state of various organs in mice following radon inhalation at concentrations of 2 or 20 kBq/m3 for 1, 3 or 10 days. Scatter plots were used to evaluate the relationship between antioxidative function and oxidative stress by principal component analysis (PCA) of data from control mice subjected to sham inhalation. The results of principal component (PC) 1 showed that the liver and kidney had high antioxidant capacity; the results of PC2 showed that the brain, pancreas and stomach had low antioxidant capacities and low lipid peroxide (LPO) content, whereas the lungs, heart, small intestine and large intestine had high LPO content but low antioxidant capacities. Furthermore, using the PCA of each obtained cluster, we observed altered correlation coefficients related to glutathione, hydrogen peroxide and LPO for all groups following radon inhalation. Correlation coefficients related to superoxide dismutase in organs with a low antioxidant capacity were also changed. These findings suggested that radon inhalation could alter the redox state in organs; however, its characteristics were dependent on the total antioxidant capacity of the organs as well as the radon concentration and inhalation time. The insights obtained from this study could be useful for developing therapeutic strategies targeting individual organs.
Collapse
Affiliation(s)
- Takahiro Kataoka
- Graduate School of Health Sciences, Okayama University, 5-1 Shikata-cho 2-chome, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Norie Kanzaki
- Ningyo-toge Environmental Engineering Center, Japan Atomic Energy Agency, 1550 Kamisaibara, Kagamino-cho, Tomata-gun, Okayama 708-0698, Japan
| | - Akihiro Sakoda
- Ningyo-toge Environmental Engineering Center, Japan Atomic Energy Agency, 1550 Kamisaibara, Kagamino-cho, Tomata-gun, Okayama 708-0698, Japan
| | - Hina Shuto
- Graduate School of Health Sciences, Okayama University, 5-1 Shikata-cho 2-chome, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Junki Yano
- Graduate School of Health Sciences, Okayama University, 5-1 Shikata-cho 2-chome, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Shota Naoe
- Graduate School of Health Sciences, Okayama University, 5-1 Shikata-cho 2-chome, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Hiroshi Tanaka
- Ningyo-toge Environmental Engineering Center, Japan Atomic Energy Agency, 1550 Kamisaibara, Kagamino-cho, Tomata-gun, Okayama 708-0698, Japan
| | - Katsumi Hanamoto
- Graduate School of Health Sciences, Okayama University, 5-1 Shikata-cho 2-chome, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Hiroaki Terato
- Advanced Science Research Center, Okayama University, 5-1 Shikata-cho 2-chome, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Fumihiro Mitsunobu
- Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, 5-1 Shikata-cho 2-chome, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Kiyonori Yamaoka
- Graduate School of Health Sciences, Okayama University, 5-1 Shikata-cho 2-chome, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| |
Collapse
|
32
|
Wu J, Chen H, Qin J, Chen N, Lu S, Jin J, Li Y. Baicalin Improves Cardiac Outcome and Survival by Suppressing Drp1-Mediated Mitochondrial Fission after Cardiac Arrest-Induced Myocardial Damage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8865762. [PMID: 33603953 PMCID: PMC7870315 DOI: 10.1155/2021/8865762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/15/2020] [Accepted: 01/18/2021] [Indexed: 02/08/2023]
Abstract
Myocardial injury after cardiac arrest (CA) often results in severe myocardial dysfunction and death involving mitochondrial dysfunction. Here, we sought to investigate whether baicalin, a natural flavonoid compound, exerts cardioprotection against CA-induced injury via regulating mitochondrial dysfunction. We subjected the rats to asphyxia CA after a daily baicalin treatment for 4 weeks. After the return of spontaneous circulation, baicalin treatment significantly improved cardiac function performance, elevated survival rate from 35% to 75%, prevented necrosis and apoptosis in the myocardium, which was accompanied by reduced phosphorylation of Drp1 at serine 616, inhibited Drp1 translocation to the mitochondria and mitochondrial fission, and improved mitochondrial function. In H9c2 cells subjected to simulated ischemia/reperfusion, increased phosphorylation of Drp1 at serine 616 and subsequently enhanced mitochondrial Drp1 translocation as well as mitochondrial fission, augmented cardiomyocyte death, increased reactive oxygen species production, released cytochrome c from mitochondria and injured mitochondrial respiration were efficiently improved by baicalin and Drp1 specific inhibitor with Mdivi-1. Furthermore, overexpression of Drp1 augmented excessive mitochondrial fission and abolished baicalin-afforded cardioprotection, indicating that the protective impacts of baicalin are linked to the inhibition of Drp1. Altogether, our findings disclose for the first time that baicalin offers cardioprotection against ischemic myocardial injury after CA by inhibiting Drp1-mediated mitochondrial fission. Baicalin might be a prospective therapy for the treatment of post-CA myocardial injury.
