1
|
Mochizuki K, Ishiyama S, Hariya N, Goda T. Regulation of Carbohydrate-Responsive Metabolic Genes by Histone Acetylation and the Acetylated Histone Reader BRD4 in the Gene Body Region. Front Mol Biosci 2021; 8:682696. [PMID: 34336926 PMCID: PMC8321877 DOI: 10.3389/fmolb.2021.682696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/30/2021] [Indexed: 11/17/2022] Open
Abstract
Studies indicate that induction of metabolic gene expression by nutrient intake, and in response to subsequently secreted hormones, is regulated by transcription factors binding to cis-elements and associated changes of epigenetic memories (histone modifications and DNA methylation) located in promoter and enhancer regions. Carbohydrate intake-mediated induction of metabolic gene expression is regulated by histone acetylation and the histone acetylation reader bromodomain-containing protein 4 (BRD4) on the gene body region, which corresponds to the transcribed region of the gene. In this review, we introduce carbohydrate-responsive metabolic gene regulation by (i) transcription factors and epigenetic memory in promoter/enhancer regions (promoter/enhancer-based epigenetics), and (ii) histone acetylation and BRD4 in the gene body region (gene body-based epigenetics). Expression of carbohydrate-responsive metabolic genes related to nutrient digestion and absorption, fat synthesis, inflammation in the small intestine, liver and white adipose tissue, and in monocytic/macrophage-like cells are regulated by various transcription factors. The expression of these metabolic genes are also regulated by transcription elongation via histone acetylation and BRD4 in the gene body region. Additionally, the expression of genes related to fat synthesis, and the levels of acetylated histones and BRD4 in fat synthesis-related genes, are downregulated in white adipocytes under insulin resistant and/or diabetic conditions. In contrast, expression of carbohydrate-responsive metabolic genes and/or histone acetylation and BRD4 binding in the gene body region of these genes, are upregulated in the small intestine, liver, and peripheral leukocytes (innate leukocytes) under insulin resistant and/or diabetic conditions. In conclusion, histone acetylation and BRD4 binding in the gene body region as well as transcription factor binding in promoter/enhancer regions regulate the expression of carbohydrate-responsive metabolic genes in many metabolic organs. Insulin resistant and diabetic conditions induce the development of metabolic diseases, including type 2 diabetes, by reducing the expression of BRD4-targeted carbohydrate-responsive metabolic genes in white adipose tissue and by inducing the expression of BRD4-targeted carbohydrate-responsive metabolic genes in the liver, small intestine, and innate leukocytes including monocytes/macrophages and neutrophils.
Collapse
Affiliation(s)
- Kazuki Mochizuki
- Department of Local Produce and Food Sciences, Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, Japan
- Department of Integrated Applied Life Science, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, Yamanashi, Japan
| | - Shiori Ishiyama
- Department of Integrated Applied Life Science, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, Yamanashi, Japan
| | - Natsuyo Hariya
- Department of Nutrition, Faculty of Health and Nutrition, Yamanashi Gakuin University, Yamanashi, Japan
| | - Toshinao Goda
- Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
2
|
Shimada M, Hibi M, Nakagawa T, Hayakawa T, Field CJ. High-fructose diet-induced hepatic expression of the Scd1 gene is associated with increased acetylation of histones H3 and H4 and the binding of ChREBP at the Scd1 promoter in rats. Biomed Res 2021; 42:85-88. [PMID: 33840688 DOI: 10.2220/biomedres.42.85] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Stearoyl-CoA desaturase-1 (SCD1) is a key enzyme in the biosynthesis of monounsaturated fatty acids, and the expression of the Scd1 gene is induced by the intake of the lipogenic sugar fructose. We examined the effects of a high-fructose diet on hepatic acetylation of histones H3 and H4 and the binding of carbohydrate response element-binding protein (ChREBP) on the Scd1 gene promoter in rats. Rats were fed a control diet or a high-fructose diet for 10 days. The intake of a high-fructose diet significantly increased histone H3 and H4 acetylation and ChREBP binding to the Scd1 gene promoter as well as the amount of triglyceride and the expression of the Scd1 gene. These results suggest that short-term intake of high fructose upregulates expression of Scd1 by enhancing acetylation of histones H3 and H4 and binding of ChREBP at the Scd1 promoter.
