1
|
De Palma R, Matta M, Florian J, Patel V, Rouse R. Absolute quantitation of neopterin as an endogenous pharmacodynamic Biomarker: The successful method development, validation, and use of a surrogate matrix for clinical sample analysis. Anal Biochem 2025; 704:115893. [PMID: 40345316 DOI: 10.1016/j.ab.2025.115893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2025] [Revised: 05/05/2025] [Accepted: 05/06/2025] [Indexed: 05/11/2025]
Abstract
Biomarkers are playing an increasing role in the drug discovery and drug development process. Molecular biomarkers pose a bioanalytical challenge due to their low concentrations and endogenous presence. Inaccurate quantitation could lead to biased study results. Surrogate analyte and surrogate matrix approaches can be used to overcome the lack of a blank matrix and provide accurate quantitation. However, the suitability of the surrogate analyte or matrix must be established during method validation. Here we describe the development and validation of a surrogate matrix approach for the absolute quantitation of neopterin as a PD biomarker for use in an FDA-sponsored clinical study (NCT04183491). Matrix suitability was established through parallelism, precision and accuracy, and internal standard response. Parallelism experiments showed FBS, and serum had identical slopes 0.0145. Additionally, the difference in the X-intercepts was able to accurately predict the amount of endogenous neopterin (1.0 ng/mL). Inter-day accuracy across four surrogate QC levels ranged from 92.08 to 109.06 % while precision ranged from 3.36 to 16.00 %. Inter-day accuracy for the QCs in study matrix ranged from 96.81 to 108.86 % and precision ranged from 4.13 to 6.01 %. The internal standard response in FBS was only 6.9 % different from serum. Additionally, there was no matrix effect, injection carryover, or cross-analyte interference observed. The method was then qualified for automated sample processing.
Collapse
Affiliation(s)
- Ryan De Palma
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Center for Drugs Evaluation and Research, US Food and Drug Administration, United States.
| | - Murali Matta
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Center for Drugs Evaluation and Research, US Food and Drug Administration, United States
| | - Jeffry Florian
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Center for Drugs Evaluation and Research, US Food and Drug Administration, United States
| | - Vikram Patel
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Center for Drugs Evaluation and Research, US Food and Drug Administration, United States
| | - Rodney Rouse
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Center for Drugs Evaluation and Research, US Food and Drug Administration, United States
| |
Collapse
|
2
|
Lai L, Zhang M, Li T, Qu J, Xu D, Yu P, Jiang Z. Preparation and evaluation of a piperidinium-sulfonate based zwitterionic monolith for HILIC separation. J Chromatogr A 2024; 1722:464864. [PMID: 38598890 DOI: 10.1016/j.chroma.2024.464864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
In this study, a novel piperidinium-sulfonate based zwitterionic hydrophilic monolith was prepared through thermally initiated co-polymerization of a piperidinium-sulfonate monomer 3-(4-((methacryloyloxy)methyl)-1-methylpiperidin-1-ium-1-yl)propane-1-sulfonate (MAMMPS), and a hydrophilic crosslinker N,N'-methylenebisacrylamide (MBA) using n-propanol and H2O as porogenic system. Satisfactory mechanical and chemical stabilities, good repeatability and high column efficiency (120,000 N/m) were obtained on the optimal monolith. The resulting poly(MAMMPS-co-MBA) monolith showed a typical HILIC retention behavior over an ACN content range between 5 and 95 %. Furthermore, this column exhibited good separation performance for various polar compounds. Compared to quaternary ammonium-sulfonate based zwitterionic hydrophilic monolith, i.e. poly(N,N-dimethyl-N-methacryloxyethyl-N-(3-sulfopropyl)ammonium betaine-co-MBA), the poly(MAMMPS-co-MBA) monolith displayed stronger retention and better selectivity for the tested phenolic and amine compounds at different pH conditions. Finally, this column was applied for the separation of six sulfonamide antibiotics, and the analytical characteristics of the method were evaluated in terms of precision, repeatability, limits of detection (LOD) and quantitation (LOQ). Overall, this study not only developed a novel HILIC monolithic column, but also proved the potential of piperidinium-sulfonate based zwitterionic chemistry as stationary phase, which further increased the structure diversity of zwitterionic HILIC stationary phases.
Collapse
Affiliation(s)
- Liang Lai
- Institute of Pharmaceutical Analysis, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Mengyao Zhang
- Institute of Pharmaceutical Analysis, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Tong Li
- Institute of Pharmaceutical Analysis, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Jiahuan Qu
- Institute of Pharmaceutical Analysis, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Dongsheng Xu
- Institute of Pharmaceutical Analysis, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China.
| | - Pei Yu
- Institute of Pharmaceutical Analysis, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China.
| | - Zhengjin Jiang
- Institute of Pharmaceutical Analysis, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
3
|
Prasad GV, Reddy TM, Narayana AL, Hussain OM, Gopal TV, Shaikshavali P. Construction of the Embedded Li4Ti5O12-MWCNTs Nanocomposite Electrode for Diverse Applications in Electrochemical Sensing and Rechargeable Battery. J Inorg Organomet Polym Mater 2023. [DOI: 10.1007/s10904-023-02584-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
4
|
Rizalputri LN, Anshori I, Handayani M, Gumilar G, Septiani NLW, Hartati YW, Annas MS, Purwidyantri A, Prabowo BA, Yuliarto B. Facile and controllable synthesis of monodisperse gold nanoparticle bipyramid for electrochemical dopamine sensor. NANOTECHNOLOGY 2022; 34:055502. [PMID: 36301678 DOI: 10.1088/1361-6528/ac9d3f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
We demonstrated potential features of gold nanoparticle bipyramid (AuNB) for an electrochemical biosensor. The facile synthesis method and controllable shape and size of the AuNB are achieved through the optimization of cetyltrimethylammonium chloride (CTAC) surfactant over citric acid (CA) ratio determining the control of typically spherical Au seed size and its transition into a penta-twinned crystal structure. We observe that the optimized ratio of CTAC and CA facilitates flocculation control in which Au seeds with size as tiny as ∼14.8 nm could be attained and finally transformed into AuNB structures with an average length of ∼55 nm with high reproducibility. To improve the electrochemical sensing performance of a screen-printed carbon electrode, surface modification with AuNB via distinctive linking procedures effectively enhanced the electroactive surface area by 40%. Carried out for the detection of dopamine, a neurotransmitter frequently linked to the risk of Parkinson's, Alzheimer's, and Huntington's diseases, the AuNB decorated-carbon electrode shows outstanding electrocatalytic activity that improves sensing performance, including high sensitivity, low detection limit, wide dynamic range, high selectivity against different analytes, such as ascorbic acid, uric acid and urea, and excellent reproducibility.
