1
|
Li Z, Yin B, Zhang S, Lan Z, Zhang L. Targeting protein kinases for the treatment of Alzheimer's disease: Recent progress and future perspectives. Eur J Med Chem 2023; 261:115817. [PMID: 37722288 DOI: 10.1016/j.ejmech.2023.115817] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/02/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
Alzheimer's disease (AD) is a serious neurodegenerative disease characterized by memory impairment, mental retardation, impaired motor balance, loss of self-care and even death. Among the complex and diverse pathological changes in AD, protein kinases are deeply involved in abnormal phosphorylation of Tau proteins to form intracellular neuronal fiber tangles, neuronal loss, extracellular β-amyloid (Aβ) deposits to form amyloid plaques, and synaptic disturbances. As a disease of the elderly, the growing geriatric population is directly driving the market demand for AD therapeutics, and protein kinases are potential targets for the future fight against AD. This perspective provides an in-depth look at the role of the major protein kinases (GSK-3β, CDK5, p38 MAPK, ERK1/2, and JNK3) in the pathogenesis of AD. At the same time, the development of different protein kinase inhibitors and the current state of clinical advancement are also outlined.
Collapse
Affiliation(s)
- Zhijia Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Bo Yin
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Shuangqian Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Zhigang Lan
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, 610041, China.
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
2
|
Maiese K. Cognitive Impairment in Multiple Sclerosis. Bioengineering (Basel) 2023; 10:871. [PMID: 37508898 PMCID: PMC10376413 DOI: 10.3390/bioengineering10070871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Almost three million individuals suffer from multiple sclerosis (MS) throughout the world, a demyelinating disease in the nervous system with increased prevalence over the last five decades, and is now being recognized as one significant etiology of cognitive loss and dementia. Presently, disease modifying therapies can limit the rate of relapse and potentially reduce brain volume loss in patients with MS, but unfortunately cannot prevent disease progression or the onset of cognitive disability. Innovative strategies are therefore required to address areas of inflammation, immune cell activation, and cell survival that involve novel pathways of programmed cell death, mammalian forkhead transcription factors (FoxOs), the mechanistic target of rapamycin (mTOR), AMP activated protein kinase (AMPK), the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), and associated pathways with the apolipoprotein E (APOE-ε4) gene and severe acute respiratory syndrome coronavirus (SARS-CoV-2). These pathways are intertwined at multiple levels and can involve metabolic oversight with cellular metabolism dependent upon nicotinamide adenine dinucleotide (NAD+). Insight into the mechanisms of these pathways can provide new avenues of discovery for the therapeutic treatment of dementia and loss in cognition that occurs during MS.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, NY 10022, USA
| |
Collapse
|
3
|
Roles of ZnT86D in Neurodevelopment and Pathogenesis of Alzheimer Disease in a Drosophila melanogaster Model. Int J Mol Sci 2022; 23:ijms231911832. [PMID: 36233134 PMCID: PMC9569493 DOI: 10.3390/ijms231911832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/18/2022] Open
Abstract
Zinc is a fundamental trace element essential for numerous biological processes, and zinc homeostasis is regulated by the Zrt-/Irt-like protein (ZIP) and zinc transporter (ZnT) families. ZnT7 is mainly localized in the Golgi apparatus and endoplasmic reticulum (ER) and transports zinc into these organelles. Although previous studies have reported the role of zinc in animal physiology, little is known about the importance of zinc in the Golgi apparatus and ER in animal development and neurodegenerative diseases. In this study, we demonstrated that ZnT86D, a Drosophila ortholog of ZnT7, plays a pivotal role in the neurodevelopment and pathogenesis of Alzheimer disease (AD). When ZnT86D was silenced in neurons, the embryo-to-adult survival rate, locomotor activity, and lifespan were dramatically reduced. The toxic phenotypes were accompanied by abnormal neurogenesis and neuronal cell death. Furthermore, knockdown of ZnT86D in the neurons of a Drosophila AD model increased apoptosis and exacerbated neurodegeneration without significant changes in the deposition of amyloid beta plaques and susceptibility to oxidative stress. Taken together, our results suggest that an appropriate distribution of zinc in the Golgi apparatus and ER is important for neuronal development and neuroprotection and that ZnT7 is a potential protective factor against AD.
Collapse
|
4
|
Oli V, Gupta R, Kumar P. FOXO and related transcription factors binding elements in the regulation of neurodegenerative disorders. J Chem Neuroanat 2021; 116:102012. [PMID: 34400291 DOI: 10.1016/j.jchemneu.2021.102012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/16/2021] [Accepted: 08/07/2021] [Indexed: 12/16/2022]
Abstract
Neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and others, are characterized by progressive loss of neuronal cells, which causes memory impairment and cognitive decline. Mounting evidence demonstrated the possible implications of diverse biological processes, namely oxidative stress, mitochondrial dysfunction, aberrant cell cycle re-entry, post-translational modifications, protein aggregation, impaired proteasome dysfunction, autophagy, and many others that cause neuronal cell death. The condition worsens as there is no effective treatment for such diseases due to their complex pathogenesis and mechanism. Mounting evidence demonstrated the role of regulatory transcription factors, such as NFκβ, FoxO, Myc, CREB, and others that regulate the biological processes and diminish the disease progression and pathogenesis. Studies demonstrated that forkhead box O (FoxO) transcription factors had been implicated in the regulation of aging and longevity. Further, the functions of FoxO proteins are regulated by different post-translational modifications (PTMs), namely acetylation, and ubiquitination. Various studies concluded that FoxO proteins exert both neuroprotective and neurotoxic properties depending on their regulation mechanism and activity in the brain. Thus, understanding the nature of FoxO expression and activity in the brain will help develop effective therapeutic strategies. Herein, firstly, we discuss the role of FoxO protein in cell cycle regulation and cell proliferation, followed by the regulation of FoxO proteins through acetylation and ubiquitination. We also briefly explain the activity and expression pattern of FoxO proteins in the neuronal cells and explain the mechanism through which FoxO proteins are rescued from oxidative stress-induced neurotoxicity. Later on, we present a detailed view of the implication of FoxO proteins in neurodegenerative disease and FoxO proteins as an effective therapeutic target.
Collapse
Affiliation(s)
- Vaibhav Oli
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), India.
| |
Collapse
|
5
|
Varma M, Shravage B, Tayade S, Kumbhar A, Butcher R, Jani V, Sonavane U, Joshi R, Kulkarni PP. A simple methyl substitution of 3-acetylcoumarin thiosemicarbazone enhances cellular autophagy flux, reduces inflammation and ameliorates rough eye phenotype in the Drosophila model of Alzheimer's disease. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Costa-Rodrigues C, Couceiro J, Moreno E. Cell competition from development to neurodegeneration. Dis Model Mech 2021; 14:269331. [PMID: 34190316 PMCID: PMC8277968 DOI: 10.1242/dmm.048926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cell competition is a process by which suboptimal cells are eliminated to the benefit of cells with higher fitness. It is a surveillance mechanism that senses differences in the fitness status by several modes, such as expression of fitness fingerprints, survival factor uptake rate and resistance to mechanical stress. Fitness fingerprints-mediated cell competition recognizes isoforms of the transmembrane protein Flower, and translates the relative fitness of cells into distinct fates through the Flower code. Impairments in cell competition potentiate the development of diseases like cancer and ageing-related pathologies. In cancer, malignant cells acquire a supercompetitor behaviour, killing the neighbouring cells and overtaking the tissue, thus avoiding elimination. Neurodegenerative disorders affect millions of people and are characterized by cognitive decline and locomotor deficits. Alzheimer's disease is the most common form of dementia, and one of the largely studied diseases. However, the cellular processes taking place remain unclear. Drosophila melanogaster is an emerging neurodegeneration model due to its versatility as a tool for genetic studies. Research in a Drosophila Alzheimer's disease model detected fitness markers in the suboptimal and hyperactive neurons, thus establishing a link between cell competition and Alzheimer's disease. In this Review, we overview cell competition and the new insights related to neurodegenerative disorders, and discuss how research in the field might contribute to the development of new therapeutic targets for these diseases.
Collapse
Affiliation(s)
| | - Joana Couceiro
- Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Eduardo Moreno
- Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| |
Collapse
|
7
|
Abstract
The global increase in lifespan noted not only in developed nations, but also in large developing countries parallels an observed increase in a significant number of non-communicable diseases, most notable neurodegenerative disorders. Neurodegenerative disorders present a number of challenges for treatment options that do not resolve disease progression. Furthermore, it is believed by the year 2030, the services required to treat cognitive disorders in the United States alone will exceed $2 trillion annually. Mammalian forkhead transcription factors, silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae), the mechanistic target of rapamycin, and the pathways of autophagy and apoptosis offer exciting avenues to address these challenges by focusing upon core cellular mechanisms that may significantly impact nervous system disease. These pathways are intimately linked such as through cell signaling pathways involving protein kinase B and can foster, sometimes in conjunction with trophic factors, enhanced neuronal survival, reduction in toxic intracellular accumulations, and mitochondrial stability. Feedback mechanisms among these pathways also exist that can oversee reparative processes in the nervous system. However, mammalian forkhead transcription factors, silent mating type information regulation 2 homolog 1, mechanistic target of rapamycin, and autophagy can lead to cellular demise under some scenarios that may be dependent upon the precise cellular environment, warranting future studies to effectively translate these core pathways into successful clinical treatment strategies for neurodegenerative disorders.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling New York, New York, NY, USA
| |
Collapse
|
8
|
Engin AB, Engin A. Alzheimer's Disease and Protein Kinases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1275:285-321. [PMID: 33539020 DOI: 10.1007/978-3-030-49844-3_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder and accounts for more than 60-80% of all cases of dementia. Loss of pyramidal neurons, extracellular amyloid beta (Abeta) accumulated senile plaques, and neurofibrillary tangles that contain hyperphosphorylated tau constitute the main pathological alterations in AD.Synaptic dysfunction and extrasynaptic N-methyl-D-aspartate receptor (NMDAR) hyperactivation contributes to excitotoxicity in patients with AD. Amyloid precursor protein (APP) and Abeta promoted neurodegeneration develop through the activation of protein kinase signaling cascade in AD. Furthermore, ultimate neuronal death in AD is under control of protein kinases-related signaling pathways. In this chapter, critical check-points within the cross-talk between neuron and protein kinases have been defined regarding the initiation and progression of AD. In this context, amyloid cascade hypothesis, neuroinflammation, oxidative stress, granulovacuolar degeneration, loss of Wnt signaling, Abeta-related synaptic alterations, prolonged calcium ions overload and NMDAR-related synaptotoxicity, damage signals hypothesis and type-3 diabetes are discussed briefly.In addition to clinical perspective of AD pathology, recommendations that might be effective in the treatment of AD patients have been reviewed.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Department of Toxicology, Faculty of Pharmacy, Gazi University, Ankara, Turkey.