Collapse
Affiliation(s)
- Jun Wu
- Department of Ultrasonography Medicine, Suzhou Hospital of Traditional Chinese Medicine, 215009 Suzhou, China
- Suzhou Research Institute of Traditional Chinese Medicine, Suzhou Hospital of Traditional Chinese Medicine, 215009 Suzhou, China
| | - Hui Chen
- Department of Emergency Medicine, Traditional Chinese Medicine Hospital of Kunshan, 215300 Kunshan, China
| | - Jiahong Qin
- Department of Intensive Care Unit, The First Affiliated Hospital of Kunming Medical University, 650032 Kunming, China
| | - Nan Chen
- Department of Intensive Care Unit, The First Affiliated Hospital of Soochow University, 215006 Suzhou, China
| | - Shiqi Lu
- Department of Intensive Care Unit, The First Affiliated Hospital of Soochow University, 215006 Suzhou, China
| | - Jun Jin
- Department of Intensive Care Unit, The First Affiliated Hospital of Soochow University, 215006 Suzhou, China
| | - Yi Li
- Department of Intensive Care Unit, The First Affiliated Hospital of Soochow University, 215006 Suzhou, China
| |
Collapse
|
33
|
The Impact of Mitochondrial Fission-Stimulated ROS Production on Pro-Apoptotic Chemotherapy. BIOLOGY 2021; 10:biology10010033. [PMID: 33418995 PMCID: PMC7825353 DOI: 10.3390/biology10010033] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/29/2020] [Accepted: 01/01/2021] [Indexed: 02/06/2023]
Abstract
Cancer is one of the world's deadliest afflictions. Despite recent advances in diagnostic and surgical technologies, as well as improved treatments of some individual tumor types, there is currently no universal cure to prevent or impede the uncontrolled proliferation of malignant cells. Targeting tumors by inducing apoptosis is one of the pillars of cancer treatment. Changes in mitochondrial morphology precede intrinsic apoptosis, but mitochondrial dynamics has only recently been recognized as a viable pharmacological target. In many cancers, oncogenic transformation is accompanied by accumulation of elevated cellular levels of ROS leading to redox imbalance. Hence, a common chemotherapeutic strategy against such tumor types involves deploying pro-oxidant agents to increase ROS levels above an apoptotic death-inducing threshold. The aim of this chapter is to investigate the benefit of stimulating mitochondrial fission-dependent production of ROS for enhanced killing of solid tumors. The main question to be addressed is whether a sudden and abrupt change in mitochondrial shape toward the fragmented phenotype can be pharmacologically harnessed to trigger a burst of mitochondrial ROS sufficient to initiate apoptosis specifically in cancer cells but not in non-transformed healthy tissues.
Collapse
|
34
|
Sato Y, Yoshino H, Kashiwakura I, Tsuruga E. DAP3 Is Involved in Modulation of Cellular Radiation Response by RIG-I-Like Receptor Agonist in Human Lung Adenocarcinoma Cells. Int J Mol Sci 2021; 22:E420. [PMID: 33401559 PMCID: PMC7795940 DOI: 10.3390/ijms22010420] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 12/14/2022] Open
Abstract
Retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) mediate anti-viral response through mitochondria. In addition, RLR activation induces anti-tumor effects on various cancers. We previously reported that the RLR agonist Poly(I:C)-HMW/LyoVec™ (Poly(I:C)) enhanced radiosensitivity and that cotreatment with Poly(I:C) and ionizing radiation (IR) more than additively increased cell death in lung adenocarcinoma cells, indicating that Poly(I:C) modulates the cellular radiation response. However, it remains unclear how mitochondria are involved in the modulation of this response. Here, we investigated the involvement of mitochondrial dynamics and mitochondrial ribosome protein death-associated protein 3 (DAP3) in the modulation of cellular radiation response by Poly(I:C) in A549 and H1299 human lung adenocarcinoma cell lines. Western blotting revealed that Poly(I:C) decreased the expression of mitochondrial dynamics-related proteins and DAP3. In addition, siRNA experiments showed that DAP3, and not mitochondrial dynamics, is involved in the resistance of lung adenocarcinoma cells to IR-induced cell death. Finally, we revealed that a more-than-additive effect of cotreatment with Poly(I:C) and IR on increasing cell death was diluted by DAP3-knockdown because of an increase in cell death induced by IR alone. Together, our findings suggest that RLR agonist Poly(I:C) modulates the cellular radiation response of lung adenocarcinoma cells by downregulating DAP3 expression.
Collapse
Affiliation(s)
| | - Hironori Yoshino
- Department of Radiation Science, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan; (Y.S.); (I.K.); (E.T.)
| | | | | |
Collapse
|
35
|
Kaminaga K, Hamada R, Usami N, Suzuki K, Yokoya A. Targeted Nuclear Irradiation with an X-Ray Microbeam Enhances Total JC-1 Fluorescence from Mitochondria. Radiat Res 2020; 194:511-518. [PMID: 33045074 DOI: 10.1667/rr15110.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 09/02/2020] [Indexed: 11/03/2022]
Abstract
Several studies have demonstrated that mitochondria are critically involved in the pleiotropic manifestation of radiation effects. While conventional whole-cell irradiation compromises the function of mitochondria, the effects of subcellular targeted radiation are not yet fully understood. In this study, normal human diploid cells with cell-cycle indicators were irradiated using a synchrotron X-ray microbeam, and mitochondrial membrane potential was quantified by JC-1 over the 72-h period postirradiation. Cytoplasmic irradiation was observed to temporarily enlarge the mitochondrial area with high membrane potential, while the total mitochondrial area did not change significantly. Unexpectedly, cell-nucleus irradiation promoted a similar increase not only in the mitochondrial areas with high membrane potential, but also in those with low membrane potential, which gave rise to the apparent increase in the total mitochondrial area. Augmentation of the mitochondrial area with low membrane potential was predominantly observed among G1 cells, suggesting that nucleus irradiation during the G1 phase regulated the mitochondrial dynamics of the cytoplasm, presumably through DNA damage in the nucleus.