Collapse
Affiliation(s)
- Lavita Nuraviana Rizalputri
- Department of Nanotechnology, Graduate School, Bandung Institute of Technology, Bandung, Indonesia
- Research Center for Nanoscience and Nanotechnology (RCNN), Bandung Institute of Technology, Bandung, Indonesia
| | - Isa Anshori
- Research Center for Nanoscience and Nanotechnology (RCNN), Bandung Institute of Technology, Bandung, Indonesia
- Department of Biomedical Engineering, Bandung Institute of Technology, Bandung, Indonesia
| | - Murni Handayani
- Research Center for Advanced Materials, National Research and Innovation Agency (BRIN), Tangerang Selatan, Indonesia
| | - Gilang Gumilar
- Research Center for Nanoscience and Nanotechnology (RCNN), Bandung Institute of Technology, Bandung, Indonesia
- Advanced Functional Materials Laboratory, Engineering Physics Department, Bandung Institute of Technology, Bandung, Indonesia
| | - Ni Luh Wulan Septiani
- Research Center for Advanced Materials, National Research and Innovation Agency (BRIN), Tangerang Selatan, Indonesia
| | - Yeni Wahyuni Hartati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, Indonesia
- Research Center of Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Bandung, Indonesia
| | | | - Agnes Purwidyantri
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, United Kingdom
| | - Briliant Adhi Prabowo
- Research Center for Electronics, National Research and Innovation Agency (BRIN), Bandung, Indonesia
- International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Brian Yuliarto
- Research Center for Nanoscience and Nanotechnology (RCNN), Bandung Institute of Technology, Bandung, Indonesia
| |
Collapse
|
5
|
Abdulmajeed AM, Alharbi BM, Alharby HF, Abualresh AM, Badawy GA, Semida WM, Rady MM. Simultaneous Action of Silymarin and Dopamine Enhances Defense Mechanisms Related to Antioxidants, Polyamine Metabolic Enzymes, and Tolerance to Cadmium Stress in Phaseolus vulgaris. PLANTS (BASEL, SWITZERLAND) 2022; 11:3069. [PMID: 36432798 PMCID: PMC9692805 DOI: 10.3390/plants11223069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Silymarin (Sm) and dopamine (DA) act synergistically as potential antioxidants, mediating many physiological and biochemical processes. As a first report, we investigated the synergistic effect of Sm and DA in mitigating cadmium stress in Phaseolus vulgaris plants. Three experiments were conducted simultaneously using 40 cm diameter pots to elucidate how Sm and DA affect cadmium tolerance traits at morphological, physiological, and biochemical levels. Cadmium stress triggered a marked reduction in growth, productivity, and physio-biochemical characteristics of common bean plants compared to unstressed plants. Seed priming (SP) and foliar spraying (FS) with silymarin (Sm) or dopamine (DA) ((DA (SP) + Sm (FS) and Sm (SP) + DA (FS)) ameliorated the damaging effects of cadmium stress. Sm seed priming + DA foliar spraying (Sm (SP) + DA (FS)) was more efficient. The treated stressed common bean plants showed greater tolerance to cadmium stress by diminishing oxidative stress biomarkers (i.e., O2•-, H2O2, and MDA) levels through enhanced enzymatic (SOD, CAT, POD, APX) and non-enzymatic (ascorbic acid, glutathione, α-tocopherol, choline, phenolics, flavonoids) antioxidant activities and osmoprotectants (proline, glycine betaine, and soluble sugars) contents, as well as through improved photosynthetic efficiency (total chlorophyll and carotenoids contents, photochemical activity, and efficiencies of carboxylation (iCE) and PSII (Fv/Fm)), polyamines (Put, Spd, and Spm), and polyamine metabolic enzymes (ADC and ODC) accumulation. These findings signify that Sm and DA have remarkable anti-stress effects, which can help regulate plant self-defense systems, reflecting satisfactory plant growth and productivity. Thus, realizing the synergistic effect of Sm and DA in cadmium tolerance confers potential new capabilities for these compounds to function in sustainable agriculture.
Collapse
Affiliation(s)
- Awatif M. Abdulmajeed
- Biology Department, Faculty of Science, University of Tabuk, Umluj 46429, Saudi Arabia
| | - Basmah M. Alharbi
- Biology Department, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Hesham F. Alharby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Amani M. Abualresh
- Biology Department, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Ghada A. Badawy
- Biology Department, Faculty of Science, University of Tabuk, Umluj 46429, Saudi Arabia
| | - Wael M. Semida
- Horticulture Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Mostafa M. Rady
- Botany Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| |
Collapse
|
6
|
Zhou J, Xia Y, Zou Z, Yang Q, Jiang X, Xiong X. Microplasma-enabled carbon dots composited with multi-walled carbon nanotubes for dopamine detection. Anal Chim Acta 2022; 1237:340631. [DOI: 10.1016/j.aca.2022.340631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022]
|
7
|
Revanappa SK, Soni I, Siddalinganahalli M, Jayaprakash GK, Flores-Moreno R, Bananakere Nanjegowda C. A Fukui Analysis of an Arginine-Modified Carbon Surface for the Electrochemical Sensing of Dopamine. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6337. [PMID: 36143660 PMCID: PMC9506051 DOI: 10.3390/ma15186337] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Amino acid-modified carbon interfaces have huge applications in developing electrochemical sensing applications. Earlier reports suggested that the amine group of amino acids acted as an oxidation center at the amino acid-modified electrode interface. It was interesting to locate the oxidation centers of amino acids in the presence of guanidine. In the present work, we modeled the arginine-modified carbon interface and utilized frontier molecular orbitals and analytical Fukui functions based on the first principle study computations to analyze arginine-modified CPE (AMCPE) at a molecular level. The frontier molecular orbital and analytical Fukui results suggest that the guanidine (oxidation) and carboxylic acid (reduction) groups of arginine act as additional electron transfer sites on the AMCPE surface. To support the theoretical observations, we prepared the arginine-modified CPE (AMCPE) for the cyclic voltammetric sensing of dopamine (DA). The AMCPE showed excellent performance in detecting DA in blood serum samples.
Collapse
Affiliation(s)
- Santhosh Kumar Revanappa
- Department of Chemistry, University B.D.T. College of Engineering Visvesvaraya Technological University, Davangere 577004, India
| | - Isha Soni
- Laboratory of Quantum Electrochemistry, School of Advacned Chemical Sciences, Shoolini University, Solan 173229, India
| | - Manjappa Siddalinganahalli
- Department of Chemistry, University B.D.T. College of Engineering Visvesvaraya Technological University, Davangere 577004, India
| | - Gururaj Kudur Jayaprakash
- Laboratory of Quantum Electrochemistry, School of Advacned Chemical Sciences, Shoolini University, Solan 173229, India
- Department of Chemistry, Nitte Meenakshi Institute of Technology, Bangalore 560064, India
| | - Roberto Flores-Moreno
- Departamento de Química, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad Guadalajara, Blvd. Marcelino García Barragán 1421, Guadalajara C.P. 44430, Mexico
| | | |
Collapse
|
8
|
Baig N, Kawde AN, Elgamouz A, Morsy M, Abdelfattah AM, Othaman R. Graphene nanosheet-sandwiched platinum nanoparticles deposited on a graphite pencil electrode as an ultrasensitive sensor for dopamine. RSC Adv 2022; 12:2057-2067. [PMID: 35425276 PMCID: PMC8979215 DOI: 10.1039/d1ra08464j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/30/2021] [Indexed: 01/22/2023] Open
Abstract
An ultra-sensitive sensor of dopamine is introduced. The sensor is constructed by encapsulating platinum nanoparticles (PtNPs) between reduced graphene oxide (GR) nanosheets. The sandwiched PtNPs between GR layers acted as a spacer to prevent aggregation and provided a fine connection between the GR nanosheets to provide fast charge transfer. This specific orientation of the GR nanosheets and PtNPs on the graphite pencil electrode (GPE) substantially improved the electrocatalytic activity of the sensor. The synthesized graphene oxide and the fabricated sensor were comprehensively characterized by Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, field emission-scanning electron microscopy (FE-SEM), electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and square wave voltammetry (SWV). The value of the charge transfer coefficient (α), apparent heterogeneous electron transfer rate constant (k s), and electroactive surface area for dopamine were found to be about 0.57, 8.99 s-1, and 0.81 cm2, respectively. The developed sensor is highly sensitive towards dopamine, and the detection limit is 9.0 nM. The sensor response is linear for dopamine concentration from 0.06 to 20 μM (R 2 = 0.9991). The behavior of the sensor for dopamine in the presence of a high concentration of l(+) Ascorbic acid and other potential interferents was satisfactory. High recovery percentage between 90% and 105% in the human urine sample, good reproducibility, and facile fabrication of the electrode make it a good candidate for dopamine sensing.