| | - Atilla Engin
- Department of General Surgery, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
9
|
Ramachandran AK, Das S, Joseph A, Gurupur Gautham S, Alex AT, Mudgal J. Neurodegenerative Pathways in Alzheimer's Disease: A Review. Curr Neuropharmacol 2021; 19:679-692. [PMID: 32851951 PMCID: PMC8573750 DOI: 10.2174/1570159x18666200807130637] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/26/2020] [Accepted: 07/31/2020] [Indexed: 11/23/2022] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disease that leads to insidious deterioration of brain functions and is considered the sixth leading cause of death in the world. Alzheimer's patients suffer from memory loss, cognitive deficit and behavioral changes; thus, they eventually follow a low-quality life. AD is considered as a multifactorial disorder involving different neuropathological mechanisms. Recent research has identified more than 20 pathological factors that are promoting disease progression. Three significant hypotheses are said to be the root cause of disease pathology, which include acetylcholine deficit, the formation of amyloid-beta senile plaques and tau protein hyperphosphorylation. Apart from these crucial factors, pathological factors such as apolipoprotein E (APOE), glycogen synthase kinase 3β, notch signaling pathway, Wnt signaling pathway, etc., are considered to play a role in the advancement of AD and therefore could be used as targets for drug discovery and development. As of today, there is no complete cure or effective disease altering therapies for AD. The current therapy is assuring only symptomatic relief from the disease, and progressive loss of efficacy for these symptomatic treatments warrants the discovery of newer drugs by exploring these novel drug targets. A comprehensive understanding of these therapeutic targets and their neuropathological role in AD is necessary to identify novel molecules for the treatment of AD rationally.
Collapse
Affiliation(s)
- Anu Kunnath Ramachandran
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Subham Das
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Alex Joseph
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Shenoy, Gurupur Gautham
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Angel Treasa Alex
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| |
Collapse
|
10
|
Benn CL, Dawson LA. Clinically Precedented Protein Kinases: Rationale for Their Use in Neurodegenerative Disease. Front Aging Neurosci 2020; 12:242. [PMID: 33117143 PMCID: PMC7494159 DOI: 10.3389/fnagi.2020.00242] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Kinases are an intensively studied drug target class in current pharmacological research as evidenced by the large number of kinase inhibitors being assessed in clinical trials. Kinase-targeted therapies have potential for treatment of a broad array of indications including central nervous system (CNS) disorders. In addition to the many variables which contribute to identification of a successful therapeutic molecule, drug discovery for CNS-related disorders also requires significant consideration of access to the target organ and specifically crossing the blood-brain barrier (BBB). To date, only a small number of kinase inhibitors have been reported that are specifically designed to be BBB permeable, which nonetheless demonstrates the potential for success. This review considers the potential for kinase inhibitors in the context of unmet medical need for neurodegenerative disease. A subset of kinases that have been the focus of clinical investigations over a 10-year period have been identified and discussed individually. For each kinase target, the data underpinning the validity of each in the context of neurodegenerative disease is critically evaluated. Selected molecules for each kinase are identified with information on modality, binding site and CNS penetrance, if known. Current clinical development in neurodegenerative disease are summarized. Collectively, the review indicates that kinase targets with sufficient rationale warrant careful design approaches with an emphasis on improving brain penetrance and selectivity.
Collapse
|
11
|
Goswami S, Kareem O, Goyal RK, Mumtaz SM, Tonk RK, Gupta R, Pottoo FH. Role of Forkhead Transcription Factors of the O Class (FoxO) in Development and Progression of Alzheimer's Disease. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 19:709-721. [PMID: 33001019 DOI: 10.2174/1871527319666201001105553] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 07/20/2020] [Accepted: 08/31/2020] [Indexed: 11/22/2022]
Abstract
In the Central Nervous System (CNS), a specific loss of focal neurons leads to mental and neurological disorders like dementia, Alzheimer's Disease (AD), Huntington's disease, Parkinson's disease, etc. AD is a neurological degenerative disorder, which is progressive and irreversible in nature and is the widely recognized reason for dementia in the geriatric populace. It affects 10% of people above the age of 65 and is the fourth driving reason for death in the United States. Numerous evidence suggests that the neuronal compartment is not the only genesis of AD, but transcription factors also hold significant importance in the occurrence and advancement of the disease. It is the need of the time to find the novel molecular targets and new techniques for treating or slowing down the progression of neurological disorders, especially AD. In this article, we summarised a conceivable association between transcriptional factors and their defensive measures against neurodegeneration and AD. The mammalian forkhead transcription factors of the class O (FoxO) illustrate one of the potential objectives for the development of new methodologies against AD and other neurocognitive disorders. The presence of FoxO is easily noticeable in the "cognitive centers" of the brain, specifically in the amygdala, hippocampus, and the nucleus accumbens. FoxO proteins are the prominent and necessary factors in memory formation and cognitive functions. FoxO also assumes a pertinent role in the protection of multiple cells in the brain by controlling the involving mechanism of autophagy and apoptosis and also modulates the process of phosphorylation of the targeted protein, thus FoxO must be a putative target in the mitigation of AD. This review features the role of FoxO as an important biomarker and potential new targets for the treatment of AD.
Collapse
Affiliation(s)
- Shikha Goswami
- Delhi Pharmaceutical Sciences and Research University, Mehrauli- Badarpur Rd, Sector 3, PushpVihar, New Delhi, India
| | - Ozaifa Kareem
- Department of Pharmaceutical Sciences, Faculty of Applied Sciences and Technology, University of Kashmir, Srinagar, JK, India
| | - Ramesh K Goyal
- Delhi Pharmaceutical Sciences and Research University, Mehrauli- Badarpur Rd, Sector 3, PushpVihar, New Delhi, India
| | - Sayed M Mumtaz
- Delhi Pharmaceutical Sciences and Research University, Mehrauli- Badarpur Rd, Sector 3, PushpVihar, New Delhi, India
| | - Rajiv K Tonk
- Delhi Pharmaceutical Sciences and Research University, Mehrauli- Badarpur Rd, Sector 3, PushpVihar, New Delhi, India
| | - Rahul Gupta
- Delhi Pharmaceutical Sciences and Research University, Mehrauli- Badarpur Rd, Sector 3, PushpVihar, New Delhi, India
| | - Faheem H Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University P.O.BOX 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|
12
|
Kim T, Shin H, Song B, Won C, Yoshida H, Yamaguchi M, Cho KS, Lee I. Overexpression of
H3K36
methyltransferase
NSD
in glial cells affects brain development in
Drosophila. Glia 2020; 68:2503-2516. [DOI: 10.1002/glia.23867] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 04/21/2020] [Accepted: 05/16/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Taejoon Kim
- Department of Biological Sciences, CHANS Research Center Konkuk University Seoul South Korea
| | - Hyewon Shin
- Department of Biological Sciences, CHANS Research Center Konkuk University Seoul South Korea
| | - Bokyeong Song
- Department of Biological Sciences, CHANS Research Center Konkuk University Seoul South Korea
| | - Chihyun Won
- Department of Biological Sciences, CHANS Research Center Konkuk University Seoul South Korea
| | - Hideki Yoshida
- Department of Applied Biology Kyoto Institute of Technology Kyoto Japan
| | | | - Kyoung Sang Cho
- Department of Biological Sciences, CHANS Research Center Konkuk University Seoul South Korea
| | - Im‐Soon Lee
- Department of Biological Sciences, CHANS Research Center Konkuk University Seoul South Korea
| |
Collapse
|
13
|
Genetic Dissection of Alzheimer's Disease Using Drosophila Models. Int J Mol Sci 2020; 21:ijms21030884. [PMID: 32019113 PMCID: PMC7037931 DOI: 10.3390/ijms21030884] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 01/26/2020] [Accepted: 01/26/2020] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s disease (AD), a main cause of dementia, is the most common neurodegenerative disease that is related to abnormal accumulation of the amyloid β (Aβ) protein. Despite decades of intensive research, the mechanisms underlying AD remain elusive, and the only available treatment remains symptomatic. Molecular understanding of the pathogenesis and progression of AD is necessary to develop disease-modifying treatment. Drosophila, as the most advanced genetic model, has been used to explore the molecular mechanisms of AD in the last few decades. Here, we introduce Drosophila AD models based on human Aβ and summarize the results of their genetic dissection. We also discuss the utility of functional genomics using the Drosophila system in the search for AD-associated molecular mechanisms in the post-genomic era.
Collapse
|
14
|
Roles of forkhead box O (FoxO) transcription factors in neurodegenerative diseases: A panoramic view. Prog Neurobiol 2019; 181:101645. [PMID: 31229499 DOI: 10.1016/j.pneurobio.2019.101645] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/03/2019] [Accepted: 06/18/2019] [Indexed: 12/11/2022]
Abstract
Neurodegenerative diseases (NDDs), which are among the most important aging-related diseases, are typically characterized by neuronal damage and a progressive impairment in neurological function during aging. Few effective therapeutic targets for NDDs have been revealed; thus, an understanding of the pathogenesis of NDDs is important. Forkhead box O (FoxO) transcription factors have been implicated in the mechanisms regulating aging and longevity. The functions of FoxOs are regulated by diverse post-translational modifications (e.g., phosphorylation, acetylation, ubiquitination, methylation and glycosylation). FoxOs exert both detrimental and protective effects on NDDs. Therefore, an understanding of the precise function of FoxOs in NDDs will be helpful for developing appropriate treatment strategies. In this review, we first introduce the post-translational modifications of FoxOs. Next, the regulation of FoxO expression and post-translational modifications in the central nervous system (CNS) is described. Afterwards, we analyze and address the important roles of FoxOs in NDDs. Finally, novel potential directions of future FoxO research in NDDs are discussed. This review recapitulates essential facts and questions about the promise of FoxOs in treating NDDs, and it will likely be important for the design of further basic studies and to realize the potential for FoxOs as therapeutic targets in NDDs.