Collapse
Affiliation(s)
- Masaya Shimada
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University.,Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, Gifu University.,Department of Agricultural, Food and Nutritional Science, 4‑126A Li Ka Shing Center for Health Research Innovation, University of Alberta
| | - Mayu Hibi
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, Gifu University
| | - Tomoyuki Nakagawa
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University.,Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, Gifu University
| | - Takashi Hayakawa
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University.,Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, Gifu University
| | - Catherine J Field
- Department of Agricultural, Food and Nutritional Science, 4‑126A Li Ka Shing Center for Health Research Innovation, University of Alberta
| |
Collapse
|
3
|
Yamada A, Honma K, Mochizuki K, Goda T. BRD4 regulates fructose-inducible lipid accumulation-related genes in the mouse liver. Metabolism 2016; 65:1478-88. [PMID: 27621183 DOI: 10.1016/j.metabol.2016.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/01/2016] [Accepted: 07/04/2016] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Fructose intake induces hepatic steatosis by activating fat synthesis. In this study, we searched for genes that showed acute induction in the livers of mice force-fed with fructose, and examined how this induction is regulated. MATERIALS/METHODS We identified genes induced at 6h after the fructose force-feeding using a microarray and quantitative real-time RT-PCR. Histone acetylation and an acetylated histone binding protein bromodomain containing (BRD)4 binding around the fructose-inducible genes were examined using a chromatin immunoprecipitation assay. We examined whether (+)-JQ1, an inhibitor of the binding between the BRD4 and acetylated histones, inhibited the expressions of fructose-inducible genes, histone acetylation and BRD4 binding around the genes. RESULTS We identified upregulated genes related to lipid accumulation, such as Cyp8b1, Dak and Plin5, in mice force-fed with fructose compared with those force-fed with glucose. Acetylation of histones H3 and H4, and BRD4 binding around the transcribed region of those fructose-inducible genes, were enhanced by fructose force-feeding. Meanwhile, (+)-JQ1 treatment reduced expressions of fructose-inducible genes, histone acetylation and BRD4 binding around these genes. CONCLUSIONS Acute induction of genes related to lipid accumulation in the livers of mice force-fed with fructose is associated with the induction of histone acetylation and BRD4 binding around these genes.
Collapse
Affiliation(s)
- Aki Yamada
- Laboratory of Nutritional Physiology, Graduate School of Nutritional and Environmental Sciences, Laboratory of Nutritional Physiology, University of Shizuoka, Shizuoka, Japan
| | - Kazue Honma
- Laboratory of Nutritional Physiology, Graduate School of Nutritional and Environmental Sciences, Laboratory of Nutritional Physiology, University of Shizuoka, Shizuoka, Japan
| | - Kazuki Mochizuki
- Laboratory of Food and Nutritional Sciences, Department of Local Produce and Food Sciences, Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, Japan
| | - Toshinao Goda
- Laboratory of Nutritional Physiology, Graduate School of Nutritional and Environmental Sciences, Laboratory of Nutritional Physiology, University of Shizuoka, Shizuoka, Japan.