Collapse
Affiliation(s)
- Nadeem Baig
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals Dhahran 31261 Saudi Arabia
| | - Abdel-Nasser Kawde
- Department of Chemistry, College of Sciences, University of Sharjah P. O. Box 27272 United Arab Emirates
| | - Abdelaziz Elgamouz
- Department of Chemistry, College of Sciences, University of Sharjah P. O. Box 27272 United Arab Emirates
| | - Mohamed Morsy
- Chemistry Department, King Fahd University of Petroleum and Minerals Dhahran 31261 Saudi Arabia
| | - Ahmed Mohsen Abdelfattah
- Department of Architecture, King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia
| | - Rizafizah Othaman
- Polymer Research Center, Faculty of Science and Technology, Universiti Kebangsaan Malaysia Bangi Selangor 43600 Malaysia
| |
Collapse
|
9
|
Deng C, Wang S, Niu Z, Ye Y, Gao L. Newly established LC-MS/MS method for measurement of plasma BH4 as a predictive biomarker for kidney injury in diabetes. Free Radic Biol Med 2022; 178:1-6. [PMID: 34808334 DOI: 10.1016/j.freeradbiomed.2021.11.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 01/25/2023]
Abstract
OBJECTIVE The clinical research on BH4 is limited because of the difficulties on its measurement. In this study, we used our own established LC-MS/MS method to examine the plasma BH4 levels in diabetes to determine whether it could be used as a biomarker for the prediction of kidney injury in those patients. METHODS Hospitalized diabetes patients in Renmin Hospital of Wuhan University from Jan to Aug 2021 were recruited. To assess the association between plasma BH4 with ACR or eGFR in diabetes, a total of 142 patients with type 2 diabetes (T2DM) were enrolled. They were divided into three groups by albuminuria levels: normoalbuminuria (n = 68), microalbuminuria (n = 48), and macroalbuminuria (n = 26) according to ACR; or into two groups by eGFR: eGFR≥90 or eGFR<90 ml/min for correlation and logistic regression analysis. Plasma BH4 level was measured by LC-MS/MS along with other biochemical indices. RESULTS Plasma BH4 concentrations were decreased as ACR progressed. BH4 (r = -0.55, P < 0.001) and 2h C-Peptide (CP-2h) (r = -0.248, P = 0.003) levels were negatively correlated with ACR. Moreover, multivariable logistic regression analysis showed BH4 concentrations (B = -0.468, P < 0.001) and CP-2h (B = -0.257, P = 0.028) were independently associated with ACR progression. ROC curve showed that BH4 level has a predictive value on ACR (95%CI 0.686-0.841, sensitivity 69.1%, specificity 73%). Moreover, in diabetes patients with eGFR≥90 ml/min, plasma BH4 level (P = 0.008) is higher than those in diabetes with eGFR<90 ml/min and BH4 was remained independently associated with eGFR after multivariable logistic regression analysis (B = -0.193, P = 0.048). CONCLUSION Our established LC-MS/MS method could be used on human plasma BH4 measurements and our data suggested that BH4 level can be used as a biomarker for kidney injury in diabetes indicated by its association with ACR progression and early renal function decline.
Collapse
Affiliation(s)
- Chunxia Deng
- Department of Endocrinology & Metabolism, Renmin Hospital of Wuhan University, China
| | - Shuo Wang
- Department of Endocrinology & Metabolism, Renmin Hospital of Wuhan University, China
| | - Zhili Niu
- Department of Clinic Laboratory, Renmin Hospital of Wuhan University, China
| | - Yahong Ye
- Department of Endocrinology & Metabolism, Renmin Hospital of Wuhan University, China
| | - Ling Gao
- Department of Endocrinology & Metabolism, Renmin Hospital of Wuhan University, China.
| |
Collapse
|
10
|
Shafi PM, Joseph N, Karthik R, Shim JJ, Bose AC, Ganesh V. Lemon juice-assisted synthesis of LaMnO3 perovskite nanoparticles for electrochemical detection of dopamine. Microchem J 2021. [DOI: 10.1016/j.microc.2021.105945] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Hsine Z, Bizid S, Mlika R, Sauriat-Dorizon H, Haj Said A, Korri-Youssoufi H. Nanocomposite based on Poly (para-phenylene)/Chemical Reduced Graphene Oxide as a Platform for Simultaneous Detection of Ascorbic Acid, Dopamine and Uric Acid. SENSORS (BASEL, SWITZERLAND) 2020; 20:E1256. [PMID: 32106578 PMCID: PMC7085538 DOI: 10.3390/s20051256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/11/2020] [Accepted: 02/18/2020] [Indexed: 12/20/2022]
Abstract
In this study, an efficient and simple designed nanohybrid created for individual and simultaneous detection of ascorbic acid (AA), dopamine (DA) and uric acid (UA). This nanohybrid is a combination of reduced graphene oxide (CRGO) and redox poly(para-phenylene) (Fc-ac-PP) modified in a lateral position with ferrrocenyl group CRGO/Fc-ac-PPP. The CRGO/Fc-ac-PPP nanohybrid demonstrated a synergistic effect resulting in a large conductivity, surface area and catalytic properties provided by the redox attached ferrocene. Moreover, this nanocomposite is able to detect individually as well as simultaneously AA, DA and UA in a co-existence system with defined and separated redox peaks oxidation. The linear response ranges for AA, DA and UA, when detected simultaneously, are 0.1-10000 μM, 0.0001-1000 μM and 0.1-10000 μM, respectively, and the detection limits (S/N = 3) are 0.046 μM, 0.2 nM and 0.013 μM, respectively. The proposed sensor shown satisfactory results when applied to real spiked urine samples for measuring the abnormal high or lowconcentration of AA, DA and UA in vivo.
Collapse
Affiliation(s)
- Zouhour Hsine
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), Equipe de Chimie Biorganique et Bioinorganique (ECBB), Bât 420, 2 Rue du Doyen Georges Poitou, 91400 Orsay, France; (Z.H.); (H.S.-D.)
- Laboratory of Interfaces and Advanced Materials, Faculty of Science of Monastir, University of Monastir, Monastir 5019, Tunisia; (S.B.); (R.M.); (A.H.S.)
| | - Salma Bizid
- Laboratory of Interfaces and Advanced Materials, Faculty of Science of Monastir, University of Monastir, Monastir 5019, Tunisia; (S.B.); (R.M.); (A.H.S.)
| | - Rym Mlika
- Laboratory of Interfaces and Advanced Materials, Faculty of Science of Monastir, University of Monastir, Monastir 5019, Tunisia; (S.B.); (R.M.); (A.H.S.)
| | - Hélène Sauriat-Dorizon
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), Equipe de Chimie Biorganique et Bioinorganique (ECBB), Bât 420, 2 Rue du Doyen Georges Poitou, 91400 Orsay, France; (Z.H.); (H.S.-D.)
| | - Ayoub Haj Said
- Laboratory of Interfaces and Advanced Materials, Faculty of Science of Monastir, University of Monastir, Monastir 5019, Tunisia; (S.B.); (R.M.); (A.H.S.)
| | - Hafsa Korri-Youssoufi
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), Equipe de Chimie Biorganique et Bioinorganique (ECBB), Bât 420, 2 Rue du Doyen Georges Poitou, 91400 Orsay, France; (Z.H.); (H.S.-D.)
| |
Collapse
|
12
|
Cheng H, Jin W, Huang X, Liu X, Wang F, Guo X, Wu Y, Ying Y, Wen Y, Yang H. A flexible carbon nanotube-modified poly(styrene-butadiene)-based dopamine sensor. NANOTECHNOLOGY 2020; 31:015505. [PMID: 31509820 DOI: 10.1088/1361-6528/ab4373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this work, a multi-walled carbon nanotube-modified flexible poly(styrene-butadiene) fiber membrane material was prepared for the sensitive and selective electrochemical detection of dopamine (DA) in human serum and DA injection. The flexible fiber membrane prepared by electrospinning technology is expected to realize its application in wearable devices. The obtained conductive film-based electrochemical sensor can effectively minimize interference caused by ascorbic acid and uric acid. Under the optimized experimental conditions of differential pulse voltammetry, DA gives a linear response in the range of 1-650 μM (R2 = 0.996). The detection limit of DA (signal-to noise ratio = 3) was determined to be 0.062 μM.