Collapse
|
15
|
Li Y, Chu Q, Liu Y, Ye X, Jiang Y, Zheng X. Radix Tetrastigma flavonoid ameliorates inflammation and prolongs the lifespan of Caenorhabditis elegans through JNK, p38 and Nrf2 pathways. Free Radic Res 2019; 53:562-573. [PMID: 31039619 DOI: 10.1080/10715762.2019.1613534] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The main flavonoid components of Radix Tetrastigma (RTF) were extracted and identified by UPLC-TOF/MS. In vitro, RTF prevented inflammation in RAW 264.7 cells by suppressing morphological (both cell and nucleus) changes, and decreasing nitric oxide (NO), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) contents. Exposure to LPS also leads to oxidant damage, and RTF alleviated damage to mitochondria, decreased O2- accumulation, and restored the glutathione level. RTF intervention decreased the expression of c-Jun N-terminal kinase (JNK) and p38 phosphorylation, accompanied by downregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) and forkhead box protein O1 (FoxO1). In vivo, aging of Caenorhabditis elegans (C. elegans) by paraquat (PQ) was observed through lifespan, lipofuscin, and enzyme analysis. RTF protected against damage in N2 worms but not in daf-16 mutants. Gene expression was further assessed, and p38/PMK-1 and Nrf2/SKN-1 expression in worms was suppressed by PQ, which was reversed by RTF treatment. Together, these results suggested that RTF could help ameliorate inflammation-induced damage through JNK, p38 and Nrf2 pathways.
Collapse
Affiliation(s)
- Yonglu Li
- a Department of Food Science and Nutrition , Zhejiang University , Hangzhou , People's Republic of China.,b Zhejiang Key Laboratory for Agro-Food Processing , Zhejiang University , Hangzhou , People's Republic of China.,c Fuli Institute of Food Science , Zhejiang University , Hangzhou , People's Republic of China
| | - Qiang Chu
- a Department of Food Science and Nutrition , Zhejiang University , Hangzhou , People's Republic of China.,b Zhejiang Key Laboratory for Agro-Food Processing , Zhejiang University , Hangzhou , People's Republic of China.,c Fuli Institute of Food Science , Zhejiang University , Hangzhou , People's Republic of China
| | - Yangyang Liu
- a Department of Food Science and Nutrition , Zhejiang University , Hangzhou , People's Republic of China.,b Zhejiang Key Laboratory for Agro-Food Processing , Zhejiang University , Hangzhou , People's Republic of China.,c Fuli Institute of Food Science , Zhejiang University , Hangzhou , People's Republic of China
| | - Xiang Ye
- a Department of Food Science and Nutrition , Zhejiang University , Hangzhou , People's Republic of China.,b Zhejiang Key Laboratory for Agro-Food Processing , Zhejiang University , Hangzhou , People's Republic of China.,c Fuli Institute of Food Science , Zhejiang University , Hangzhou , People's Republic of China
| | - Yong Jiang
- d Shanghai Zhengyue Enterprise Management Co, Ltd, Putuo District , Shanghai , People's Republic of China
| | - Xiaodong Zheng
- a Department of Food Science and Nutrition , Zhejiang University , Hangzhou , People's Republic of China.,b Zhejiang Key Laboratory for Agro-Food Processing , Zhejiang University , Hangzhou , People's Republic of China.,c Fuli Institute of Food Science , Zhejiang University , Hangzhou , People's Republic of China
| |
Collapse
|
16
|
Feng C, Thyagarajan P, Shorey M, Seebold DY, Weiner AT, Albertson RM, Rao KS, Sagasti A, Goetschius DJ, Rolls MM. Patronin-mediated minus end growth is required for dendritic microtubule polarity. J Cell Biol 2019; 218:2309-2328. [PMID: 31076454 PMCID: PMC6605808 DOI: 10.1083/jcb.201810155] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 03/13/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023] Open
Abstract
Feng et al. describe persistent neuronal microtubule minus end growth that depends on the CAMSAP protein Patronin and is needed for dendritic minus-end-out polarity. Microtubule minus ends are thought to be stable in cells. Surprisingly, in Drosophila and zebrafish neurons, we observed persistent minus end growth, with runs lasting over 10 min. In Drosophila, extended minus end growth depended on Patronin, and Patronin reduction disrupted dendritic minus-end-out polarity. In fly dendrites, microtubule nucleation sites localize at dendrite branch points. Therefore, we hypothesized minus end growth might be particularly important beyond branch points. Distal dendrites have mixed polarity, and reduction of Patronin lowered the number of minus-end-out microtubules. More strikingly, extra Patronin made terminal dendrites almost completely minus-end-out, indicating low Patronin normally limits minus-end-out microtubules. To determine whether minus end growth populated new dendrites with microtubules, we analyzed dendrite development and regeneration. Minus ends extended into growing dendrites in the presence of Patronin. In sum, our data suggest that Patronin facilitates sustained microtubule minus end growth, which is critical for populating dendrites with minus-end-out microtubules.
Collapse
Affiliation(s)
- Chengye Feng
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA
| | - Pankajam Thyagarajan
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA
| | - Matthew Shorey
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA
| | - Dylan Y Seebold
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA
| | - Alexis T Weiner
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA
| | - Richard M Albertson
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA
| | - Kavitha S Rao
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA
| | - Alvaro Sagasti
- Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA
| | - Daniel J Goetschius
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA
| | - Melissa M Rolls
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA
| |
Collapse
|
17
|
Jiang M, Huang W, Wang Z, Ren F, Luo L, Zhou J, Yan R, Xia N, Tang L. Anti-inflammatory effects of Ang-(1-7) via TLR4-mediated inhibition of the JNK/FoxO1 pathway in lipopolysaccharide-stimulated RAW264.7 cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 92:291-298. [PMID: 30458182 DOI: 10.1016/j.dci.2018.11.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 11/11/2018] [Accepted: 11/11/2018] [Indexed: 06/09/2023]
Abstract
Targeting inflammation is considered a challenging pharmacological strategy to prevent or delay the development of inflammatory diseases, such as severe asthma, Crohn's disease, and rheumatoid arthritis. The angiotensin-(1-7) -Mas axis ((Ang-(1-7)-Mas axis) was confirmed to antagonize the effects of the Angiotensin II-AT1 receptor axis and the latter is reported to regulate cardiovascular and renal function, as well as contribute to the inflammatory process. In this paper, we aim to explore the crucial effect of Ang-(1-7) in inflammation and disclose the mechanisms in lipopolysaccharide (LPS)-induced murine macrophages RAW264.7. We found that Ang-(1-7) inhibited the production and secretion of tumor necrosis factor-α and interleukin-6 in a concentration-dependent manner in LPS-induced macrophages. The overexpression of TLR4, phospho-JNK, and FoxO1 induced by LPS were also inhibited by incubation with Ang-(1-7). These inhibitory effects were reversed by A-779. Moreover, we also used a selective JNK inhibitor Sp600125 to further corroborate the involvement of TLR4, JNK, and FoxO1 in the anti-inflammatory action of Ang-(1-7). Our research reveals a new mechanism that Ang-(1-7) may drive anti-inflammatory effects via the Mas receptor through inhibition of the TLR4-mediated JNK/FoxO1 signaling pathway in LPS-induced macrophages. Our findings open new perspectives of Ang-(1-7)-Mas axis in local inflammation.
Collapse
Affiliation(s)
- Mei Jiang
- Department of Rheumatology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Wenhan Huang
- Department of Rheumatology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Zhongjie Wang
- Department of Rheumatology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Feifeng Ren
- Department of Rheumatology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Lei Luo
- Department of Rheumatology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Jun Zhou
- Department of Rheumatology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Ruyu Yan
- Department of Rheumatology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Ning Xia
- Department of Rheumatology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Lin Tang
- Department of Rheumatology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
18
|
Hwang S, Jeong H, Hong EH, Joo HM, Cho KS, Nam SY. Low-dose ionizing radiation alleviates Aβ42-induced cell death via regulating AKT and p38 pathways in Drosophila Alzheimer's disease models. Biol Open 2019; 8:bio.036657. [PMID: 30670376 PMCID: PMC6398453 DOI: 10.1242/bio.036657] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Ionizing radiation is widely used in medicine and is valuable in both the diagnosis and treatment of many diseases. However, its health effects are ambiguous. Here, we report that low-dose ionizing radiation has beneficial effects in human amyloid-β42 (Aβ42)-expressing Drosophila Alzheimer's disease (AD) models. Ionizing radiation at a dose of 0.05 Gy suppressed AD-like phenotypes, including developmental defects and locomotive dysfunction, but did not alter the decreased survival rates and longevity of Aβ42-expressing flies. The same dose of γ-irradiation reduced Aβ42-induced cell death in Drosophila AD models through downregulation of head involution defective (hid), which encodes a protein that activates caspases. However, 4 Gy of γ-irradiation increased Aβ42-induced cell death without modulating pro-apoptotic genes grim, reaper and hid. The AKT signaling pathway, which was suppressed in Drosophila AD models, was activated by either 0.05 or 4 Gy γ-irradiation. Interestingly, p38 mitogen-activated protein-kinase (MAPK) activity was inhibited by exposure to 0.05 Gy γ-irradiation but enhanced by exposure to 4 Gy in Aβ42-expressing flies. In addition, overexpression of phosphatase and tensin homolog (PTEN), a negative regulator of the AKT signaling pathway, or a null mutant of AKT strongly suppressed the beneficial effects of low-dose ionizing radiation in Aβ42-expressing flies. These results indicate that low-dose ionizing radiation suppresses Aβ42-induced cell death through regulation of the AKT and p38 MAPK signaling pathways, suggesting that low-dose ionizing radiation has hormetic effects on the pathogenesis of Aβ42-associated AD. Summary: Low-dose ionizing radiation can reduce cell death by regulating AKT/p38 signaling pathway and improve Aβ42-induced symptoms in Drosophila Alzheimer's disease, suggesting that low-dose ionizing radiation may be applicable for treatment.