Collapse
Affiliation(s)
- Kiichi Kaminaga
- Graduate School of Science and Engineering, Ibaraki University, Mito, Ibaraki 310-8512, Japan.,Institute for Quantum Life Science, National Institutes for Quantum and Radiological Sciences and Technology, Tokai, Ibaraki 319-1106, Japan
| | - Ryo Hamada
- Graduate School of Science and Engineering, Ibaraki University, Mito, Ibaraki 310-8512, Japan.,Institute for Quantum Life Science, National Institutes for Quantum and Radiological Sciences and Technology, Tokai, Ibaraki 319-1106, Japan
| | - Noriko Usami
- Photon Factory, Institute of Material Structure Sciences, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
| | - Keiji Suzuki
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki 852-8523, Japan
| | - Akinari Yokoya
- Graduate School of Science and Engineering, Ibaraki University, Mito, Ibaraki 310-8512, Japan.,Institute for Quantum Life Science, National Institutes for Quantum and Radiological Sciences and Technology, Tokai, Ibaraki 319-1106, Japan
| |
Collapse
|
36
|
Zhao J, Zhang S, Chen L, Liu X, Su H, Chen L, Yang L, Zhang H. Sphingosine 1-phosphate protects against radiation-induced ovarian injury in female rats-impact on mitochondrial-related genes. Reprod Biol Endocrinol 2020; 18:99. [PMID: 33046081 PMCID: PMC7549217 DOI: 10.1186/s12958-020-00659-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/07/2020] [Indexed: 01/21/2023] Open
Abstract
The toxic effects of ionizing radiation on the gonads have been widely recognized. Sphingosine 1-phosphate (S1P) has a protective effect on ovarian injury, and although it is known that mitochondria are involved in this process, the specific mechanism is not fully understood. The present study analysed the changes in the serum AMH and ovarian histology in Sprague-Dawley female rats exposed to X-ray radiation only or co-administered with S1P. The mRNA expression profile of ovarian tissue was further analysed via next-generation sequencing and bioinformatics approaches to screen out candidate mitochondria-related genes. Finally, differentially expressed target genes were verified by real-time PCR. The results showed that ionizing radiation could reduce the serum AMH level, destroy ovarian structure and decrease the number of follicles in rats, while S1P administration significantly attenuated the impairment of ovarian function. Gene ontology (GO) and KEGG pathway analysis revealed that a variety of genes related to mitochondrial function were differentially expressed, and the protective effect of S1P on mitochondria was more obvious in the acute phase 24 h after radiation. The differentially expressed mitochondrial function-related genes associated with the protective effect of S1P were UQCRH, MICU2 and GPX4, which were subsequently verified by RT-PCR. Therefore, ionizing radiation has a significant effect on ovarian function, and S1P has a protective effect on radiation-induced ovarian injury, in which mitochondria may play an important role. This study sheds new light on the mechanism of radiation-induced ovarian injury and helps develop a novel potential strategy to control it.
Collapse
Affiliation(s)
- Jiahui Zhao
- Department of Reproductive Medicine, The Second Affiliated Hospital of Soochow University, NO.1055 SanXiang Road, Suzhou, 215004, Jiangsu Province, China
- Department of Reproductive Medicine, Lianyungang Maternal and Child Health Hospital, NO.669 Qindongmen Road, Lianyungang, 222001, Jiangsu Province, China
| | - Shuyun Zhang
- Department of Reproductive Medicine, The Second Affiliated Hospital of Soochow University, NO.1055 SanXiang Road, Suzhou, 215004, Jiangsu Province, China
| | - Liesong Chen
- Department of Reproductive Medicine, The Second Affiliated Hospital of Soochow University, NO.1055 SanXiang Road, Suzhou, 215004, Jiangsu Province, China
| | - Xiaolong Liu
- Department of Reproductive Medicine, The Second Affiliated Hospital of Soochow University, NO.1055 SanXiang Road, Suzhou, 215004, Jiangsu Province, China
| | - Haihong Su
- Department of Reproductive Medicine, The Second Affiliated Hospital of Soochow University, NO.1055 SanXiang Road, Suzhou, 215004, Jiangsu Province, China
| | - Lili Chen
- Department of Reproductive Medicine, The Second Affiliated Hospital of Soochow University, NO.1055 SanXiang Road, Suzhou, 215004, Jiangsu Province, China
| | - Li Yang
- Department of Reproductive Medicine, The Second Affiliated Hospital of Soochow University, NO.1055 SanXiang Road, Suzhou, 215004, Jiangsu Province, China
| | - Hong Zhang
- Department of Reproductive Medicine, The Second Affiliated Hospital of Soochow University, NO.1055 SanXiang Road, Suzhou, 215004, Jiangsu Province, China.