Collapse
Affiliation(s)
- Haiyan Cheng
- Department of Chemistry, Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
High-index {hk0} facets platinum concave nanocubes loaded on multiwall carbon nanotubes and graphene oxide nanocomposite for highly sensitive simultaneous detection of dopamine and uric acid. Talanta 2020; 207:120296. [DOI: 10.1016/j.talanta.2019.120296] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 08/21/2019] [Accepted: 08/24/2019] [Indexed: 11/18/2022]
|
14
|
Jiao X, Li Y, Zhang X, Liu C, Liang W, Li C, Ma F, Li C. Exogenous Dopamine Application Promotes Alkali Tolerance of Apple Seedlings. PLANTS 2019; 8:plants8120580. [PMID: 31817831 PMCID: PMC6963653 DOI: 10.3390/plants8120580] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 01/06/2023]
Abstract
Arid and semiarid apple producing areas suffer from severe alkalinity of soil, which strongly affects the yield and quality of apples. Dopamine (DA) is involved in metabolic activities in response to abiotic stress in plants. To detect the effects of exogenous DA application on the adaption of apple (Malus hupehensis) seedlings to alkali stress and as a protection from oxidative stress, 0.1 mM DA was identified as the most suitable concentration by hydroponic culture. Further experimentation showed that the growth and photosynthesis of apple seedlings were significantly inhibited under alkali stress, and more reactive oxygen species accumulated, compared with control. However, exogenous DA application suppressed the loss of the plant height, root length, chlorophyll levels, and photosynthetic capacity of apple seedlings that were caused by alkali stress. In the leaves of alkali stressed seedlings, the catalase, superoxide dismutase, and peroxidase activities were lower and hydrogen peroxide and malondialdehyde levels were higher than in the untreated plants. The presence of DA significantly alleviated such effects of alkali stress. In addition, exogenous DA application increased the antioxidant capacity of apple seedlings under alkali stress by increasing the level of chlorogenic acid. These results are significant for improving the alkali tolerance of apple in apple-producing areas with alkalized soil.
Collapse
|
15
|
Meyer JT, Sparling BA, McCarty WJ, Zhang M, Soto M, Schneider S, Chen H, Roberts J, Tan H, Kornecook T, Andrews PS, Knutson CG. Pharmacological Assessment of Sepiapterin Reductase Inhibition on Tactile Response in the Rat. J Pharmacol Exp Ther 2019; 371:476-486. [PMID: 31110114 DOI: 10.1124/jpet.119.257105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/15/2019] [Indexed: 12/17/2023] Open
Abstract
There is an unmet medical need for nonopioid pain therapies in human populations; several pathways are under investigation for possible therapeutic intervention. Tetrahydrobiopterin (BH4) has received attention recently as a mediator of neuropathic pain. Recent reports have implicated sepiapterin reductase (SPR) in this pain pathway as a regulator of BH4 production. To evaluate the role of SPR inhibition on BH4 reduction, we developed analytical methods to monitor the relationship between the plasma concentration of test article and endogenous pterins and applied these in the rat spinal nerve ligation pain model. Sepiapterin is an endogenous substrate, which accumulates upon inhibition of SPR. In response to a potent inhibitor of SPR, plasma concentrations of sepiapterin increased proportionally with exposure. An indirect-effect pharmacokinetic/pharmacodynamic model was developed to describe the relationship between the plasma pharmacokinetics of test article and plasma sepiapterin levels in the rat, which was used to determine an in vivo SPR IC50 value. SPR inhibition and mechanical allodynia were assessed coordinately with pterin biomarkers in plasma and at the site of neuronal injury (i.e., dorsal root ganglion). Upon daily oral administration for 3 consecutive days, unbound plasma concentrations of test article exceeded the unbound in vivo rat SPR IC90 throughout the dose intervals, leading to a 60% reduction in BH4 in the dorsal root ganglion. Despite evidence for pharmacological modulation of the BH4 pathway, there was no significant effect on the tactile paw withdrawal threshold relative to vehicle-treated controls.
Collapse
Affiliation(s)
- James T Meyer
- Amgen Research, Thousand Oaks, California (J.T.M., M.Z., M.S., H.T., T.K.) and Amgen Research, Cambridge, Massachusetts (B.A.S., W.J.M., S.S., H.C., J.R., P.A., C.G.K.)
| | - Brian A Sparling
- Amgen Research, Thousand Oaks, California (J.T.M., M.Z., M.S., H.T., T.K.) and Amgen Research, Cambridge, Massachusetts (B.A.S., W.J.M., S.S., H.C., J.R., P.A., C.G.K.)
| | - William J McCarty
- Amgen Research, Thousand Oaks, California (J.T.M., M.Z., M.S., H.T., T.K.) and Amgen Research, Cambridge, Massachusetts (B.A.S., W.J.M., S.S., H.C., J.R., P.A., C.G.K.)
| | - Maosheng Zhang
- Amgen Research, Thousand Oaks, California (J.T.M., M.Z., M.S., H.T., T.K.) and Amgen Research, Cambridge, Massachusetts (B.A.S., W.J.M., S.S., H.C., J.R., P.A., C.G.K.)
| | - Marcus Soto
- Amgen Research, Thousand Oaks, California (J.T.M., M.Z., M.S., H.T., T.K.) and Amgen Research, Cambridge, Massachusetts (B.A.S., W.J.M., S.S., H.C., J.R., P.A., C.G.K.)
| | - Stephen Schneider
- Amgen Research, Thousand Oaks, California (J.T.M., M.Z., M.S., H.T., T.K.) and Amgen Research, Cambridge, Massachusetts (B.A.S., W.J.M., S.S., H.C., J.R., P.A., C.G.K.)
| | - Hao Chen
- Amgen Research, Thousand Oaks, California (J.T.M., M.Z., M.S., H.T., T.K.) and Amgen Research, Cambridge, Massachusetts (B.A.S., W.J.M., S.S., H.C., J.R., P.A., C.G.K.)
| | - Jonathan Roberts
- Amgen Research, Thousand Oaks, California (J.T.M., M.Z., M.S., H.T., T.K.) and Amgen Research, Cambridge, Massachusetts (B.A.S., W.J.M., S.S., H.C., J.R., P.A., C.G.K.)
| | - Helming Tan
- Amgen Research, Thousand Oaks, California (J.T.M., M.Z., M.S., H.T., T.K.) and Amgen Research, Cambridge, Massachusetts (B.A.S., W.J.M., S.S., H.C., J.R., P.A., C.G.K.)
| | - Thomas Kornecook
- Amgen Research, Thousand Oaks, California (J.T.M., M.Z., M.S., H.T., T.K.) and Amgen Research, Cambridge, Massachusetts (B.A.S., W.J.M., S.S., H.C., J.R., P.A., C.G.K.)
| | - Paul S Andrews
- Amgen Research, Thousand Oaks, California (J.T.M., M.Z., M.S., H.T., T.K.) and Amgen Research, Cambridge, Massachusetts (B.A.S., W.J.M., S.S., H.C., J.R., P.A., C.G.K.)
| | - Charles G Knutson
- Amgen Research, Thousand Oaks, California (J.T.M., M.Z., M.S., H.T., T.K.) and Amgen Research, Cambridge, Massachusetts (B.A.S., W.J.M., S.S., H.C., J.R., P.A., C.G.K.)
| |
Collapse
|
16
|
Alizadeh N, Salimi A. Polymer dots as a novel probe for fluorescence sensing of dopamine and imaging in single living cell using droplet microfluidic platform. Anal Chim Acta 2019; 1091:40-49. [PMID: 31679573 DOI: 10.1016/j.aca.2019.08.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 08/08/2019] [Accepted: 08/15/2019] [Indexed: 12/30/2022]
Abstract
We report here simple synthetic method for preparing polymer dots (Pdots) via hydrothermal treatment of organic dye (neutral red), urea and trisodium citrate. The prepared Pdots with enhanced quantum yield (quantum yield: 30.2%) was used as a selective and sensitive probe for fluorescent sensing of dopamine (DA) with high selectivity and sensitivity. The as-synthesized Pdots exhibited strong fluorescence intensity at 435 nm, which DA can trigger remarkable fluorescence quenching of such luminescent Pdots on the basis of inner filter effect (IFE) and static quenching effect (SQE). A wide linearity range (0.001 μM-900 μM) for DA detection was obtained with lower DL (3 S/N) of 0.28 nM, and no interference from other molecules such as ascorbic acid, urine acid, glutathione, glucose, epinephrine, arginine, cysteine, proline, creatinine, serine; alanine, L-therionine, Hg2+, Mg2+, K+, Ca2+ and Na+. The designed sensor was successfully applied in the imaging of DA in single living PC12 cells using droplet microfluidic approach, indicating its acceptable practicability of the proposed assay for DA detection with ultrahigh sensitivity in biological samples.