Collapse
Affiliation(s)
- Soojin Hwang
- Low-Dose Radiation Research Team, Radiation Health Institute, Korea Hydro & Nuclear Power Co. Ltd, Seoul 01450, Korea
| | - Haemin Jeong
- Low-Dose Radiation Research Team, Radiation Health Institute, Korea Hydro & Nuclear Power Co. Ltd, Seoul 01450, Korea
| | - Eun-Hee Hong
- Low-Dose Radiation Research Team, Radiation Health Institute, Korea Hydro & Nuclear Power Co. Ltd, Seoul 01450, Korea
| | - Hae Mi Joo
- Low-Dose Radiation Research Team, Radiation Health Institute, Korea Hydro & Nuclear Power Co. Ltd, Seoul 01450, Korea
| | - Kyoung Sang Cho
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea
| | - Seon Young Nam
- Low-Dose Radiation Research Team, Radiation Health Institute, Korea Hydro & Nuclear Power Co. Ltd, Seoul 01450, Korea
| |
Collapse
|
19
|
Affiliation(s)
- Xingjun Wang
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
- Department of Neuroscience, Scripps Research Institute, Florida 130 Scripps Way Jupiter, Florida, 33458, USA.
| | - Xirui Huang
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Chenxi Wu
- College of Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
| | - Lei Xue
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
20
|
Wei G, Sun L, Qin S, Li R, Chen L, Jin P, Ma F. Dme-Hsa Disease Database (DHDD): Conserved Human Disease-Related miRNA and Their Targeting Genes in Drosophila melanogaster. Int J Mol Sci 2018; 19:ijms19092642. [PMID: 30200613 PMCID: PMC6163619 DOI: 10.3390/ijms19092642] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/29/2018] [Accepted: 08/31/2018] [Indexed: 12/24/2022] Open
Abstract
Abnormal expressions of microRNA (miRNA) can result in human diseases such as cancer and neurodegenerative diseases. MiRNA mainly exert their biological functions via repressing the expression of their target genes. Drosophila melanogaster (D. melanogaster) is an ideal model for studying the molecular mechanisms behind biological phenotypes, including human diseases. In this study, we collected human and D. melanogaster miRNA as well as known human disease-related genes. In total, we identified 136 human disease-related miRNA that are orthologous to 83 D. melanogaster miRNA by mapping "seed sequence", and 677 human disease-related genes that are orthologous to 734 D. melanogaster genes using the DRSC Integrative Ortholog Prediction Tool Furthermore, we revealed the target relationship between genes and miRNA using miRTarBase database and target prediction software, including miRanda and TargetScan. In addition, we visualized interaction networks and signalling pathways for these filtered miRNA and target genes. Finally, we compiled all the above data and information to generate a database designated DHDD This is the first comprehensive collection of human disease-related miRNA and their targeting genes conserved in a D. melanogaster database. The DHDD provides a resource for easily searching human disease-related miRNA and their disease-related target genes as well as their orthologs in D. melanogaster, and conveniently identifying the regulatory relationships among them in the form of a visual network.
Collapse
Affiliation(s)
- Guanyun Wei
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, Jiangsu, China.
- School of Life Sciences, School of Ocean Nantong University, Nantong 226019, Jiangsu, China.
| | - Lianjie Sun
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, Jiangsu, China.
| | - Shijie Qin
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, Jiangsu, China.
| | - Ruimin Li
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, Jiangsu, China.
| | - Liming Chen
- The Key Laboratory of Developmental Genes and Human Disease, College of Life Science, Nanjing Normal University, Nanjing 210046, Jiangsu, China.
| | - Ping Jin
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, Jiangsu, China.
| | - Fei Ma
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, Jiangsu, China.
| |
Collapse
|
21
|
Lin C, Chen P, Chan H, Huang Y, Chang NW. Peroxisome proliferator‐activated receptor alpha accelerates neuronal differentiation and this might involve the mitogen‐activated protein kinase pathway. Int J Dev Neurosci 2018; 71:46-51. [DOI: 10.1016/j.ijdevneu.2018.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 08/09/2018] [Accepted: 08/21/2018] [Indexed: 01/11/2023] Open
Affiliation(s)
- Chingju Lin
- Department of PhysiologyCollege of Medicine, China Medical UniversityTaichungTaiwan, ROC
| | - Pei‐Yi Chen
- Department of BiochemistryCollege of Medicine, China Medical UniversityTaichungTaiwan, ROC
| | - Hsu‐Chin Chan
- Department of BiochemistryCollege of Medicine, China Medical UniversityTaichungTaiwan, ROC
| | - Yi‐Ping Huang
- Department of PhysiologyCollege of Medicine, China Medical UniversityTaichungTaiwan, ROC
| | - Nai Wen Chang
- Department of BiochemistryCollege of Medicine, China Medical UniversityTaichungTaiwan, ROC
| |
Collapse
|
22
|
Kong Y, Jiang B, Luo X. Gut microbiota influences Alzheimer's disease pathogenesis by regulating acetate in Drosophila model. Future Microbiol 2018; 13:1117-1128. [PMID: 30043649 DOI: 10.2217/fmb-2018-0185] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
AIM The aim of present study is to investigate the relationship between gut microbiota and Alzheimer's disease (AD) using Drosophila model. MATERIALS & METHODS The microbiota was characterized by Illumina sequencing of 16S rRNA gene. Gas chromatography-mass spectrometer was performed to measure the level of short-chain fatty acids (SCFAs), metabolites of the commensal microbiota. RESULTS The diversity of the gut microbiota increased in AD Drosophila. As the most enriched bacteria at genus level, the proportions of Acetobacter and Lactobacillus decreased dramatically. Acetate was the most abundant SCFA derived from the dysregulated microbiota and markedly downregulated in AD Drosophila. CONCLUSION Our study on Drosophila model suggests that dysregulation of gut microbiota may participate in AD pathogenesis by influencing SCFA level.
Collapse
Affiliation(s)
- Yan Kong
- Department of Biochemistry & Molecular Biology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Baichun Jiang
- The Key Laboratory of Experimental Teratology, Ministry of Education & Department of Genetics, Shandong University School of Basic Medical Sciences, Jinan, Shandong 250012, PR China
| | - Xuancai Luo
- Department of Neurology, Huiyang Hospital, Southern Medical University, Huizhou, Guangdong 516211, PR China
| |
Collapse
|
23
|
Tsuda L, Omata Y, Yamasaki Y, Minami R, Lim YM. Pyroglutamate-amyloid-β peptide expression in Drosophila leads to caspase-dependent and endoplasmic reticulum stress-related progressive neurodegeneration. Hum Mol Genet 2018; 26:4642-4656. [PMID: 28973191 DOI: 10.1093/hmg/ddx346] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 08/31/2017] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder among the elderly. During the progression of AD, massive neuronal degeneration occurs in the late stage of the disease; however, the molecular mechanisms responsible for this neuronal loss remain unknown. AβpE3-42 (an N-terminal-truncated amyloid-β peptide that begins with pyroglutamate at the third position) is produced during late-stage AD. It also aggregates more rapidly in vitro and exhibits greater toxicity in neurons than full-length Aβ1-42. In the present study, we established a Drosophila melanogaster model that expresses Aβ3-42E3Q, which effectively produces AβpE3-42, and investigated the function of AβpE3-42 using the photoreceptor neurons of Drosophila. AβpE3-42 induced caspase-dependent apoptosis and caused progressive degeneration in photoreceptor neurons. Mutations in ER stress response genes or the administration of an inhibitor of the ER stress response markedly suppressed the degeneration phenotype, suggesting that the ER stress response plays an important role in neurodegeneration caused by AβpE3-42. We also confirmed that human Tau-dependent apoptotic induction was strongly enhanced by AβpE3-42. Thus, AβpE3-42 expression system in the fly may be a promising new tool for studying late-onset neurodegeneration in AD.
Collapse
Affiliation(s)
- Leo Tsuda
- Center for Development of Advanced Medicine for Dementia (CAMD), National Center for Geriatrics and Gerontology (NCGG), Obu, Aichi 474-8511, Japan
| | - Yasuhiro Omata
- Center for Development of Advanced Medicine for Dementia (CAMD), National Center for Geriatrics and Gerontology (NCGG), Obu, Aichi 474-8511, Japan
| | - Yasutoyo Yamasaki
- Center for Development of Advanced Medicine for Dementia (CAMD), National Center for Geriatrics and Gerontology (NCGG), Obu, Aichi 474-8511, Japan
| | - Ryunosuke Minami
- Center for Development of Advanced Medicine for Dementia (CAMD), National Center for Geriatrics and Gerontology (NCGG), Obu, Aichi 474-8511, Japan
| | - Young-Mi Lim
- Center for Development of Advanced Medicine for Dementia (CAMD), National Center for Geriatrics and Gerontology (NCGG), Obu, Aichi 474-8511, Japan
| |
Collapse
|
24
|
Wang X, Sun Y, Han S, Wu C, Ma Y, Zhao Y, Shao Y, Chen Y, Kong L, Li W, Zhang F, Xue L. Amyloid precursor like protein-1 promotes JNK-mediated cell migration in Drosophila. Oncotarget 2018; 8:49725-49734. [PMID: 28537903 PMCID: PMC5564802 DOI: 10.18632/oncotarget.17681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 04/20/2017] [Indexed: 11/25/2022] Open
Abstract
The amyloid precursor like protein-1 (APLP1) is a member of the amyloid precursor protein (APP) family in mammals. While many studies have been focused on the pathologic role of APP in Alzheimer's disease, the physiological functions of APLP1 have remained largely elusive. Here we report that ectopic expression of APLP1 in Drosophila induces cell migration, which is suppressed by the loss of JNK signaling and enhanced by the gain of JNK signaling. APLP1 activates JNK signaling through phosphorylation of JNK, which up-regulates the expression of matrix metalloproteinase MMP1 required for basement membranes degradation and promotes actin remodeling essential for cell migration. Our data thus provide the first in vivo evidence for a cell-autonomous role of APLP1 protein in migration.