| |
Collapse
|
37
|
Kuznetsova EA, Sirota NP, Mitroshina IY, Pikalov VA, Smirnova EN, Rozanova OM, Glukhov SI, Sirota TV, Zaichkina SI. DNA damage in blood leukocytes from mice irradiated with accelerated carbon ions with an energy of 450 MeV/nucleon. Int J Radiat Biol 2020; 96:1245-1253. [DOI: 10.1080/09553002.2020.1807640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Elena A. Kuznetsova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Nikolay P. Sirota
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Irina Yu. Mitroshina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Vladimir A. Pikalov
- Institute of High Energy Physics of the National Research Center ‘Kurchatov Institute’, Protvino, Russia
| | - Elena N. Smirnova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Olga M. Rozanova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Sergei I. Glukhov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Tatyana V. Sirota
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Svetlana I. Zaichkina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
38
|
Das S, Joshi MB, Parashiva GK, Rao SBS. Stimulation of cytoprotective autophagy and components of mitochondrial biogenesis / proteostasis in response to ionizing radiation as a credible pro-survival strategy. Free Radic Biol Med 2020; 152:715-727. [PMID: 31968231 DOI: 10.1016/j.freeradbiomed.2020.01.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/14/2020] [Accepted: 01/14/2020] [Indexed: 12/11/2022]
Abstract
The present study illustrates mitochondria-mediated impact of ionizing radiation which is paralleled by activation of several pro-adaptive responses in normal human dermal fibroblast cells. Irradiation of cells with X-rays (5 Gy) led to an increase in fragmentation and mitochondrial mass. Distinct temporal changes in cytosolic and mitochondrial reactive oxygen species (ROS) were noted in response to radiation, which was associated with depletion in mitochondrial membrane potential followed by decrease in ATP levels. Long Amplicon-Polymerase Chain Reaction (LA-PCR) analysis showed time-dependent increase in mitochondrial DNA damage that preceded mitochondrial ROS generation. Irradiation of cells led to an initial G2/M arrest at 8 h that persisted till 16 h, with subsequent block at G0/G1 measured at 48 and 72 h time points. Interestingly, cells activated autophagy as a countermeasure against radiation-mediated cellular insults and aided in removal of damaged mitochondria. Blocking autophagy using 3-methyladenine led to cell death via activation of enhanced ROS, PARP-1 and caspase 3 cleavage. Upregulation of mitochondrial biogenesis factors Nrf1/PGC-1α, following irradiation was observed. Irradiated cells exhibited an increase in the phosphorylation of GCN2, PERK and eIF2α that might be responsible for the up-regulation of ATF4 and CHOP thereby regulating autophagy and components of integrated stress response. Apart from this, we measured accumulation of mitochondrial chaperones (HSP60/HSP10) and ATF5 which is a major molecule involved in mitochondrial stress. Taken together, mitochondria are one of the major cytoplasmic targets for ionizing radiation and possibly act as an early indicator of cellular insult. The findings also show that stressed mitochondria might influence endoplasmic reticulum (ER)-related signalling leading to the activation of adaptive mechanisms like cytoprotective autophagy, and molecules responsible for mitochondrial biogenesis and protein quality control in order to replenish mitochondrial pool and maintain cellular homeostasis.
Collapse
Affiliation(s)
- Shubhankar Das
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Manjunath B Joshi
- Department of Aging Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Guruprasad K Parashiva
- Department of Aging Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Satish B S Rao
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
39
|
Mitochondrial biogenesis as a therapeutic target for traumatic and neurodegenerative CNS diseases. Exp Neurol 2020; 329:113309. [PMID: 32289315 DOI: 10.1016/j.expneurol.2020.113309] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/31/2020] [Accepted: 04/10/2020] [Indexed: 12/27/2022]
Abstract
Central nervous system (CNS) diseases, both traumatic and neurodegenerative, are characterized by impaired mitochondrial bioenergetics and often disturbed mitochondrial dynamics. The dysregulation observed in these pathologies leads to defective respiratory chain function and reduced ATP production, thereby promoting neuronal death. As such, attenuation of mitochondrial dysfunction through induction of mitochondrial biogenesis (MB) is a promising, though still underexplored, therapeutic strategy. MB is a multifaceted process involving the integration of highly regulated transcriptional events, lipid membrane and protein synthesis/assembly and replication of mtDNA. Several nuclear transcription factors promote the expression of genes involved in oxidative phosphorylation, mitochondrial import and export systems, antioxidant defense and mitochondrial gene transcription. Of these, the nuclear-encoded peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) is the most commonly studied and is widely accepted as the 'master regulator' of MB. Several recent preclinical studies document that reestablishment of mitochondrial homeostasis through increased MB results in inhibited injury progression and increased functional recovery. This perspective will briefly review the role of mitochondrial dysfunction in the propagation of CNS diseases, while also describing current research strategies that mediate mitochondrial dysfunction and compounds that induce MB for the treatment of acute and chronic neuropathologies.
Collapse
|
40
|
Yakovleva MA, Lyakhova KN, Utina DM, Vinogradova UV, Kolesnikova IA, Feldman TB, Ostrovsky MA. Changes in the Composition and Fluorescent Properties of Bisretinoids in the Retina and the Retinal Pigment Epithelium of the Mouse Eye under Exposure to Ionizing Radiation. BIOL BULL+ 2020. [DOI: 10.1134/s1062359019120094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
41
|
He Z, Ning N, Zhou Q, Khoshnam SE, Farzaneh M. Mitochondria as a therapeutic target for ischemic stroke. Free Radic Biol Med 2020; 146:45-58. [PMID: 31704373 DOI: 10.1016/j.freeradbiomed.2019.11.005] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/07/2019] [Accepted: 11/03/2019] [Indexed: 12/24/2022]
Abstract
Stroke is the leading cause of death and physical disability worldwide. Mitochondrial dysfunction has been considered as one of the hallmarks of ischemic stroke and contributes to the pathology of ischemia and reperfusion. Mitochondria is essential in promoting neural survival and neurological improvement following ischemic stroke. Therefore, mitochondria represent an important drug target for stroke treatment. This review discusses the mitochondrial molecular mechanisms underlying cerebral ischemia and involved in reactive oxygen species generation, mitochondrial electron transport dysfunction, mitochondria-mediated regulation of inflammasome activation, mitochondrial dynamics and biogenesis, and apoptotic cell death. We highlight the potential of mitochondrial transfer by stem cells as a therapeutic target for stroke treatment and provide valuable insights for clinical strategies. A better understanding of the roles of mitochondria in ischemia-induced cell death and protection may provide a rationale design of novel therapeutic interventions in the ischemic stroke.