Collapse
Affiliation(s)
- Negar Alizadeh
- Department of Chemistry, University of Kurdistan, 66177-15175, Sanandaj, Iran
| | - Abdollah Salimi
- Department of Chemistry, University of Kurdistan, 66177-15175, Sanandaj, Iran; University of Western Ontario, N6A 5B7, London, Ontario, Canada; Research Center for Nanotechnology, University of Kurdistan, 66177-15175, Sanandaj, Iran.
| |
Collapse
|
17
|
Romanowicz J, Leonetti C, Dhari Z, Korotcova L, Ramachandra SD, Saric N, Morton PD, Bansal S, Cheema A, Gallo V, Jonas RA, Ishibashi N. Treatment With Tetrahydrobiopterin Improves White Matter Maturation in a Mouse Model for Prenatal Hypoxia in Congenital Heart Disease. J Am Heart Assoc 2019; 8:e012711. [PMID: 31331224 PMCID: PMC6761654 DOI: 10.1161/jaha.119.012711] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/24/2019] [Indexed: 01/05/2023]
Abstract
Background Reduced oxygen delivery in congenital heart disease causes delayed brain maturation and white matter abnormalities in utero. No treatment currently exists. Tetrahydrobiopterin (BH4) is a cofactor for neuronal nitric oxide synthase. BH4 availability is reduced upon NOS activation, such as during hypoxic conditions, and leads to toxin production. We hypothesize that BH4 levels are depleted in the hypoxic brain and that BH4 replacement therapy mitigates the toxic effects of hypoxia on white matter. Methods and Results Transgenic mice were used to visualize oligodendrocytes. Hypoxia was introduced during a period of white matter development equivalent to the human third trimester. BH4 was administered during hypoxia. BH4 levels were depleted in the hypoxic brain by direct quantification (n=7-12). The proliferation (n=3-6), apoptosis (n=3-6), and developmental stage (n=5-8) of oligodendrocytes were determined immunohistologically. Total oligodendrocytes increased after hypoxia, consistent with hypoxia-induced proliferation seen previously; however, mature oligodendrocytes were less prevalent in hypoxia, and there was accumulation of immature oligodendrocytes. BH4 treatment improved the mature oligodendrocyte number such that it did not differ from normoxia, and accumulation of immature oligodendrocytes was not observed. These results persisted beyond the initial period of hypoxia (n=3-4). Apoptosis increased with hypoxia but decreased with BH4 treatment to normoxic levels. White matter myelin levels decreased following hypoxia by western blot. BH4 treatment normalized myelination (n=6-10). Hypoxia worsened sensory-motor coordination on balance beam tasks, and BH4 therapy normalized performance (n=5-9). Conclusions Suboptimal BH4 levels influence hypoxic white matter abnormalities. Repurposing BH4 for use during fetal brain development may limit white matter dysmaturation in congenital heart disease.
Collapse
Affiliation(s)
- Jennifer Romanowicz
- Children's National Heart InstituteChildren's National Health SystemWashingtonDC
| | - Camille Leonetti
- Children's National Heart InstituteChildren's National Health SystemWashingtonDC
- Center for Neuroscience ResearchChildren's National Health SystemWashingtonDC
| | - Zaenab Dhari
- Children's National Heart InstituteChildren's National Health SystemWashingtonDC
- Center for Neuroscience ResearchChildren's National Health SystemWashingtonDC
| | - Ludmila Korotcova
- Children's National Heart InstituteChildren's National Health SystemWashingtonDC
- Center for Neuroscience ResearchChildren's National Health SystemWashingtonDC
| | - Shruti D. Ramachandra
- Children's National Heart InstituteChildren's National Health SystemWashingtonDC
- Center for Neuroscience ResearchChildren's National Health SystemWashingtonDC
| | - Nemanja Saric
- Children's National Heart InstituteChildren's National Health SystemWashingtonDC
- Center for Neuroscience ResearchChildren's National Health SystemWashingtonDC
| | - Paul D. Morton
- Children's National Heart InstituteChildren's National Health SystemWashingtonDC
- Center for Neuroscience ResearchChildren's National Health SystemWashingtonDC
| | - Shivani Bansal
- Lombardi Comprehensive Cancer CenterGeorgetown University Medical CenterWashingtonDC
| | - Amrita Cheema
- Lombardi Comprehensive Cancer CenterGeorgetown University Medical CenterWashingtonDC
| | - Vittorio Gallo
- Center for Neuroscience ResearchChildren's National Health SystemWashingtonDC
| | - Richard A. Jonas
- Children's National Heart InstituteChildren's National Health SystemWashingtonDC
- Center for Neuroscience ResearchChildren's National Health SystemWashingtonDC
| | - Nobuyuki Ishibashi
- Children's National Heart InstituteChildren's National Health SystemWashingtonDC
- Center for Neuroscience ResearchChildren's National Health SystemWashingtonDC
| |
Collapse
|
18
|
Sørensen LK, Johannsen M. Sensitive determination of monoamine neurotransmitters, their main metabolites and precursor amino acids in different mouse brain components by liquid chromatography-electrospray tandem mass spectrometry after selective sample clean-up. Biomed Chromatogr 2019; 33:e4479. [PMID: 30597586 DOI: 10.1002/bmc.4479] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 11/21/2018] [Accepted: 12/19/2018] [Indexed: 12/29/2022]
Abstract
For the assessment of diets and supplements formulated for the treatment of phenylketonuria, a highly sensitive and selective method was developed and validated for the quantification of dopamine (DA), serotonin (5-HT), 3,4-dihydroxyphenylacetic acid (DOPAC), 5-hydroxyindoleacetic acid (5-HIAA), phenylalanine, tyrosine and tryptophan in mouse cerebellum, brain stem, hypothalamus, parietal cortex, anterior piriform cortex and bulbus olfactorius. Samples were extracted by deproteinization with acetonitrile, and the extracts were cleaned up by strong anion exchange and weak cation exchange applied sequentially. The substances were detected by rapid liquid chromatography tandem mass spectrometry. Matrix components were largely removed by the clean-up, resulting in low matrix effects. The lower limits of quantification for an extracted tissue mass of 100 mg were 0.3, 0.3, 0.2 and 2 ng/g for DA, 5-HT, 5-HIAA and DOPAC, respectively. The mean true extraction recoveries were 80-102%. The relative intra-laboratory reproducibility standard deviations were generally <11% at concentrations of 20-1000 ng/g for DA, 5-HT, 5-HIAA and DOPAC and 7% at concentrations of 5-50 μg/g for the amino acids. This method was successfully used in a phenylketonuria mice study including nearly 300 brain tissue samples and for small sample masses (for example, 2 mg of bulbus olfactorius).