Collapse
Affiliation(s)
- Xingjun Wang
- Department of Interventional Radiology, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Ying Sun
- Department of Interventional Radiology, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Shilong Han
- Department of Interventional Radiology, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Chenxi Wu
- College of Chinese Medicine, North China University of Science and Technology, Tangshan 063210, China
| | - Yeqing Ma
- Department of Interventional Radiology, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Yu Zhao
- Department of Interventional Radiology, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Yingyao Shao
- Department of Interventional Radiology, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Yujun Chen
- Department of Interventional Radiology, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Lingzhi Kong
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Wenzhe Li
- Department of Interventional Radiology, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Fan Zhang
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Lei Xue
- Department of Interventional Radiology, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| |
Collapse
|
25
|
Liu QF, Jeon Y, Sung YW, Lee JH, Jeong H, Kim YM, Yun HS, Chin YW, Jeon S, Cho KS, Koo BS. Nardostachys jatamansi Ethanol Extract Ameliorates Aβ42 Cytotoxicity. Biol Pharm Bull 2018; 41:470-477. [DOI: 10.1248/bpb.b17-00750] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Quan Feng Liu
- Department of Oriental Medicine, Dongguk University
- Department of Oriental Neuropsychiatry, Graduate School of Oriental Medicine, Dongguk University
| | - Youngjae Jeon
- Department of Biological Sciences, Konkuk University
| | - Yung-wei Sung
- Department of Oriental Medicine, Dongguk University
- Department of Oriental Neuropsychiatry, Graduate School of Oriental Medicine, Dongguk University
| | - Jang Ho Lee
- Department of Biological Sciences, Konkuk University
| | - Haemin Jeong
- Department of Biological Sciences, Konkuk University
| | - Young-Mi Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul
| | - Hye Sup Yun
- Department of Biological Sciences, Konkuk University
| | - Young-Won Chin
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul
| | - Songhee Jeon
- Dongguk University Research Institute of Biotechnology, Dongguk University
- Department of Biomedical Sciences, BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University
| | | | - Byung-Soo Koo
- Department of Oriental Medicine, Dongguk University
- Department of Oriental Neuropsychiatry, Graduate School of Oriental Medicine, Dongguk University
| |
Collapse
|
26
|
Maiese K. Novel Treatment Strategies for the Nervous System: Circadian Clock Genes, Non-coding RNAs, and Forkhead Transcription Factors. Curr Neurovasc Res 2018; 15:81-91. [PMID: 29557749 PMCID: PMC6021214 DOI: 10.2174/1567202615666180319151244] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 01/23/2018] [Accepted: 02/07/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND With the global increase in lifespan expectancy, neurodegenerative disorders continue to affect an ever-increasing number of individuals throughout the world. New treatment strategies for neurodegenerative diseases are desperately required given the lack of current treatment modalities. METHODS Here, we examine novel strategies for neurodegenerative disorders that include circadian clock genes, non-coding Ribonucleic Acids (RNAs), and the mammalian forkhead transcription factors of the O class (FoxOs). RESULTS Circadian clock genes, non-coding RNAs, and FoxOs offer exciting prospects to potentially limit or remove the significant disability and death associated with neurodegenerative disorders. Each of these pathways has an intimate relationship with the programmed death pathways of autophagy and apoptosis and share a common link to the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1) and the mechanistic target of rapamycin (mTOR). Circadian clock genes are necessary to modulate autophagy, limit cognitive loss, and prevent neuronal injury. Non-coding RNAs can control neuronal stem cell development and neuronal differentiation and offer protection against vascular disease such as atherosclerosis. FoxOs provide exciting prospects to block neuronal apoptotic death and to activate pathways of autophagy to remove toxic accumulations in neurons that can lead to neurodegenerative disorders. CONCLUSION Continued work with circadian clock genes, non-coding RNAs, and FoxOs can offer new prospects and hope for the development of vital strategies for the treatment of neurodegenerative diseases. These innovative investigative avenues have the potential to significantly limit disability and death from these devastating disorders.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, Newark, New Jersey 07101
| |
Collapse
|
27
|
Ranade DS, Shravage BV, Kumbhar AA, Sonawane UB, Jani VP, Joshi RR, Kulkarni PP. Thiosemicarbazone Moiety Assist in Interaction of Planar Aromatic Molecules with Amyloid Beta Peptide and Acetylcholinesterase. ChemistrySelect 2017. [DOI: 10.1002/slct.201700588] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Dnyanesh S. Ranade
- Bioprospecting group Agharkar Research Institute, Pune G. G. Agarkar Road Pune-411004 India
| | - Bhupendra V. Shravage
- Development Biology group Agharkar Research Institute, Pune G. G. Agarkar Road Pune-411004 India
| | - Anupa A. Kumbhar
- Department of Chemistry Savitribai Phule Pune University Ganeshkhind Road Pune-411007 India
| | - Uddhavesh B. Sonawane
- Centre for Development of Advanced Computing (C–DAC) Savitribai Phule University of Pune Campus Pune-411007 India
| | - Vinod P. Jani
- Centre for Development of Advanced Computing (C–DAC) Savitribai Phule University of Pune Campus Pune-411007 India
| | - Rajendra R. Joshi
- Centre for Development of Advanced Computing (C–DAC) Savitribai Phule University of Pune Campus Pune-411007 India
| | - Prasad P. Kulkarni
- Bioprospecting group Agharkar Research Institute, Pune G. G. Agarkar Road Pune-411004 India
| |
Collapse
|
28
|
Jeon Y, Lee S, Shin M, Lee JH, Suh YS, Hwang S, Yun HS, Cho KS. Phenotypic differences between Drosophila Alzheimer's disease models expressing human Aβ42 in the developing eye and brain. Anim Cells Syst (Seoul) 2017; 21:160-168. [PMID: 30460065 PMCID: PMC6138326 DOI: 10.1080/19768354.2017.1313777] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 03/06/2017] [Accepted: 03/17/2017] [Indexed: 12/20/2022] Open
Abstract
Drosophila melanogaster expressing amyloid-β42 (Aβ42) transgenes have been used as models to study Alzheimer's disease. Various Aβ42 transgenes with different structures induce different phenotypes, which make it difficult to compare data among studies which use different transgenic lines. In this study, we compared the phenotypes of four frequently used Aβ42 transgenic lines, UAS-Aβ422X , UAS-Aβ42BL33770 , UAS-Aβ4211C39 , and UAS-Aβ42H29.3 . Among the four transgenic lines, only UAS-Aβ422X has two copies of the upstream activation sequence-amyloid-β42 (UAS-Aβ42) transgene, while remaining three have one copy. UAS-Aβ42BL33770 has the 3' untranslated region of Drosophila α-tubulin, while the others have that of SV40. UAS-Aβ4211C39 and UAS-Aβ42H29.3 have the rat pre-proenkephalin signal peptide, while UAS-Aβ422X and UAS-Aβ42BL33770 have that of the fly argos protein. When the transgenes were expressed ectopically in the developing eyes of the flies, UAS-Aβ422X transgene resulted in a strongly reduced and rough eye phenotype, while UAS-Aβ42BL33770 only showed a strong rough eye phenotype; UAS-Aβ42H29.3 and UAS-Aβ4211C39 had mild rough eyes. The levels of cell death and reactive oxygen species (ROS) in the eye imaginal discs were consistently the highest in UAS-Aβ422X , followed by UAS-Aβ42BL33770 , UAS-Aβ4211C39 , and UAS-Aβ42H29.3 . Surprisingly, the reduction in survival during the development of these lines did not correlate with cell death or ROS levels. The flies which expressed UAS-Aβ4211C39 or UAS-Aβ42H29.3 experienced greatly reduced survival rates, although low levels of ROS or cell death were detected. Collectively, our results demonstrated that different Drosophila AD models show different phenotypic severity, and suggested that different transgenes may have different modes of cytotoxicity. Abbreviations: Aβ42: amyloid-β42; AD: Alzheimer's disease; UAS: upstream activation sequence.
Collapse
Affiliation(s)
- Youngjae Jeon
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Soojin Lee
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Myoungchul Shin
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Jang Ho Lee
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Yoon Seok Suh
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Soojin Hwang
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Hye Sup Yun
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Kyoung Sang Cho
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
29
|
Maiese K. Forkhead Transcription Factors: Formulating a FOXO Target for Cognitive Loss. Curr Neurovasc Res 2017; 14:415-420. [PMID: 29149835 PMCID: PMC5792363 DOI: 10.2174/1567202614666171116102911] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/22/2017] [Accepted: 10/30/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND With almost 47 million individuals worldwide suffering from some aspect of dementia, it is clear that cognitive loss impacts a significant proportion of the global population. Unfortunately, definitive treatments to resolve or prevent the onset of cognitive loss are limited. In most cases such care is currently non-existent prompting the need for novel treatment strategies. METHODS Mammalian forkhead transcription factors of the O class (FoxO) are one such avenue of investigation that offer an exciting potential to bring new treatments forward for disorders that involve cognitive loss. Here we examine the background, structure, expression, and function of FoxO transcription factors and their role in cognitive loss, programmed cell death in the nervous system with apoptosis and autophagy, and areas to target FoxOs for dementia and specific disorders such as Alzheimer's disease. RESULTS FoxO proteins work in concert with a number of other cell survival pathways that involve growth factors, such as erythropoietin and neurotrophins, silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), Wnt1 inducible signaling pathway protein 1 (WISP1), Wnt signaling, and cancer-related pathways. FoxO transcription factors oversee proinflammatory pathways, affect nervous system amyloid (Aβ) production and toxicity, lead to mitochondrial dysfunction, foster neuronal apoptotic cell death, and accelerate the progression of degenerative disease. However, under some scenarios such as those involving autophagy, FoxOs also can offer protection in the nervous system and reduce toxic intracellular protein accumulations and potentially limit Aβ toxicity. CONCLUSION Given the ability of FoxOs to not only promote apoptotic cell death in the nervous system, but also through the induction of autophagy offer protection against degenerative disease that can lead to dementia, a fine balance in the activity of FoxOs may be required to target cognitive loss in individuals. Future work should yield exciting new prospects for FoxO proteins as new targets to treat the onset and progression of cognitive loss and dementia.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, Newark, New Jersey 07101
| |
Collapse
|
30
|
Liu QF, Jeong H, Lee JH, Hong YK, Oh Y, Kim YM, Suh YS, Bang S, Yun HS, Lee K, Cho SM, Lee SB, Jeon S, Chin YW, Koo BS, Cho KS. Coriandrum sativum Suppresses Aβ42-Induced ROS Increases, Glial Cell Proliferation, and ERK Activation. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:1325-1347. [PMID: 27776428 DOI: 10.1142/s0192415x16500749] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Alzheimer's disease (AD), the most common neurodegenerative disease, has a complex and widespread pathology that is characterized by the accumulation of amyloid [Formula: see text]-peptide (A[Formula: see text]) in the brain and various cellular abnormalities, including increased oxidative damage, an amplified inflammatory response, and altered mitogen-activated protein kinase signaling. Based on the complex etiology of AD, traditional medicinal plants with multiple effective components are alternative treatments for patients with AD. In the present study, we investigated the neuroprotective effects of an ethanol extract of Coriandrum sativum (C. sativum) leaves on A[Formula: see text] cytotoxicity and examined the molecular mechanisms underlying the beneficial effects. Although recent studies have shown the benefits of the inhalation of C. sativum oil in an animal model of AD, the detailed molecular mechanisms by which C. sativum exerts its neuroprotective effects are unclear. Here, we found that treatment with C. sativum extract increased the survival of both A[Formula: see text]-treated mammalian cells and [Formula: see text]42-expressing flies. Moreover, C. sativum extract intake suppressed [Formula: see text]-induced cell death in the larval imaginal disc and brain without affecting A[Formula: see text]42 expression and accumulation. Interestingly, the increases in reactive oxygen species levels and glial cell number in AD model flies were reduced by C. sativum extract intake. Additionally, C. sativum extract inhibited the epidermal growth factor receptor- and A[Formula: see text]-induced phosphorylation of extracellular signal-regulated kinase (ERK). The constitutively active form of ERK abolished the protective function of C. sativum extract against the [Formula: see text]-induced eye defect phenotype in Drosophila. Taken together, these results suggest that C. sativum leaves have antioxidant, anti-inflammatory, and ERK signaling inhibitory properties that are beneficial for patients with AD.