Collapse
Affiliation(s)
- Zhi He
- Department of Pharmacy, Luohe Medical College, Luohe, 462000, China
| | - Niya Ning
- Department of Obstetrics and Gynecology, Shaoling District People's Hospital of Luohe City, Luohe, 462300, China
| | - Qiongxiu Zhou
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu, 610052, China.
| | - Seyed Esmaeil Khoshnam
- Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Maryam Farzaneh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
42
|
Kim EJ, Lee M, Kim DY, Kim KI, Yi JY. Mechanisms of Energy Metabolism in Skeletal Muscle Mitochondria Following Radiation Exposure. Cells 2019; 8:E950. [PMID: 31438652 PMCID: PMC6770322 DOI: 10.3390/cells8090950] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/09/2019] [Accepted: 08/18/2019] [Indexed: 12/30/2022] Open
Abstract
An understanding of cellular processes that determine the response to ionizing radiation exposure is essential for improving radiotherapy and assessing risks to human health after accidental radiation exposure. Radiation exposure leads to many biological effects, but the mechanisms underlying the metabolic effects of radiation are not well known. Here, we investigated the effects of radiation exposure on the metabolic rate and mitochondrial bioenergetics in skeletal muscle. We show that ionizing radiation increased mitochondrial protein and mass and enhanced proton leak and mitochondrial maximal respiratory capacity, causing an increase in the fraction of mitochondrial respiration devoted to uncoupling reactions. Thus, mice and cells treated with radiation became energetically efficient and displayed increased fatty acid and amino acid oxidation metabolism through the citric acid cycle. Finally, we demonstrate that radiation-induced alterations in mitochondrial energy metabolism involved adenosine monophosphate-activated kinase signaling in skeletal muscle. Together, these results demonstrate that alterations in mitochondrial mass and function are important adaptive responses of skeletal muscle to radiation.
Collapse
Affiliation(s)
- Eun Ju Kim
- Division of Basic Radiation Bioscience, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea.
- Radiological & Medico-Oncological Sciences, University of Science & Technology, Daejeon 34113, Korea.
| | - Minyoung Lee
- Radiological & Medico-Oncological Sciences, University of Science & Technology, Daejeon 34113, Korea
- Division of Radiation Research Infrastructure Operation, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea
| | - Da Yeon Kim
- Division of Basic Radiation Bioscience, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea
- Radiological & Medico-Oncological Sciences, University of Science & Technology, Daejeon 34113, Korea
| | - Kwang Il Kim
- Division of Basic Radiation Bioscience, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea
| | - Jae Youn Yi
- Division of Basic Radiation Bioscience, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea
| |
Collapse
|
43
|
Wang H, Wei J, Zheng Q, Meng L, Xin Y, Yin X, Jiang X. Radiation-induced heart disease: a review of classification, mechanism and prevention. Int J Biol Sci 2019; 15:2128-2138. [PMID: 31592122 PMCID: PMC6775290 DOI: 10.7150/ijbs.35460] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/19/2019] [Indexed: 12/13/2022] Open
Abstract
With the increasing incidence of thoracic tumors, radiation therapy (RT) has become an important component of comprehensive treatment. RT improves survival in many cancers, but it involves some inevitable complications. Radiation-induced heart disease (RIHD) is one of the most serious complications. RIHD comprises a spectrum of heart disease including cardiomyopathy, pericarditis, coronary artery disease, valvular heart disease and conduction system abnormalities. There are numerous clinical manifestations of RIHD, such as chest pain, palpitation, and dyspnea, even without obvious symptoms. Based on previous studies, the pathogenesis of RIHD is related to the production and effects of various cytokines caused by endothelial injury, inflammatory response, and oxidative stress (OS). Therefore, it is of great importance for clinicians to identify the mechanism and propose interventions for the prevention of RIHD.