Collapse
Affiliation(s)
- Lambert K Sørensen
- Section for Forensic Chemistry, Department of Forensic Medicine, Aarhus University, Aarhus N, Denmark
| | - Mogens Johannsen
- Section for Forensic Chemistry, Department of Forensic Medicine, Aarhus University, Aarhus N, Denmark
| |
Collapse
|
19
|
Yuan TF, Huang HQ, Gao L, Wang ST, Li Y. A novel and reliable method for tetrahydrobiopterin quantification: Benzoyl chloride derivatization coupled with liquid chromatography-tandem mass spectrometry analysis. Free Radic Biol Med 2018; 118:119-125. [PMID: 29501564 DOI: 10.1016/j.freeradbiomed.2018.02.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/02/2018] [Accepted: 02/26/2018] [Indexed: 01/15/2023]
Abstract
Tetrahydrobiopterin (BH4) is a crucial cofactor for nitric oxide synthase, acylglycerol mono-oxygenase and aromatic amino acids hydroxylases. Its significant function for redox pathways in vivo attracted much attention for long. However, because of the oxidizable and substoichiometric nature, analysis of BH4 has never been truly achieved with adequate sensitivity and applicability. In the present work, we pioneeringly stabilized BH4 by derivatizing the active secondary amine on five-position with benzoyl chloride (BC). Benefiting from the favorable chemical stability and excellent mass spectrometric sensitivity of the product (BH4-BC), ultra-sensitive and reliable quantification of endogenous BH4 in plasma was achieved using liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. In such methodology, BH4-BC-d5 was introduced as stable isotopic internal standard. And the limit of quantification (LOQ) could reach 0.02 ng mL-1. In the end, after investigation of plasma BH4 in healthy volunteers (n = 38), we found that the levels of BH4 were significantly and negatively correlated to age. Comparing with all the other existed strategies, the present method was obviously superior in sensitivity, specificity and practical applicability. It could be expected that this work could largely promote the future studies in BH4-related fields.
Collapse
Affiliation(s)
- Teng-Fei Yuan
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Han-Qi Huang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ling Gao
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Shao-Ting Wang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Yan Li
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
20
|
|
21
|
Guibal P, Lo A, Maitre P, Moussa F. Pterin determination in cerebrospinal fluid: state of the art. Pteridines 2017. [DOI: 10.1515/pterid-2017-0001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
The analysis of pterins in the cerebrospinal fluid (CSF) is mandatory for the etiologic diagnosis of inborn errors of dopamine and serotonin metabolism. The success of the available therapeutic strategies for preventing the ongoing brain dysfunction is tightly dependent of the early diagnosis of these neurotransmitter disorders. Previous methods of pterins determination in the CSF have in common at least one reversed phase HPLC step coupled to electrochemical or fluorescence detection (FD). They differ in the oxidation procedure of the reduced forms of pterins into their oxidized fluorescent counterparts. Most of the methods using the FD include at least one offline chemical oxidation procedure and cannot allow the direct quantification of tetrahydrobiopterin (BH4). A recent method proposed a single step simultaneous quantification of all forms of pterins including BH4 by HPLC coupled to FD after post-column coulometric oxidation. Nowadays, recent advances in mass spectrometry (MS), notably in term of sensitivity, allow the direct unambiguous determination of all forms of pterins in the CSF by LC-MS/MS.
Collapse
Affiliation(s)
- Pierre Guibal
- Letiam, Lip(Sys) , Université Paris-Sud , IUT d’Orsay, Plateau de Moulon , 91405 Orsay , France
| | - Aurélien Lo
- Letiam, Lip(Sys) , Université Paris-Sud , IUT d’Orsay, Plateau de Moulon , 91405 Orsay , France
| | - Philippe Maitre
- Laboratoire de Chimie Physique , UMR 8000 CNRS , Faculté des Sciences d’Orsay, Université Paris-Sud , 15, Rue G. Clemenceau , 91400 Orsay , France
| | - Fathi Moussa
- Letiam, Lip(Sys) , Université Paris-Sud , IUT d’Orsay, Plateau de Moulon , 91405 Orsay , France
- Service de Biochimie, Groupe Hospitalier Trousseau-La Roche Guyon , APHP, 26 Avenue du Dr A. Netter , 75012 Paris , France
| |
Collapse
|
22
|
Li D, Ao K, Wang Q, Lv P, Wei Q. Preparation of Pd/Bacterial Cellulose Hybrid Nanofibers for Dopamine Detection. Molecules 2016; 21:molecules21050618. [PMID: 27187327 PMCID: PMC6273336 DOI: 10.3390/molecules21050618] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 04/27/2016] [Accepted: 05/04/2016] [Indexed: 11/27/2022] Open
Abstract
Palladium nanoparticle-bacterial cellulose (PdBC) hybrid nanofibers were synthesized by in-situ chemical reduction method. The obtained PdBC nanofibers were characterized by a series of analytical techniques. The results revealed that Pd nanoparticles were evenly dispersed on the surfaces of BC nanofibers. Then, the as-prepared PdBC nanofibers were mixed with laccase (Lac) and Nafion to obtain mixture suspension, which was further modified on electrode surface to construct novel biosensing platform. Finally, the prepared electrochemical biosensor was employed to detect dopamine. The analysis result was satisfactory, the sensor showed excellent electrocatalysis towards dopamine with high sensitivity (38.4 µA·mM−1), low detection limit (1.26 µM), and wide linear range (5–167 µM). Moreover, the biosensor also showed good repeatability, reproducibility, selectivity and stability and was successfully used in the detection of dopamine in human urine, thus providing a promising method for dopamine analysis in clinical application.
Collapse
Affiliation(s)
- Dawei Li
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, Jiang Su, China.
| | - Kelong Ao
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, Jiang Su, China.
| | - Qingqing Wang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, Jiang Su, China.
| | - Pengfei Lv
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, Jiang Su, China.
| | - Qufu Wei
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, Jiang Su, China.
| |
Collapse
|
23
|
Surrogate matrix: opportunities and challenges for tissue sample analysis. Bioanalysis 2015; 7:2419-2433. [DOI: 10.4155/bio.15.161] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Often there is limited availability of matching tissue matrix and/or the analyte may occur endogenously in the target tissue. Surrogate matrix provides an option for quantitation of drug, metabolite(s) and biomarker(s) in these circumstances. However, the use of a surrogate matrix also presents challenges. This paper summarizes and discusses the challenges of selecting a proper surrogate, validating the suitability of the surrogate and establishing a surrogate tissue method using the fit-for-purpose approach. This paper also systematically reviews the current practices for evaluating key parameters of a surrogate tissue assay, including sensitivity, specificity, selectivity, interference, precision, accuracy, recovery, matrix effects and stability. Considerations and suggestions are provided for dealing with such challenges during method establishment and tissue sample analysis.
Collapse
|
24
|
Miyazaki CM, Pereira TP, Mascagni DBT, de Moraes ML, Ferreira M. Monoamine oxidase B layer-by-layer film fabrication and characterization toward dopamine detection. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 58:310-5. [PMID: 26478315 DOI: 10.1016/j.msec.2015.08.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/13/2015] [Accepted: 08/22/2015] [Indexed: 12/15/2022]
Abstract
In this work nanostructured film composites of the monoamine oxidase B (MAO-B) enzyme, free or encapsulated in liposomes, were fabricated by the layer-by-layer (LbL) self-assembly technique, employing polyethylene imine (PEI) as polycation. Initially, the MAO-B enzyme was incorporated into liposomes in order to preserve its enzymatic structure ensuring their activity and catalytic stability. The LbL film growth was monitored by surface plasmon resonance (SPR) by gold resonance angle shift analysis after each bilayer deposition. Subsequently, the films were applied as amperometric biosensors for dopamine detection using Prussian Blue (PB) as the electron mediator. The biosensor fabricated by MAO-B incorporated into liposomes composed of DPPG:POPG in the ratio (1:4) (w/w) showed the best performance with a sensitivity of 0.86 (μA cm(-2))/(mmol L(-1)) and a detection limit of 0.33 mmol L(-1).