Collapse
Affiliation(s)
- Quan Feng Liu
- * Department of Oriental Medicine, Dongguk University, Gyeogju 38066, Republic of Korea.,† Department of Oriental Neuropsychiatry, Graduate School of Oriental Medicine, Republic of Korea
| | - Haemin Jeong
- ‡ Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Jang Ho Lee
- ‡ Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Yoon Ki Hong
- ‡ Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Youngje Oh
- * Department of Oriental Medicine, Dongguk University, Gyeogju 38066, Republic of Korea.,† Department of Oriental Neuropsychiatry, Graduate School of Oriental Medicine, Republic of Korea
| | - Young-Mi Kim
- § College of Pharmacy and BK21PLUS R-FIND Team, Dongguk University, Goyang 10326, Republic of Korea
| | - Yoon Seok Suh
- ¶ Neurophysiology Research Group, Bio-Nano Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Semin Bang
- ‡ Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Hye Sup Yun
- ‡ Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Kyungho Lee
- ‡ Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea.,∥ Korea Hemp Institute, Konkuk University, Seoul 0529, Republic of Korea
| | - Sung Man Cho
- ‡ Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Sung Bae Lee
- ** Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, Republic of Korea
| | - Songhee Jeon
- †† Dongguk University Research Institute of Biotechnology, Dongguk University, Seoul 04620, Republic of Korea
| | - Young-Won Chin
- § College of Pharmacy and BK21PLUS R-FIND Team, Dongguk University, Goyang 10326, Republic of Korea
| | - Byung-Soo Koo
- * Department of Oriental Medicine, Dongguk University, Gyeogju 38066, Republic of Korea.,† Department of Oriental Neuropsychiatry, Graduate School of Oriental Medicine, Republic of Korea
| | - Kyoung Sang Cho
- ‡ Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea.,∥ Korea Hemp Institute, Konkuk University, Seoul 0529, Republic of Korea
| |
Collapse
|
31
|
Song Q, Feng G, Huang Z, Chen X, Chen Z, Ping Y. Aberrant Axonal Arborization of PDF Neurons Induced by Aβ42-Mediated JNK Activation Underlies Sleep Disturbance in an Alzheimer's Model. Mol Neurobiol 2016; 54:6317-6328. [PMID: 27718103 DOI: 10.1007/s12035-016-0165-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/27/2016] [Indexed: 12/15/2022]
Abstract
Impaired sleep patterns are common symptoms of Alzheimer's disease (AD). Cellular mechanisms underlying sleep disturbance in AD remain largely unknown. Here, using a Drosophila Aβ42 AD model, we show that Aβ42 markedly decreases sleep in a large population, which is accompanied with postdevelopmental axonal arborization of wake-promoting pigment-dispersing factor (PDF) neurons. The arborization is mediated in part via JNK activation and can be reversed by decreasing JNK signaling activity. Axonal arborization and impaired sleep are correlated in Aβ42 and JNK kinase hemipterous mutant flies. Image reconstruction revealed that these aberrant fibers preferentially project to pars intercerebralis (PI), a fly brain region analogous to the mammalian hypothalamus. Moreover, PDF signaling in PI neurons was found to modulate sleep/wake activities, suggesting that excessive release of PDF by these aberrant fibers may lead to the impaired sleep in Aβ42 flies. Finally, inhibition of JNK activation in Aβ42 flies restores nighttime sleep loss, decreases Aβ42 accumulation, and attenuates neurodegeneration. These data provide a new mechanism by which sleep disturbance could be induced by Aβ42 burden, a key initiator of a complex pathogenic cascade in AD.
Collapse
Affiliation(s)
- Qian Song
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China.,Shanghai Key Laboratory of Psychotic Disorders (No.13dz2260500), Shanghai Mental Health Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Ge Feng
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zehua Huang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China.,School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Xiaoman Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China.,School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Zhaohuan Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China.,School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.,Institute of Systems Biomedicine, Collaborative Innovation Center of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yong Ping
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China. .,Shanghai Key Laboratory of Psychotic Disorders (No.13dz2260500), Shanghai Mental Health Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China.
| |
Collapse
|
32
|
Sofola-Adesakin O, Khericha M, Snoeren I, Tsuda L, Partridge L. pGluAβ increases accumulation of Aβ in vivo and exacerbates its toxicity. Acta Neuropathol Commun 2016; 4:109. [PMID: 27717375 PMCID: PMC5055666 DOI: 10.1186/s40478-016-0380-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 09/23/2016] [Indexed: 12/21/2022] Open
Abstract
Several species of β-amyloid peptides (Aβ) exist as a result of differential cleavage from amyloid precursor protein (APP) to yield various C-terminal Aβ peptides. Several N-terminal modified Aβ peptides have also been identified in Alzheimer’s disease (AD) brains, the most common of which is pyroglutamate-modified Aβ (AβpE3-42). AβpE3-42 peptide has an increased propensity to aggregate, appears to accumulate in the brain before the appearance of clinical symptoms of AD, and precedes Aβ1-42 deposition. Moreover, in vitro studies have shown that AβpE3-42 can act as a seed for full length Aβ1-42. In this study, we characterized the Drosophila model of AβpE3-42 toxicity by expressing the peptide in specific sets of neurons using the GAL4-UAS system, and measuring different phenotypic outcomes. We found that AβpE3-42 peptide had an increased propensity to aggregate. Expression of AβpE3-42 in the neurons of adult flies led to behavioural dysfunction and shortened lifespan. Expression of AβpE3-42 constitutively in the eyes led to disorganised ommatidia, and activation of the c-Jun N-terminal kinase (JNK) signaling pathway. The eye disruption was almost completely rescued by co-expressing a candidate Aβ degrading enzyme, neprilysin2. Furthermore, we found that neprilysin2 was capable of degrading AβpE3-42. Also, we tested the seeding hypothesis for AβpE3-42 in vivo, and measured its effect on Aβ1-42 levels. We found that Aβ1-42 levels were significantly increased when Aβ1-42 and AβpE3-42 peptides were co-expressed. Furthermore, we found that AβpE3-42 enhanced Aβ1-42 toxicity in vivo. Our findings implicate AβpE3-42 as an important source of toxicity in AD, and suggest that its specific degradation could be therapeutic.
Collapse
|
33
|
Maiese K. Forkhead transcription factors: new considerations for alzheimer's disease and dementia. JOURNAL OF TRANSLATIONAL SCIENCE 2016; 2:241-247. [PMID: 27390624 PMCID: PMC4932907 DOI: 10.15761/jts.1000146] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Life expectancy of individuals in both developed and undeveloped nations continues to rise at an unprecedented rate. Coupled to this increase in longevity for individuals is the rise in the incidence of chronic neurodegenerative disorders that includes Alzheimer's disease (AD). Currently, almost ten percent of the population over the age of 65 suffers from AD, a disorder that is presently without definitive therapy to prevent the onset or progression of cognitive loss. Yet, it is estimated that AD will continue to significantly increase throughout the world to impact millions of individuals and foster the escalation of healthcare costs. One potential target for the development of novel strategies against AD and other cognitive disorders involves the mammalian forkhead transcription factors of the O class (FoxOs). FoxOs are present in "cognitive centers" of the brain to include the hippocampus, the amygdala, and the nucleus accumbens and may be required for memory formation and consolidation. FoxOs play a critical role in determining survival of multiple cell types in the nervous system, drive pathways of apoptosis and autophagy, and control stem cell proliferation and differentiation. FoxOs also interface with multiple cellular pathways that include growth factors, Wnt signaling, Wnt1 inducible signaling pathway protein 1 (WISP1), and silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1) that ultimately may control FoxOs and determine the fate and function of cells in the nervous system that control memory and cognition. Future work that can further elucidate the complex relationship FoxOs hold over cell fate and cognitive function could yield exciting prospects for the treatment of a number of neurodegenerative disorders including AD.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, Newark, New Jersey 07101
| |
Collapse
|
34
|
Effects of sarah/nebula knockdown on Aβ42-induced phenotypes during Drosophila development. Genes Genomics 2016. [DOI: 10.1007/s13258-016-0407-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
35
|
Yarza R, Vela S, Solas M, Ramirez MJ. c-Jun N-terminal Kinase (JNK) Signaling as a Therapeutic Target for Alzheimer's Disease. Front Pharmacol 2016; 6:321. [PMID: 26793112 PMCID: PMC4709475 DOI: 10.3389/fphar.2015.00321] [Citation(s) in RCA: 248] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 12/28/2015] [Indexed: 01/08/2023] Open
Abstract
c-Jun N-terminal kinases (JNKs) are a family of protein kinases that play a central role in stress signaling pathways implicated in gene expression, neuronal plasticity, regeneration, cell death, and regulation of cellular senescence. It has been shown that there is a JNK pathway activation after exposure to different stressing factors, including cytokines, growth factors, oxidative stress, unfolded protein response signals or Aβ peptides. Altogether, JNKs have become a focus of screening strategies searching for new therapeutic approaches to diabetes, cancer or liver diseases. In addition, activation of JNK has been identified as a key element responsible for the regulation of apoptosis signals and therefore, it is critical for pathological cell death associated with neurodegenerative diseases and, among them, with Alzheimer’s disease (AD). In addition, in vitro and in vivo studies have reported alterations of JNK pathways potentially associated with pathogenesis and neuronal death in AD. JNK’s, particularly JNK3, not only enhance Aβ production, moreover it plays a key role in the maturation and development of neurofibrillary tangles. This review aims to explain the rationale behind testing therapies based on inhibition of JNK signaling for AD in terms of current knowledge about the pathophysiology of the disease. Keeping in mind that JNK3 is specifically expressed in the brain and activated by stress-stimuli, it is possible to hypothesize that inhibition of JNK3 might be considered as a potential target for treating neurodegenerative mechanisms associated with AD.