Collapse
Affiliation(s)
- Heru Wang
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, 130021, China.,Department of Cardiology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Jinlong Wei
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Qingshuang Zheng
- Department of Cardiology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Lingbin Meng
- Department of Internal Medicine, Florida Hospital, Orlando, FL 32804,USA
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Xia Yin
- Department of Cardiology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Xin Jiang
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, 130021, China
| |
Collapse
|
44
|
X-rays Activate Telomeric Homologous Recombination Mediated Repair in Primary Cells. Cells 2019; 8:cells8070708. [PMID: 31336873 PMCID: PMC6678842 DOI: 10.3390/cells8070708] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/27/2019] [Accepted: 07/06/2019] [Indexed: 12/31/2022] Open
Abstract
Cancer cells need to acquire telomere maintenance mechanisms in order to counteract progressive telomere shortening due to multiple rounds of replication. Most human tumors maintain their telomeres expressing telomerase whereas the remaining 15%–20% utilize the alternative lengthening of telomeres (ALT) pathway. Previous studies have demonstrated that ionizing radiations (IR) are able to modulate telomere lengths and to transiently induce some of the ALT-pathway hallmarks in normal primary fibroblasts. In the present study, we investigated the telomere length modulation kinetics, telomeric DNA damage induction, and the principal hallmarks of ALT over a period of 13 days in X-ray-exposed primary cells. Our results show that X-ray-treated cells primarily display telomere shortening and telomeric damage caused by persistent IR-induced oxidative stress. After initial telomere erosion, we observed a telomere elongation that was associated to the transient activation of a homologous recombination (HR) based mechanism, sharing several features with the ALT pathway observed in cancer cells. Data indicate that telomeric damage activates telomeric HR-mediated repair in primary cells. The characterization of HR-mediated telomere repair in normal cells may contribute to the understanding of the ALT pathway and to the identification of novel strategies in the treatment of ALT-positive cancers.
Collapse
|
45
|
Slowly Reducible Genetically Encoded Green Fluorescent Indicator for In Vivo and Ex Vivo Visualization of Hydrogen Peroxide. Int J Mol Sci 2019; 20:ijms20133138. [PMID: 31252566 PMCID: PMC6650888 DOI: 10.3390/ijms20133138] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/19/2019] [Accepted: 06/25/2019] [Indexed: 12/16/2022] Open
Abstract
Hydrogen peroxide (H2O2) plays an important role in modulating cell signaling and homeostasis in live organisms. The HyPer family of genetically encoded indicators allows the visualization of H2O2 dynamics in live cells within a limited field of view. The visualization of H2O2 within a whole organism with a single cell resolution would benefit from a slowly reducible fluorescent indicator that integrates the H2O2 concentration over desired time scales. This would enable post hoc optical readouts in chemically fixed samples. Herein, we report the development and characterization of NeonOxIrr, a genetically encoded green fluorescent indicator, which rapidly increases fluorescence brightness upon reaction with H2O2, but has a low reduction rate. NeonOxIrr is composed of circularly permutated mNeonGreen fluorescent protein fused to the truncated OxyR transcription factor isolated from E. coli. When compared in vitro to a standard in the field, HyPer3 indicator, NeonOxIrr showed 5.9-fold higher brightness, 15-fold faster oxidation rate, 5.9-fold faster chromophore maturation, similar intensiometric contrast (2.8-fold), 2-fold lower photostability, and significantly higher pH stability both in reduced (pKa of 5.9 vs. ≥7.6) and oxidized states (pKa of 5.9 vs.≥ 7.9). When expressed in the cytosol of HEK293T cells, NeonOxIrr demonstrated a 2.3-fold dynamic range in response to H2O2 and a 44 min reduction half-time, which were 1.4-fold lower and 7.6-fold longer than those for HyPer3. We also demonstrated and characterized the NeonOxIrr response to H2O2 when the sensor was targeted to the matrix and intermembrane space of the mitochondria, nucleus, cell membranes, peroxisomes, Golgi complex, and endoplasmic reticulum of HEK293T cells. NeonOxIrr could reveal endogenous reactive oxygen species (ROS) production in HeLa cells induced with staurosporine but not with thapsigargin or epidermal growth factor. In contrast to HyPer3, NeonOxIrr could visualize optogenetically produced ROS in HEK293T cells. In neuronal cultures, NeonOxIrr preserved its high 3.2-fold dynamic range to H2O2 and slow 198 min reduction half-time. We also demonstrated in HeLa cells that NeonOxIrr preserves a 1.7-fold ex vivo dynamic range to H2O2 upon alkylation with N-ethylmaleimide followed by paraformaldehyde fixation. The same alkylation-fixation procedure in the presence of NP-40 detergent allowed ex vivo detection of H2O2 with 1.5-fold contrast in neuronal cultures and in the cortex of the mouse brain. The slowly reducible H2O2 indicator NeonOxIrr can be used for both the in vivo and ex vivo visualization of ROS. Expanding the family of fixable indicators may be a promising strategy to visualize biological processes at a single cell resolution within an entire organism.
Collapse
|
46
|
Ariyoshi K, Miura T, Kasai K, Fujishima Y, Nakata A, Yoshida M. Radiation-Induced Bystander Effect is Mediated by Mitochondrial DNA in Exosome-Like Vesicles. Sci Rep 2019; 9:9103. [PMID: 31235776 PMCID: PMC6591216 DOI: 10.1038/s41598-019-45669-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 06/11/2019] [Indexed: 12/17/2022] Open
Abstract
Exosome-like vesicles (ELV) are involved in mediating radiation-induced bystander effect (RIBE). Here, we used ELV from control cell conditioned medium (CCCM) and from 4 Gy of X-ray irradiated cell conditioned medium (ICCM), which has been used to culture normal human fibroblast cells to examine the possibility of ELV mediating RIBE signals. We investigated whether ELV from 4 Gy irradiated mouse serum mediate RIBE signals. Induction of DNA damage was observed in cells that were treated with ICCM ELV and ELV from 4 Gy irradiated mouse serum. In addition, we treated CCCM ELV and ICCM ELV with RNases, DNases, and proteinases to determine which component of ELV is responsible for RIBE. Induction of DNA damage by ICCM ELV was not observed after treatment with DNases. After treatment, DNA damages were not induced in CCCM ELV or ICCM ELV from mitochondria depleted (ρ0) normal human fibroblast cells. Further, we found significant increase in mitochondrial DNA (mtDNA) in ICCM ELV and ELV from 4 Gy irradiated mouse serum. ELV carrying amplified mtDNA (ND1, ND5) induced DNA damage in treated cells. These data suggest that the secretion of mtDNA through exosomes is involved in mediating RIBE signals.