Collapse
Affiliation(s)
| | | | | | | | - Marystela Ferreira
- Universidade Federal de São Carlos, UFSCar, CCTS, Sorocaba, São Paulo, Brazil.
| |
Collapse
|
25
|
Wu LN, Tan YL, Wang L, Sun SN, Qu ZY, Zhang JM, Fan YJ. Dopamine sensor based on a hybrid material composed of cuprous oxide hollow microspheres and carbon black. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1455-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
Arning E, Bottiglieri T. LC-MS/MS Analysis of Cerebrospinal Fluid Metabolites in the Pterin Biosynthetic Pathway. JIMD Rep 2014; 29:1-9. [PMID: 25213568 PMCID: PMC5059177 DOI: 10.1007/8904_2014_336] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 06/18/2014] [Accepted: 07/01/2014] [Indexed: 12/12/2022] Open
Abstract
The analysis of (6R)-5,6,7,8-tetrahydrobiopterin (BH4) and neopterin in cerebrospinal fluid (CSF) is often used to identify defects in the pterin biosynthetic pathway affecting monoamine metabolism that can lead to pediatric neurotransmitter diseases. Low levels of BH4 and neopterin alone may not be sufficient to determine the defect, and further testing is often required. We have developed a sensitive liquid chromatography tandem mass spectrometry (LC-MS/MS) method for determination of BH4, 7,8-dihydrobiopterin (BH2), neopterin, and sepiapterin in CSF, which provides a more comprehensive evaluation of the pterin pathway. The method utilizes labeled stable isotopes as internal standards and allows for a fast 10-minute analysis by LC/MS/MS over a linear working range of 3 to 200 nmol/L. Total analytical imprecision is less than 14.4% for all pterin metabolites. Accuracy for BH4 and neopterin was determined by comparing data obtained by an alternative method using HPLC with EC and fluorescence detection. Excellent correlation was demonstrated for BH4 (r = 0.9646, 1/slope = 0.9397; n = 28; concentration range 3 to 63 nmol/L) and neopterin (r = 0.9919, 1/slope = 0.9539; n = 13; concentration range 5 to 240 nmol/L). CSF specimens from patients diagnosed with inborn errors of sepiapterin reductase (SR), 6-pyruvoyl-tetrahydropterin synthase (PTPS), dihydropteridine reductase (DHPR), and guanosine triphosphate cyclohydrolase (GTPCH) have been analyzed, and distinct pterin metabolite patterns were consistent with the initial diagnosis. This method differentiates patients with DHPR and SR deficiency from other pterin defects (GTPCH and PTPS) and will be useful for the diagnosis of specific defects in the pterin biosynthetic pathway.
Collapse
Affiliation(s)
- Erland Arning
- Baylor Research Institute, Institute of Metabolic Disease, Dallas, TX, 75226, USA.
| | - Teodoro Bottiglieri
- Baylor Research Institute, Institute of Metabolic Disease, Dallas, TX, 75226, USA
| |
Collapse
|
27
|
Kim TH, Choi J, Kim HG, Kim HR. Quantification of neurotransmitters in mouse brain tissue by using liquid chromatography coupled electrospray tandem mass spectrometry. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2014; 2014:506870. [PMID: 25258696 PMCID: PMC4166658 DOI: 10.1155/2014/506870] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 08/18/2014] [Accepted: 08/21/2014] [Indexed: 06/03/2023]
Abstract
A simple and rapid liquid chromatography tandem mass spectrometry method has been developed for the determination of BH4, DA, 5-HT, NE, EP, Glu, and GABA in mouse brain using epsilon-acetamidocaproic acid and isotopically labeled neurotransmitters as internal standards. Proteins in the samples were precipitated by adding acetonitrile, and then the supernatants were separated by a Sepax Polar-Imidazole (2.1 mm × 100 mm, i.d., 3 μm) column by adding a mixture of 10 mM ammonium formate in acetonitrile/water (75 : 25, v/v, 300 μl/min) for BH4 and DA. To assay 5-HT, NE, EP, Glu, and GABA; a Luna 3 μ C18 (3.0 mm × 150 mm, i.d., 3 μm) column was used by adding a mixture of 1% formic acid in acetonitrile/water (20 : 80, v/v, 350 μl/min). The total chromatographic run time was 5.5 min. The method was validated for the analysis of samples. The calibration curve was linear between 10 and 2000 ng/g for BH4 (r(2) = 0.995) , 10 and 5000 ng/g for DA (r(2) = 0.997) , 20 and 10000 ng/g for 5-HT (r(2) = 0.994) , NE (r(2) = 0.993) , and EP (r(2) = 0.993) , and 0.2 and 200 μg/g for Glu (r(2) = 0.996) and GABA (r(2) = 0.999) in the mouse brain tissues. As stated above, LC-MS/MS results were obtained and established to be a useful tool for the quantitative analysis of BH4, DA, 5-HT, NE, EP, Glu, and GABA in the experimental rodent brain.
Collapse
Affiliation(s)
- Tae-Hyun Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan 330-714, Republic of Korea
- Bioresources Regional Innovation Center, Soon Chun Hyang University, Asan 336-745, Republic of Korea
| | - Juhee Choi
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan 330-714, Republic of Korea
| | - Hyung-Gun Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan 330-714, Republic of Korea
- Translational Research Center, Institute of Bio-Science Technology, Dankook University, Cheonan 330-714, Republic of Korea
| | - Hak Rim Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan 330-714, Republic of Korea
- Translational Research Center, Institute of Bio-Science Technology, Dankook University, Cheonan 330-714, Republic of Korea
| |
Collapse
|
28
|
Huang Y, Miao YE, Ji S, Tjiu WW, Liu T. Electrospun carbon nanofibers decorated with Ag-Pt bimetallic nanoparticles for selective detection of dopamine. ACS APPLIED MATERIALS & INTERFACES 2014; 6:12449-12456. [PMID: 25029608 DOI: 10.1021/am502344p] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Electrospun nanoporous carbon nanofibers (pCNFs) decorated with Ag-Pt bimetallic nanoparticles have been successfully synthesized by combining template carbonization and seed-growth reduction approach. Porous-structured polyacrylonitrile (PAN) nanofibers (pPAN) were first prepared by electrospinning PAN/polyvinylpyrrolidone (PVP) blend solution, followed by subsequent water extraction and heat treatment to obtain pCNFs. Ag-Pt/pCNFs were then obtained by using pCNFs as support for bimetallic nanoparticle loading. Thus, the obtained Ag-Pt/pCNFs were used to modify glassy carbon electrode (GCE) for selective detection of dopamine (DA) in the presence of uric acid (UA) and ascorbic acid (AA). This novel sensor exhibits fast amperometric response and high sensitivity toward DA with a wide linear concentration range of 10-500 μM and a low detection limit of 0.11 μM (S/N = 3), wherein the interference of UA and AA can be eliminated effectively.
Collapse
Affiliation(s)
- Yunpeng Huang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai 200433, P. R. China
| | | | | | | | | |
Collapse
|
29
|
Gutierrez F, Comba FN, Gasnier A, Gutierrez A, Galicia L, Parrado C, Rubianes MD, Rivas GA. Graphene Paste Electrode: Analytical Applications for the Quantification of Dopamine, Phenolic Compounds and Ethanol. ELECTROANAL 2014. [DOI: 10.1002/elan.201400247] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
30
|
Guibal P, Lévêque N, Doummar D, Giraud N, Roze E, Rodriguez D, Couderc R, Billette
De Villemeur T, Moussa F. Simultaneous determination of all forms of biopterin and neopterin in cerebrospinal fluid. ACS Chem Neurosci 2014; 5:533-41. [PMID: 24650440 PMCID: PMC4102970 DOI: 10.1021/cn4001928] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 03/16/2014] [Indexed: 11/29/2022] Open
Abstract
In humans, genetic defects of the synthesis or regeneration of tetrahydrobiopterin (BH4), an essential cofactor in hydroxylation reactions, are associated with severe neurological disorders. The diagnosis of these conditions relies on the determination of BH4, dihydrobiopterin (BH2), and dihydroneopterin (NH2) in cerebrospinal fluid (CSF). As MS/MS is less sensitive than fluorescence detection (FD) for this purpose, the most widely used method since 1980 involves two HPLC runs including two differential off-line chemical oxidation procedures aiming to transform the reduced pterins into their fully oxidized fluorescent counterparts, biopterin (B) and neopterin (N). However, this tedious and time-consuming two-step indirect method underestimates BH4, BH2, and NH2 concentrations. Direct quantification of BH4 is essential for studying its metabolism and for monitoring the efficacy of BH4 supplementation in patients with genetic defects. Here we describe a single step method to simultaneously measure BH4, BH2, B, NH2, and N in CSF by HPLC coupled to FD after postcolumn coulometric oxidation. All target pterins were quantified in CSF with a small volume (100 μL), and a single filtration step for sample preparation and analysis. As compared to the most widely used method in more than 100 CSF samples, this new assay is the easiest route for accurately determining in a single run BH4, BH2, and NH2 in CSF in deficit situations as well as for monitoring the efficacy of the treatment.