Collapse
Affiliation(s)
- Ramon Yarza
- Department of Pharmacology and Toxicology, University of Navarra Pamplona, Spain
| | - Silvia Vela
- Department of Pharmacology and Toxicology, University of Navarra Pamplona, Spain
| | - Maite Solas
- Department of Pharmacology and Toxicology, University of NavarraPamplona, Spain; Navarra Institute for Health ResearchPamplona, Spain
| | - Maria J Ramirez
- Department of Pharmacology and Toxicology, University of NavarraPamplona, Spain; Navarra Institute for Health ResearchPamplona, Spain
| |
Collapse
|
36
|
Lee S, Bang SM, Hong YK, Lee JH, Jeong H, Park SH, Liu QF, Lee IS, Cho KS. The calcineurin inhibitor Sarah (Nebula) exacerbates Aβ42 phenotypes in a Drosophila model of Alzheimer's disease. Dis Model Mech 2015; 9:295-306. [PMID: 26659252 PMCID: PMC4826976 DOI: 10.1242/dmm.018069] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 11/28/2015] [Indexed: 11/20/2022] Open
Abstract
Expression of the Down syndrome critical region 1 (DSCR1) protein, an inhibitor of the Ca2+-dependent phosphatase calcineurin, is elevated in the brains of individuals with Down syndrome (DS) or Alzheimer's disease (AD). Although increased levels of DSCR1 were often observed to be deleterious to neuronal health, its beneficial effects against AD neuropathology have also been reported, and the roles of DSCR1 on the pathogenesis of AD remain controversial. Here, we investigated the role of sarah (sra; also known as nebula), a Drosophila DSCR1 ortholog, in amyloid-β42 (Aβ42)-induced neurological phenotypes in Drosophila. We detected sra expression in the mushroom bodies of the fly brain, which are a center for learning and memory in flies. Moreover, similar to humans with AD, Aβ42-expressing flies showed increased Sra levels in the brain, demonstrating that the expression pattern of DSCR1 with regard to AD pathogenesis is conserved in Drosophila. Interestingly, overexpression of sra using the UAS-GAL4 system exacerbated the rough-eye phenotype, decreased survival rates and increased neuronal cell death in Aβ42-expressing flies, without modulating Aβ42 expression. Moreover, neuronal overexpression of sra in combination with Aβ42 dramatically reduced both locomotor activity and the adult lifespan of flies, whereas flies with overexpression of sra alone showed normal climbing ability, albeit with a slightly reduced lifespan. Similarly, treatment with chemical inhibitors of calcineurin, such as FK506 and cyclosporin A, or knockdown of calcineurin expression by RNA interference (RNAi), exacerbated the Aβ42-induced rough-eye phenotype. Furthermore, sra-overexpressing flies displayed significantly decreased mitochondrial DNA and ATP levels, as well as increased susceptibility to oxidative stress compared to that of control flies. Taken together, our results demonstrating that sra overexpression augments Aβ42 cytotoxicity in Drosophila suggest that DSCR1 upregulation or calcineurin downregulation in the brain might exacerbate Aβ42-associated neuropathogenesis in AD or DS. Drosophila Collection: Chronically increased levels of Sarah (Nebula), a calcineurin inhibitor, cause mitochondria dysfunction and subsequently increased Aβ42-induced cytotoxicity in Drosophila.
Collapse
Affiliation(s)
- Soojin Lee
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Se Min Bang
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Yoon Ki Hong
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Jang Ho Lee
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Haemin Jeong
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Seung Hwan Park
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Quan Feng Liu
- Department of Oriental Medicine, Dongguk University, Gyeogju 38066, Republic of Korea Department of Oriental Neuropsychiatry, Graduate School of Oriental Medicine, Dongguk University, Gyeonggi 10326, Republic of Korea
| | - Im-Soon Lee
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Kyoung Sang Cho
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
37
|
Maiese K. FoxO proteins in the nervous system. Anal Cell Pathol (Amst) 2015; 2015:569392. [PMID: 26171319 PMCID: PMC4478359 DOI: 10.1155/2015/569392] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 05/31/2015] [Indexed: 02/07/2023] Open
Abstract
Acute as well as chronic disorders of the nervous system lead to significant morbidity and mortality for millions of individuals globally. Given the ability to govern stem cell proliferation and differentiated cell survival, mammalian forkhead transcription factors of the forkhead box class O (FoxO) are increasingly being identified as potential targets for disorders of the nervous system, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and auditory neuronal disease. FoxO proteins are present throughout the body, but they are selectively expressed in the nervous system and have diverse biological functions. The forkhead O class transcription factors interface with an array of signal transduction pathways that include protein kinase B (Akt), serum- and glucocorticoid-inducible protein kinase (SgK), IκB kinase (IKK), silent mating type information regulation 2 homolog 1 (S. cerevisiae) (SIRT1), growth factors, and Wnt signaling that can determine the activity and integrity of FoxO proteins. Ultimately, there exists a complex interplay between FoxO proteins and their signal transduction pathways that can significantly impact programmed cell death pathways of apoptosis and autophagy as well as the development of clinical strategies for the treatment of neurodegenerative disorders.
Collapse
|
38
|
Modeling the complex pathology of Alzheimer's disease in Drosophila. Exp Neurol 2015; 274:58-71. [PMID: 26024860 DOI: 10.1016/j.expneurol.2015.05.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 05/13/2015] [Accepted: 05/17/2015] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia and the most common neurodegenerative disorder. AD is mostly a sporadic disorder and its main risk factor is age, but mutations in three genes that promote the accumulation of the amyloid-β (Aβ42) peptide revealed the critical role of amyloid precursor protein (APP) processing in AD. Neurofibrillary tangles enriched in tau are the other pathological hallmark of AD, but the lack of causative tau mutations still puzzles researchers. Here, we describe the contribution of a powerful invertebrate model, the fruit fly Drosophila melanogaster, to uncover the function and pathogenesis of human APP, Aβ42, and tau. APP and tau participate in many complex cellular processes, although their main function is microtubule stabilization and the to-and-fro transport of axonal vesicles. Additionally, expression of secreted Aβ42 induces prominent neuronal death in Drosophila, a critical feature of AD, making this model a popular choice for identifying intrinsic and extrinsic factors mediating Aβ42 neurotoxicity. Overall, Drosophila has made significant contributions to better understand the complex pathology of AD, although additional insight can be expected from combining multiple transgenes, performing genome-wide loss-of-function screens, and testing anti-tau therapies alone or in combination with Aβ42.
Collapse
|
39
|
Zhou Q, Wang M, Du Y, Zhang W, Bai M, Zhang Z, Li Z, Miao J. Inhibition of c-Jun N-terminal kinase activation reverses Alzheimer disease phenotypes in APPswe/PS1dE9 mice. Ann Neurol 2015; 77:637-54. [PMID: 25611954 DOI: 10.1002/ana.24361] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 01/02/2015] [Accepted: 01/08/2015] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Growing evidence indicates that the activation of c-Jun N-terminal kinase (JNK) is implicated in the multiple major pathological features of Alzheimer disease (AD). However, whether specific inhibition of JNK activation could prevent disease progression in adult transgenic AD models at moderate stage remains unknown. Here we first investigated the potential disease-modifying therapeutic effect of systemic administration of SP600125, a small-molecule JNK-specific inhibitor, in middle-aged APPswe/PS1dE9 mice. METHODS Using behavioral, histological, and biochemical methods, outcomes of SP600125 treatment on neuropathology and cognitive deficits were studied in APPswe/PS1dE9 mice. RESULTS Compared with vehicle-treated APPswe/PS1dE9 mice, chronic treatment of SP600125 for 12 weeks potently inhibited JNK activation, which resulted in a marked improvement of behavioral measures of cognitive deficits and a dramatic reduction in amyloid plaque burden, β-amyloid production, tau hyperphosphorylation, inflammatory responses, and synaptic loss in these transgenic animals. In particular, we found that SP600125 treatment strongly promoted nonamyloidogenic amyloid precursor protein (APP) processing and inhibited amyloidogenic APP processing via regulating APP-cleavage secretase expression (ie, ADAM10, BACE1, and PS1) in APPswe/PS1dE9 mice. INTERPRETATION Our findings demonstrate that chronic SP600125 treatment is powerfully effective in slowing down disease progression by markedly reducing multiple pathological features and ameliorating cognitive deficits associated with AD. This study highlights the concept that active JNK actually contributes to the development of the disease, and provides critical preclinical evidence that specific inhibition of JNK activation by SP600125 treatment may be a novel promising disease-modifying therapeutic strategy for the treatment of AD.
Collapse
Affiliation(s)
- Qiong Zhou
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
A significant portion of the world's population suffers from sporadic Alzheimer's disease (AD) with available present therapies limited to symptomatic care that does not alter disease progression. Over the next decade, advancing age of the global population will dramatically increase the incidence of AD and severely impact health care resources, necessitating novel, safe, and efficacious strategies for AD. The mammalian target of rapamycin (mTOR) and its protein complexes mTOR Complex 1 (mTORC1) and mTOR Complex 2 (mTORC2) offer exciting and unique avenues of intervention for AD through the oversight of programmed cell death pathways of apoptosis, autophagy, and necroptosis. mTOR modulates multi-faceted signal transduction pathways that involve phosphoinositide 3-kinase (PI 3-K), protein kinase B (Akt), hamartin (tuberous sclerosis 1)/ tuberin (tuberous sclerosis 2) (TSC1/TSC2) complex, proline-rich Akt substrate 40 kDa (PRAS40), and p70 ribosomal S6 kinase (p70S6K) and can interface with the neuroprotective pathways of growth factors, sirtuins, wingless, forkhead transcription factors, and glycogen synthase kinase-3β. With the ability of mTOR to broadly impact cellular function, clinical strategies for AD that implement mTOR must achieve parallel objectives of protecting neuronal, vascular, and immune cell survival in conjunction with preserving networks that determine memory and cognitive function.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling , Newark, New Jersey 07101 , USA
| |
Collapse
|
41
|
Abstract
The formation of amyloid aggregates is a feature of most, if not all, polypeptide chains. In vivo modelling of this process has been undertaken in the fruitfly Drosophila melanogaster with remarkable success. Models of both neurological and systemic amyloid diseases have been generated and have informed our understanding of disease pathogenesis in two main ways. First, the toxic amyloid species have been at least partially characterized, for example in the case of the Aβ (amyloid β-peptide) associated with Alzheimer's disease. Secondly, the genetic underpinning of model disease-linked phenotypes has been characterized for a number of neurodegenerative disorders. The current challenge is to integrate our understanding of disease-linked processes in the fly with our growing knowledge of human disease, for the benefit of patients.
Collapse
|
42
|
The role of serine 190 in FOXO nuclear export and cell death induction in Drosophila melanogaster. Genes Genomics 2014. [DOI: 10.1007/s13258-014-0182-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Sharoar MG, Islam MI, Shahnawaz M, Shin SY, Park IS. Amyloid β binds procaspase-9 to inhibit assembly of Apaf-1 apoptosome and intrinsic apoptosis pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:685-93. [DOI: 10.1016/j.bbamcr.2014.01.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 01/06/2014] [Accepted: 01/07/2014] [Indexed: 11/25/2022]
|
44
|
Evaluation of traditional medicines for neurodegenerative diseases using Drosophila models. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:967462. [PMID: 24790636 PMCID: PMC3984789 DOI: 10.1155/2014/967462] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 02/17/2014] [Accepted: 02/24/2014] [Indexed: 12/19/2022]
Abstract
Drosophila is one of the oldest and most powerful genetic models and has led to novel insights into a variety of biological processes. Recently, Drosophila has emerged as a model system to study human diseases, including several important neurodegenerative diseases. Because of the genomic similarity between Drosophila and humans, Drosophila neurodegenerative disease models exhibit a variety of human-disease-like phenotypes, facilitating fast and cost-effective in vivo genetic modifier screening and drug evaluation. Using these models, many disease-associated genetic factors have been identified, leading to the identification of compelling drug candidates. Recently, the safety and efficacy of traditional medicines for human diseases have been evaluated in various animal disease models. Despite the advantages of the Drosophila model, its usage in the evaluation of traditional medicines is only nascent. Here, we introduce the Drosophila model for neurodegenerative diseases and some examples demonstrating the successful application of Drosophila models in the evaluation of traditional medicines.