Collapse
Affiliation(s)
- Kentaro Ariyoshi
- Department of Radiation Biology, Institute of Radiation Emergency Medicine, Hirosaki University, 66-1 Hon-cho, Hirosaki, 036-8564, Japan.
| | - Tomisato Miura
- Department of Biomedical Sciences, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, 036-8564, Japan
| | - Kosuke Kasai
- Department of Biomedical Sciences, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, 036-8564, Japan
| | - Yohei Fujishima
- Department of Biomedical Sciences, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, 036-8564, Japan
| | - Akifumi Nakata
- Department of Basic Pharmacy, Hokkaido Pharmaceutical University School of Pharmacy, Maeda 7-jo 15-4-1, Teine-ku, Otaru, Sapporo, 006-8590, Japan
| | - Mitsuaki Yoshida
- Department of Radiation Biology, Institute of Radiation Emergency Medicine, Hirosaki University, 66-1 Hon-cho, Hirosaki, 036-8564, Japan.
| |
Collapse
|
47
|
Hamada R, Kaminaga K, Suzuki K, Yokoya A. MITOCHONDRIAL MEMBRANE POTENTIAL, MORPHOLOGY AND ATP PRODUCTION IN MAMMALIAN CELLS EXPOSED TO X-RAYS. RADIATION PROTECTION DOSIMETRY 2019; 183:98-101. [PMID: 30544200 DOI: 10.1093/rpd/ncy254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Indexed: 06/09/2023]
Abstract
This study aimed to reveal the effect of X-irradiation on mitochondrial function in terms of mitochondrial membrane potential (ΔΨm) and ATP productivity. At the cellular level, ΔΨm was quantified using JC-1, a mitochondrial probe that emits red or green fluorescence at high or low ΔΨm sites, respectively. The fluorescence area was quantified for both colors together relative to the whole-cell area of the same cell. The fluorescence areas versus whole-cell areas varied widely among the irradiated cells depending on the X-ray doses received (6 and 10 Gy) and incubation time, although the relative red area to total mitochondrial area was rather constant. Average ATP concentrations temporarily increased and showed a maximum at 48 h after irradiation for largely G1-arrested cells. These results indicate that an increase of mitochondrial volume per cell, not simply an increase in their active sites, is induced by irradiation, resulting in enhanced ATP production.
Collapse
Affiliation(s)
- R Hamada
- Graduate School of Science and Engineering, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki, Japan
- Tokai Quantum Beam Science Center, National Institutes for Quantum and Radiological Science and Technology (QST), 2-4 Shirakata-Oaza, Tokai, Ibaraki, Japan
| | - K Kaminaga
- Graduate School of Science and Engineering, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki, Japan
- Tokai Quantum Beam Science Center, National Institutes for Quantum and Radiological Science and Technology (QST), 2-4 Shirakata-Oaza, Tokai, Ibaraki, Japan
| | - K Suzuki
- Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, Nagasaki, Japan
| | - A Yokoya
- Graduate School of Science and Engineering, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki, Japan
- Tokai Quantum Beam Science Center, National Institutes for Quantum and Radiological Science and Technology (QST), 2-4 Shirakata-Oaza, Tokai, Ibaraki, Japan
| |
Collapse
|
48
|
Cyclooxygenase-2-Mediated Up-Regulation of Mitochondrial Transcription Factor A Mitigates the Radio-Sensitivity of Cancer Cells. Int J Mol Sci 2019; 20:ijms20051218. [PMID: 30862036 PMCID: PMC6429587 DOI: 10.3390/ijms20051218] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/22/2019] [Accepted: 03/07/2019] [Indexed: 12/23/2022] Open
Abstract
Mitochondrial transcription factor A (TFAM) regulates mitochondrial biogenesis, and it is a candidate target for sensitizing tumor during therapy. Previous studies identified that increased TFAM expression conferred tumor cells resistance to ionizing radiation. However, the mechanisms on how TFAM are regulated in irradiated tumor cells remain to be explored. In this research, we demonstrated the contribution of cyclooxygenase-2 (COX-2) to enhancing TFAM expression in irradiated tumor cells. Our results showed TFAM was concomitantly up-regulated with COX-2 in irradiated tumor cells. Inhibition of COX-2 by NS-398 blocked radiation-induced expression of TFAM, and prostaglandin E2 (PGE2) treatment stimulated TFAM expression. We next provided evidence that DRP1-mediated mitochondrial fragmentation was a reason for TFAM up-regulation in irradiated cells, by using small interfering RNA (siRNA) and selective inhibitor-targeted DRP1. Furthermore, we proved that p38-MAPK-connected COX-2, and DRP1-mediated TFAM up-regulation. Enhanced phosphorylation of p38 in irradiated tumor cells promoted DRP1 expression, mitochondrial fragmentation, and TFAM expression. NS-398 treatment inhibited radiation-induced p38 phosphorylation, while PGE2 stimulated the activation of p38. The results put forward a mechanism where COX-2 stimulates TFAM expression via p38-mediated DRP1/mitochondrial fragmentation signaling in irradiated tumor cells, which may be of value in understanding how to sensitize cancer cells during radiotherapy.