| |
Collapse
|
4
|
Suzuki T, Muramatsu T, Morioka K, Goda T, Mochizuki K. ChREBP binding and histone modifications modulate hepatic expression of the Fasn gene in a metabolic syndrome rat model. Nutrition 2015; 31:877-83. [PMID: 25933497 DOI: 10.1016/j.nut.2015.01.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 12/25/2014] [Accepted: 01/14/2015] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Although the expression of hepatic lipogenic genes is enhanced in insulin resistance, the underlying mechanism is unclear. To reveal the details, the aim of this study was to investigate whether the expression of hepatic lipogenic genes are mediated by epigenetic regulation and specific transcription factors in an insulin resistance model of rats. METHODS Using a rat model of insulin resistance (SHR/NDmc-cp), we investigated the relationship between hepatic expression of the lipogenic gene fatty-acid synthase (Fasn), binding of the transcription factor carbohydrate-responsive element-binding protein (ChREBP) to the Fasn gene, and histone modifications in the region of the Fasn gene by real-time reverse transcriptase polymerase chain reaction, immunoblotting, and chromatin immunoprecipitation assay. RESULTS Compared with control rats, Fasn mRNA expression and protein levels were higher in the livers of SHR/NDmc-cp rats, as were protein expression levels and Fasn binding of ChREBP and RNA polymerase II. Moreover, compared with the livers of control rats, levels of mono-methylated histone H3 lysine (K) 4 and acetylated histone H4 were higher in the promoter/enhancer region of the Fasn gene in the livers of SHR/NDmc-cp rats. Levels of trimethylated histone H3K4 and acetylated histone H3 were higher in the transcribed region. CONCLUSION The results of this study indicate that expression of the Fasn gene in the livers of insulin-resistant rats is associated with increased H3K4 methylation, increased histone H3 acetylation, and increased H4 acetylation, and also, binding levels of ChREBP to promoter/enhancer region of Fasn gene is involved in the Fasn gene expression caused by hyperglycemia.
Collapse
Affiliation(s)
- Takuji Suzuki
- Laboratory of Nutritional Physiology, Graduate School of Nutritional and Environmental Sciences, Global COE Program, University of Shizuoka, Shizuoka, Japan; Food Environmental Design Course, Faculty of Education, Art and Science, Yamagata University, Yamagata, Japan
| | - Takeshi Muramatsu
- Laboratory of Nutritional Physiology, Graduate School of Nutritional and Environmental Sciences, Global COE Program, University of Shizuoka, Shizuoka, Japan
| | - Kousuke Morioka
- Laboratory of Nutritional Physiology, Graduate School of Nutritional and Environmental Sciences, Global COE Program, University of Shizuoka, Shizuoka, Japan
| | - Toshinao Goda
- Laboratory of Nutritional Physiology, Graduate School of Nutritional and Environmental Sciences, Global COE Program, University of Shizuoka, Shizuoka, Japan
| | - Kazuki Mochizuki
- Laboratory of Nutritional Physiology, Graduate School of Nutritional and Environmental Sciences, Global COE Program, University of Shizuoka, Shizuoka, Japan; Laboratory of Food and Nutritional Sciences, Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, Japan.
| |
Collapse
|
5
|
Xu H, Wu X, Qin H, Tian W, Chen J, Sun L, Fang M, Xu Y. Myocardin-Related Transcription Factor A Epigenetically Regulates Renal Fibrosis in Diabetic Nephropathy. J Am Soc Nephrol 2014; 26:1648-60. [PMID: 25349198 DOI: 10.1681/asn.2014070678] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 09/09/2014] [Indexed: 11/03/2022] Open
Abstract
Diabetic nephropathy (DN) is one of the most common complications associated with diabetes and characterized by renal microvascular injury along with accelerated synthesis of extracellular matrix proteins causing tubulointerstitial fibrosis. Production of type I collagen, the major component of extracellular matrix, is augmented during renal fibrosis after chronic exposure to hyperglycemia. However, the transcriptional modulator responsible for the epigenetic manipulation leading to induction of type I collagen genes is not clearly defined. We show here that tubulointerstitial fibrosis as a result of DN was diminished in myocardin-related transcription factor A (MRTF-A) -deficient mice. In cultured renal tubular epithelial cells and the kidneys of mice with DN, MRTF-A was induced by glucose and synergized with glucose to activate collagen transcription. Notably, MRTF-A silencing led to the disappearance of prominent histone modifications indicative of transcriptional activation, including acetylated histone H3K18/K27 and trimethylated histone H3K4. Detailed analysis revealed that MRTF-A recruited p300, a histone acetyltransferase, and WD repeat-containing protein 5 (WDR5), a key component of the histone H3K4 methyltransferase complex, to the collagen promoters and engaged these proteins in transcriptional activation. Estradiol suppressed collagen production by dampening the expression and binding activity of MRTF-A and interfering with the interaction between p300 and WDR5 in renal epithelial cells. Therefore, targeting the MRTF-A-associated epigenetic machinery might yield interventional strategies against DN-associated renal fibrosis.