Collapse
|
45
|
Ju Y, Xu T, Zhang H, Yu A. FOXO1-dependent DNA damage repair is regulated by JNK in lung cancer cells. Int J Oncol 2014; 44:1284-92. [PMID: 24452601 DOI: 10.3892/ijo.2014.2269] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 12/23/2013] [Indexed: 11/06/2022] Open
Abstract
DNA damage or mutation in cells contributes to tumorigenesis. The transcription factor FOXO1 modulates the expression of genes involved in DNA damage repair, cell cycle arrest and apoptosis. The transcriptional activity of FOXO1 is fundamentally regulated by post-translational modification and subcellular localization. H1299 lung cancer cells were treated with the alkylating agent MNNG, and the cell viability and DNA damage were separately determined by MTT and comet assay. Using immunofluorescence and western blotting, we observed the subcellular localization of FOXO1 and measured the relevant protein expression levels, respectively. To examine cell cycle arrest and apoptosis, flow cytometry analysis was preformed. The interaction between FOXO1 and JNK was analyzed through immunoprecipitation. Our results showed that cell viability was reduced at 24 h after MNNG treatment, and appeared to recover to some degree at 48 h. The increased expression and nuclear export of FOXO1 emerged at 4 h after the treatment. Nuclear FOXO1 played a pivotal role in cell cycle arrest, apoptosis and DNA damage repair by upregulating p27(Kip1), Bim and GADD45 gene expression, respectively. AKT-dependent S256 phosphorylation of FOXO1 and the S473 phosphorylation of AKT were both enhanced following DNA damage. Moreover, our studies revealed that FOXO1 directly interacted with JNK, and the inhibition of the JNK activity led to decreased expression of FOXO1 target genes. These findings suggest for the first time that FOXO1 is a promising candidate substrate for JNK, and the FOXO1-dependent DNA damage repair may be regulated positively by the JNK pathway in H1299 lung cancer cells.
Collapse
Affiliation(s)
- Yinghua Ju
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, China Medical University, Shenyang 110001, P.R. China
| | - Taojun Xu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, China Medical University, Shenyang 110001, P.R. China
| | - Hongkai Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, China Medical University, Shenyang 110001, P.R. China
| | - Aiming Yu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, China Medical University, Shenyang 110001, P.R. China
| |
Collapse
|
46
|
Dumitrascu GR, Bucur O. Critical physiological and pathological functions of Forkhead Box O tumor suppressors. Discoveries (Craiova) 2013; 1:e5. [PMID: 32309538 PMCID: PMC6941590 DOI: 10.15190/d.2013.5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Forkhead box, subclass O (FOXO) proteins are critical transcription factors, ubiquitously expressed in the human body. These proteins are characterized by a remarkable functional diversity, being involved in cell cycle arrest, apoptosis, oxidative detoxification, DNA damage repair, stem cell maintenance, cell differentiation, cell metabolism, angiogenesis, cardiac development, aging and others. In addition, FOXO have critical implications in both normal and cancer stem cell biology. New strategies to modulate FOXO expression and activity may now be developed since the discovery of novel FOXO regulators and non-coding RNAs (such as microRNAs) targeting FOXO transcription factors. This review focuses on physiological and pathological functions of FOXO proteins and on their action as fine regulators of cell fate and context-dependent cell decisions. A better understanding of the structure and critical functions of FOXO transcription factors and tumor suppressors may contribute to the development of novel therapies for cancer and other diseases.
Collapse
Affiliation(s)
- Georgiana R Dumitrascu
- "Victor Babes" National Institute of Pathology and Biomedical Sciences, Bucharest, Romania
| | - Octavian Bucur
- Department of Pathology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
47
|
Shang YC, Chong ZZ, Wang S, Maiese K. Wnt1 inducible signaling pathway protein 1 (WISP1) targets PRAS40 to govern β-amyloid apoptotic injury of microglia. Curr Neurovasc Res 2013; 9:239-49. [PMID: 22873724 DOI: 10.2174/156720212803530618] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 07/25/2012] [Accepted: 07/30/2012] [Indexed: 12/21/2022]
Abstract
Given the present challenges to attain effective treatment for β-amyloid (Aβ) toxicity in neurodegenerative disorders such as Alzheimer's disease, development of novel cytoprotective pathways that can assist immune mediated therapies through the preservation of central nervous system microglia could offer significant promise. We show that the CCN4 protein, Wnt1 inducible signaling pathway protein 1 (WISP1), is initially up-regulated by Aβ and can modulate its endogenous expression for the protection of microglia during Aβ mediated apoptosis. WISP1 activates mTOR and phosphorylates p70S6K and 4EBP1 through the control of the regulatory mTOR component PRAS40. Loss of PRAS40 through gene reduction or inhibition by WISP1 is cytoprotective. WISP1 ultimately governs PRAS40 by sequestering PRAS40 intracellularly through post-translational phosphorylation and binding to protein 14-3-3. Our work identifies WISP1, mTOR signaling, and PRAS40 as targets for new strategies directed against Alzheimer's disease and related disorders.
Collapse
Affiliation(s)
- Yan Chen Shang
- Laboratory of Cellular and Molecular Signaling, Cancer Center, F 1220, New Jersey Health Sciences University, 205 South Orange Avenue, Newark, NJ 07101, USA
| | | | | | | |
Collapse
|
48
|
Abstract
The molecules that mediate death of selective neurons in Alzheimer's disease (AD) are mostly unknown. The Forkhead transcription factor FoxO3a has emerged as an important mediator of cell fate including apoptosis. When phosphorylated by Akt, it is localized in the cytosol as an inactive complex bound with 14-3-3 protein. For activation and localization of FoxO3a in the nucleus, further modifications are required, such as phosphorylation by mammalian sterile 20-like kinase 1 (MST1) and arginine methylation by protein arginine methyltransferase1. We report here that Akt-mediated phosphorylation of FoxO3a is diminished in neurons exposed to oligomeric β-amyloid (Aβ), in vitro and in vivo. We also find that oligomeric Aβ activates FoxO3a by MST1 phosphorylation and arginine methylation in primary cultures of hippocampal and cortical neurons. Moreover, FoxO3a translocates from the cytosol to nucleus in cultured neurons in response to Aβ. Most importantly, the nuclear redistribution of FoxO3a is significantly increased in Aβ-overexpressing AβPPswe-PS1dE9 mice and Aβ-infused rat brains. We further find that FoxO3a is essential for loss of neurons and neural networks in response to Aβ. Recent reports implicate Bim, a pro-apoptotic member of Bcl-2 family, in neuron death in AD, as a key target of this transcription factor. We show that Bim is a direct target of FoxO3a in Aβ-treated neurons. Our findings thus indicate that FoxO3a is activated, translocated to the nucleus and mediates neuron death via Bim in response to Aβ toxicity.
Collapse
Affiliation(s)
- P Sanphui
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | | |
Collapse
|
49
|
Park SH, Lee S, Hong YK, Hwang S, Lee JH, Bang SM, Kim YK, Koo BS, Lee IS, Cho KS. Suppressive Effects of SuHeXiang Wan on Amyloid-β42-Induced Extracellular Signal-Regulated Kinase Hyperactivation and Glial Cell Proliferation in a Transgenic Drosophila Model of Alzheimer’s Disease. Biol Pharm Bull 2013; 36:390-8. [DOI: 10.1248/bpb.b12-00792] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Soojin Lee
- Department of Biological Sciences, Konkuk University
| | - Yoon Ki Hong
- Department of Biological Sciences, Konkuk University
| | - Soojin Hwang
- Department of Biological Sciences, Konkuk University
| | - Jang Ho Lee
- Department of Biological Sciences, Konkuk University
| | - Se Min Bang
- Department of Biological Sciences, Konkuk University
| | - Young-Kyoon Kim
- Department of Forest Products & Biotechnology, Kookmin University
| | - Byung-Soo Koo
- Department of Neuropsychiatry, Graduate School of Oriental Medicine, Dongguk University
| | - Im-Soon Lee
- Department of Biological Sciences, Konkuk University
| | | |
Collapse
|
50
|
Chong ZZ, Shang YC, Wang S, Maiese K. PRAS40 is an integral regulatory component of erythropoietin mTOR signaling and cytoprotection. PLoS One 2012; 7:e45456. [PMID: 23029019 PMCID: PMC3445503 DOI: 10.1371/journal.pone.0045456] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 08/21/2012] [Indexed: 12/13/2022] Open
Abstract
Emerging strategies that center upon the mammalian target of rapamycin (mTOR) signaling for neurodegenerative disorders may bring effective treatment for a number of difficult disease entities. Here we show that erythropoietin (EPO), a novel agent for nervous system disorders, prevents apoptotic SH-SY5Y cell injury in an oxidative stress model of oxygen-glucose deprivation through phosphatidylinositol-3-kinase (PI 3-K)/protein kinase B (Akt) dependent activation of mTOR signaling and phosphorylation of the downstream pathways of p70 ribosomal S6 kinase (p70S6K), eukaryotic initiation factor 4E-binding protein 1 (4EBP1), and proline rich Akt substrate 40 kDa (PRAS40). PRAS40 is an important regulatory component either alone or in conjunction with EPO signal transduction that can determine cell survival through apoptotic caspase 3 activation. EPO and the PI 3-K/Akt pathways control cell survival and mTOR activity through the inhibitory post-translational phosphorylation of PRAS40 that leads to subcellular binding of PRAS40 to the cytoplasmic docking protein 14-3-3. However, modulation and phosphorylation of PRAS40 is independent of other protective pathways of EPO that involve extracellular signal related kinase (ERK 1/2) and signal transducer and activator of transcription (STAT5). Our studies highlight EPO and PRAS40 signaling in the mTOR pathway as potential therapeutic strategies for development against degenerative disorders that lead to cell demise.
Collapse
Affiliation(s)
- Zhao Zhong Chong
- Laboratory of Cellular and Molecular Signaling, Newark, New Jersey, United States of America
- New Jersey Health Sciences University, Newark, New Jersey, United States of America
| | - Yan Chen Shang
- Laboratory of Cellular and Molecular Signaling, Newark, New Jersey, United States of America
- New Jersey Health Sciences University, Newark, New Jersey, United States of America
| | - Shaohui Wang
- Laboratory of Cellular and Molecular Signaling, Newark, New Jersey, United States of America
- New Jersey Health Sciences University, Newark, New Jersey, United States of America
| | - Kenneth Maiese
- Laboratory of Cellular and Molecular Signaling, Newark, New Jersey, United States of America
- Cancer Institute of New Jersey, New Brunswick, New Jersey, United States of America
- New Jersey Health Sciences University, Newark, New Jersey, United States of America
| |
Collapse
|