Collapse
|
49
|
Xu Q, Fang L, Chen B, Zhang H, Wu Q, Zhang H, Wang A, Tong J, Tao S, Tian H. Radon induced mitochondrial dysfunction in human bronchial epithelial cells and epithelial-mesenchymal transition with long-term exposure. Toxicol Res (Camb) 2019; 8:90-100. [PMID: 30746122 PMCID: PMC6334652 DOI: 10.1039/c8tx00181b] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/31/2018] [Indexed: 01/19/2023] Open
Abstract
Radon is a naturally occurring radionuclide, which has a wide environmental distributed. It emits multiple high linear energy transfer (LET) alpha particles during radiative decay, and has been regarded as a human carcinogen by the International Agency for Research on Cancer. Currently, residential radon exposure is considered as the second highest cause of lung cancer and the leading cause among nonsmokers. Radon exposure leads to genomic instability, which causes the accumulation of multiple genetic changes and leads to cancer development. However, the molecular basis underlying carcinogenesis, especially the radon-induced changes to mitochondria, has not been fully elucidated. The aim of this study was to explore the dynamic changes in mitochondria along with the cell transformations induced by long-term radon exposure. A malignant transformation model of BEAS-2B cells was established with upto 40 times the usual radon exposure (20 000 Bq m-3, 30 min each time every 3 days). Long-term radon exposure induced EMT-like transformation of epithelial cells in our study, evidenced by decrease in epithelial markers and increase in mesenchymal markers, as well as the loss of cell-cell adhesion and alterations to the morphology of cells from compact shape to a spindle shaped, fibroblast-like morphology. Additionally, the proliferation and migration of cells were increased and apoptosis was decreased with long-term radon exposure. Furthermore, mitochondrial function was up-regulated and the levels of oxidative stress were repressed with long-term radon exposure. Our work explored the dynamic changes of mitochondrial in radon induced malignant transformation of lung bronchial epithelial cells, which could partially elucidate the role of mitochondria in radon induced cell malignancy.
Collapse
Affiliation(s)
- Qian Xu
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease , School of Public Health , Soochow University , Suzhou , 215123 , PR China . ; Fax: +86-512-65880070 ; Tel: +86-512-65698540 ; Tel: +86-512-65880070 ; ;
| | - Lijun Fang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease , School of Public Health , Soochow University , Suzhou , 215123 , PR China . ; Fax: +86-512-65880070 ; Tel: +86-512-65698540 ; Tel: +86-512-65880070 ; ;
| | - Bin Chen
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease , School of Public Health , Soochow University , Suzhou , 215123 , PR China . ; Fax: +86-512-65880070 ; Tel: +86-512-65698540 ; Tel: +86-512-65880070 ; ;
- Suzhou Gusu District Center For Disease Prevention And Control , Jiangsu , China
| | - Hong Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease , School of Public Health , Soochow University , Suzhou , 215123 , PR China . ; Fax: +86-512-65880070 ; Tel: +86-512-65698540 ; Tel: +86-512-65880070 ; ;
| | - Qianqian Wu
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease , School of Public Health , Soochow University , Suzhou , 215123 , PR China . ; Fax: +86-512-65880070 ; Tel: +86-512-65698540 ; Tel: +86-512-65880070 ; ;
| | - Hongbo Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease , School of Public Health , Soochow University , Suzhou , 215123 , PR China . ; Fax: +86-512-65880070 ; Tel: +86-512-65698540 ; Tel: +86-512-65880070 ; ;
- Suzhou Xiangcheng District For Maternal And Child Care Service Centre , Jiangsu , China
| | - Aiqing Wang
- Experimental Center of Medical College , Soochow University , 199 Ren'ai Road , Suzhou 215123 , Jiangsu , China
| | - Jian Tong
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease , School of Public Health , Soochow University , Suzhou , 215123 , PR China . ; Fax: +86-512-65880070 ; Tel: +86-512-65698540 ; Tel: +86-512-65880070 ; ;
| | - Shasha Tao
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease , School of Public Health , Soochow University , Suzhou , 215123 , PR China . ; Fax: +86-512-65880070 ; Tel: +86-512-65698540 ; Tel: +86-512-65880070 ; ;
- Experimental Center of Medical College , Soochow University , 199 Ren'ai Road , Suzhou 215123 , Jiangsu , China
| | - Hailin Tian
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease , School of Public Health , Soochow University , Suzhou , 215123 , PR China . ; Fax: +86-512-65880070 ; Tel: +86-512-65698540 ; Tel: +86-512-65880070 ; ;
- Experimental Center of Medical College , Soochow University , 199 Ren'ai Road , Suzhou 215123 , Jiangsu , China
| |
Collapse
|
50
|
Jin X, Zheng X, Li F, Liu B, Li H, Hirayama R, Li P, Liu X, Shen G, Li Q. Fragmentation level determines mitochondrial damage response and subsequently the fate of cancer cells exposed to carbon ions. Radiother Oncol 2018; 129:75-83. [DOI: 10.1016/j.radonc.2017.11.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/14/2017] [Accepted: 11/21/2017] [Indexed: 12/23/2022]
|