Collapse
Affiliation(s)
- Pierre Guibal
- LETIAM, GCAPS,
EA 4041, IUT d’Orsay, Université Paris Sud 11, Plateau de Moulon. 91400 Orsay, France
| | - Nathalie Lévêque
- LETIAM, GCAPS,
EA 4041, IUT d’Orsay, Université Paris Sud 11, Plateau de Moulon. 91400 Orsay, France
| | - Diane Doummar
- Services
de Neuropédiatrie
et de Biochimie, Groupe Hospitalier Trousseau − Laroche −
Guyon, 26 avenue du Dr Arnold Netter, 75012 Paris, France
| | - Nicolas Giraud
- UMR CNRS
8182. ICMMO:
RMN en milieu orienté. UFR des Sciences, Université
Paris Sud 11. Rue du Doyen Georges
Poitou. 91400 Orsay, France
| | - Emmanuel Roze
- Department
of Neurology, Pitié-Salpêtrière
Hospital, AP-HP, 75013 Paris, France
- UMR S 952, INSERM,
Paris 6 University, 75005 Paris, France
| | - Diana Rodriguez
- Services
de Neuropédiatrie
et de Biochimie, Groupe Hospitalier Trousseau − Laroche −
Guyon, 26 avenue du Dr Arnold Netter, 75012 Paris, France
| | - Rémy Couderc
- Services
de Neuropédiatrie
et de Biochimie, Groupe Hospitalier Trousseau − Laroche −
Guyon, 26 avenue du Dr Arnold Netter, 75012 Paris, France
| | - Thierry Billette
De Villemeur
- Services
de Neuropédiatrie
et de Biochimie, Groupe Hospitalier Trousseau − Laroche −
Guyon, 26 avenue du Dr Arnold Netter, 75012 Paris, France
| | - Fathi Moussa
- LETIAM, GCAPS,
EA 4041, IUT d’Orsay, Université Paris Sud 11, Plateau de Moulon. 91400 Orsay, France
- Services
de Neuropédiatrie
et de Biochimie, Groupe Hospitalier Trousseau − Laroche −
Guyon, 26 avenue du Dr Arnold Netter, 75012 Paris, France
| |
Collapse
|
31
|
Xue C, Han Q, Wang Y, Wu J, Wen T, Wang R, Hong J, Zhou X, Jiang H. Amperometric detection of dopamine in human serum by electrochemical sensor based on gold nanoparticles doped molecularly imprinted polymers. Biosens Bioelectron 2013; 49:199-203. [PMID: 23747995 DOI: 10.1016/j.bios.2013.04.022] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 04/04/2013] [Accepted: 04/18/2013] [Indexed: 11/30/2022]
Abstract
In this work, a highly sensitive and selective biomimetic electrochemical sensor for the amperometric detection of trace dopamine (DA) in human serums was achieved by gold nanoparticles (AuNPs) doped molecularly imprinted polymers (MIPs). Functionalized AuNPs (F-AuNPs), a novel functional monomer bearing aniline moieties on the surface of the AuNPs, were prepared via a direct synthesis method and then used to fabricate the conductive MIPs film on the modified electrode by electropolymerization method in the presence of DA and p-aminobenzenethiol (p-ATP). The obtained electrochemical sensor based on the conductive film of AuNPs doped MIPs (AuNPs@MIPs) could effectively minimize the interferences caused by ascorbic acid (AA) and uric acid (UA). The linear range for amperometric detection of DA was from 0.02 μmol L(-1) to 0.54 μmol L(-1) with the detection limit of 7.8 nmol L(-1) (S/N=3). Furthermore, the AuNPs@MIPs modified electrode (AuNPs@MIES) was successfully employed to detect trace DA in different human serums.
Collapse
Affiliation(s)
- Cheng Xue
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Lee KS, Lee JK, Kim HG, Kim HR. Differential Effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine on Motor Behavior and Dopamine Levels at Brain Regions in Three Different Mouse Strains. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2013; 17:89-97. [PMID: 23440908 PMCID: PMC3579110 DOI: 10.4196/kjpp.2013.17.1.89] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 12/28/2012] [Accepted: 01/08/2012] [Indexed: 11/15/2022]
Abstract
Developing an animal model for a specific disease is very important in the understanding of the underlying mechanism of the disease and allows testing of newly developed new drugs before human application. However, which of the plethora of experimental animal species to use in model development can be perplexing. Administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a very well known method to induce the symptoms of Parkinson's disease in mice. But, there is very limited information about the different sensitivities to MPTP among mouse strains. Here, we tested three different mouse strains (C57BL/6, Balb-C, and ICR) as a Parkinsonian model by repeated MPTP injections. In addition to behavioral analysis, endogenous levels of dopamine and tetrahydrobiopterin in mice brain regions, such as striatum, substantia nigra, and hippocampus were directly quantified by liquid chromatography-tandem mass spectrometry. Repeated administrations of MPTP significantly affected the moving distances and rearing frequencies in all three mouse strains. The endogenous dopamine concentrations and expression levels of tyrosine hydroxylase were significantly decreased after the repeated injections, but tetrahydrobiopterin did not change in analyzed brain regions. However, susceptibilities of the mice to MPTP were differed based on the degree of behavioral change, dopamine concentration in brain regions, and expression levels of tyrosine hydroxylase, with C57BL/6 and Balb-C mice being more sensitive to the dopaminergic neuronal toxicity of MPTP than ICR mice.
Collapse
Affiliation(s)
- Keun-Sung Lee
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan 330-714, Korea
| | | | | | | |
Collapse
|
33
|
Fismen L, Eide T, Djurhuus R, Svardal AM. Simultaneous quantification of tetrahydrobiopterin, dihydrobiopterin, and biopterin by liquid chromatography coupled electrospray tandem mass spectrometry. Anal Biochem 2012; 430:163-70. [PMID: 22940649 DOI: 10.1016/j.ab.2012.08.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 07/05/2012] [Accepted: 08/20/2012] [Indexed: 11/27/2022]
Abstract
A simple and rapid liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based method was developed for the quantification of tetrahydrobiopterin (BH4), dihydrobiopterin (BH2), and biopterin (B) in human umbilical vein endothelial cells (HUVECs). Freshly prepared cell samples were treated with a mixture consisting of 0.2M trichloroacetic acid (TCA) and a cocktail of various antioxidants in order to precipitate proteins and other cellular components and to stabilize red/ox conditions in the lysates. Chromatography of the cell lysates was performed on a Poroshell 120 SB-C18 column (2.7μm, 150×2.1mm) using a stepwise gradient elution made from two mobile phases. Quantification was performed on a triple quadrupole mass spectrometer employing electrospray ionization with the operating conditions as multiple reaction monitoring (MRM) at positive ion mode. Total chromatographic run time was 23min. The method was validated for analysis in HUVECs, and the limits of quantification were 1nM for BH4 and BH2 and 2.5nM for B. Standard curves were linear in the concentration ranges of 1 to 100nM for BH4 and BH2 and 2.5 to 100nM for B. The current study reports a novel method for the simultaneous and direct quantification of BH4, BH2, and B in a single injection.
Collapse
Affiliation(s)
- Lise Fismen
- Norwegian Underwater Intervention (NUI), 5848 Bergen, Norway.
| | | | | | | |
Collapse
|