Collapse
Affiliation(s)
- Huihui Xu
- State Key Laboratory of Reproductive Medicine, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology and
| | - Xiaoyan Wu
- State Key Laboratory of Reproductive Medicine, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology and Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Hao Qin
- State Key Laboratory of Reproductive Medicine, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology and
| | - Wenfang Tian
- State Key Laboratory of Reproductive Medicine, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology and
| | - Junliang Chen
- State Key Laboratory of Reproductive Medicine, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology and School of Basic Medical Sciences, Jiangnan University, Wuxi, China
| | - Lina Sun
- State Key Laboratory of Reproductive Medicine, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology and Department of Pathology and Pathophysiology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China; and
| | - Mingming Fang
- State Key Laboratory of Reproductive Medicine, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology and Department of Medicine and Nursing, Jiangsu Jiankang Vocational University, Nanjing, China
| | - Yong Xu
- State Key Laboratory of Reproductive Medicine, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology and
| |
Collapse
|
6
|
Goyaram V, Kohn TA, Ojuka EO. Suppression of the GLUT4 adaptive response to exercise in fructose-fed rats. Am J Physiol Endocrinol Metab 2014; 306:E275-83. [PMID: 24326422 PMCID: PMC3920014 DOI: 10.1152/ajpendo.00342.2013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Exercise-induced increase in skeletal muscle GLUT4 expression is associated with hyperacetylation of histone H3 within a 350-bp DNA region surrounding the myocyte enhancer factor 2 (MEF2) element on the Glut4 promoter and increased binding of MEF2A. Previous studies have hypothesized that the increase in MEF2A binding is a result of improved accessibility of this DNA segment. Here, we investigated the impact of fructose consumption on exercise-induced GLUT4 adaptive response and directly measured the accessibility of the above segment to nucleases. Male Wistar rats (n = 30) were fed standard chow or chow + 10% fructose or maltodextrin drinks ad libitum for 13 days. In the last 6 days five animals per group performed 3 × 17-min bouts of intermittent swimming daily and five remained untrained. Triceps muscles were harvested and used to measure 1) GLUT4, pAMPK, and HDAC5 contents by Western blot, 2) accessibility of the DNA segment from intact nuclei using nuclease accessibility assays, 3) acetylation level of histone H3 and bound MEF2A by ChIP assays, and 4) glycogen content. Swim training increased GLUT4 content by ∼66% (P < 0.05) but fructose and maltodextrin feeding suppressed the adaptation. Accessibility of the DNA region to MNase and DNase I was significantly increased by swimming (∼2.75- and 5.75-fold, respectively) but was also suppressed in trained rats that consumed fructose or maltodextrin. Histone H3 acetylation and MEF2A binding paralleled the accessibility pattern. These findings indicate that both fructose and maltodextrin modulate the GLUT4 adaptive response to exercise by mechanisms involving chromatin remodeling at the Glut4 promoter.
Collapse
Affiliation(s)
- Veeraj Goyaram
- University of Capetown/Medical Research Center, Research Unit for Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | | | | |
Collapse
|
7
|
Induction by fructose force-feeding of histone H3 and H4 acetylation at their lysine residues around the Slc2a5 gene and its expression in mice. Biosci Biotechnol Biochem 2013; 77:2188-91. [PMID: 24200777 DOI: 10.1271/bbb.130300] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
It has been reported that fructose force-feeding rapidly induced jejunal Slc2a5 gene expression in rodents. We demonstrate in this study that acetylation at lysine (K) 9 of histone H3 and acetylation at K5 and K16 of histone H4 were more enhanced in the promoter/enhancer to transcribed regions of the Slc2a5 gene in fructose force-fed mice than in glucose force-fed mice. However, fructose force-feeding did not induce acetylation at K14 of histone H3, or at K8 and K12 of histone H4 around the Slc2a5 gene. These results suggest that fructose force-feeding induced selective histone acetylation, particularly of H3 and H4, around the jejunal Slc2a5 gene in mice.
Collapse
|