1
|
Marzi I, Pieraccini G, Bemporad F, Chiti F. Detection of an Intermediate in the Unfolding Process of the N-Terminal Domain of TDP-43. ACS OMEGA 2025; 10:5616-5633. [PMID: 39989811 PMCID: PMC11840787 DOI: 10.1021/acsomega.4c08617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 02/25/2025]
Abstract
TAR DNA-binding protein 43 (TDP-43) is a nuclear protein accumulating in intraneuronal cytoplasmic inclusions associated with amyotrophic lateral sclerosis, frontotemporal lobar degeneration with tau-negative/ubiquitin-positive inclusions, and limbic-predominant age-related TDP-43 encephalopathy. Oligomerization of full-length TDP-43, driven by its N-terminal domain (NTD), is essential for its function, but aberrant self-assembly also promotes liquid-liquid phase separation and formation of solid inclusions. Building on recent all-atom molecular dynamics simulations and using various biophysical approaches, we identified a partially unfolded state accumulating during unfolding of TDP-43 NTD, before the major energy barrier of unfolding is crossed. Intrinsic fluorescence spectroscopy coupled to a stopped-flow device at high urea concentration reveals that the intermediate state has a fluorescence emission distinct from those of the native and unfolded states and forms within the 14 ms dead time. Conventional fluorescence spectroscopy shows it still accumulates at moderate urea concentration. Circular dichroism and H/D exchange results show a species with an intermediate content of secondary structure and a distorted β-sheet, whereas SYPRO orange fluorescence indicates an open conformation with more exposed hydrophobic regions compared to the native state. Importantly, this intermediate is observed even at low protein concentration, when TDP-43 NTD is largely monomeric, indicating that its formation is independent of the initial TDP-43 NTD oligomeric state. Dynamic light scattering at high protein concentration shows that the intermediate is a partially folded dimer. The intermediate forms upon chemical denaturation and does not occur under thermal unfolding. Overall, the findings highlight the presence of one more partially folded state for TDP-43 NTD, underlining its high structural plasticity and suggesting that its distinct unfolding pathway may play a critical role in both its functional and pathological behaviors.
Collapse
Affiliation(s)
- Isabella Marzi
- Department
of Experimental and Clinical Biomedical Sciences “Mario Serio”,
Section of Biochemistry, University of Florence, Viale Morgagni 50, Florence 50134, Italy
| | - Giuseppe Pieraccini
- CISM-Mass
Spectrometry Centre, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, Florence 50019, Italy
| | - Francesco Bemporad
- Department
of Experimental and Clinical Biomedical Sciences “Mario Serio”,
Section of Biochemistry, University of Florence, Viale Morgagni 50, Florence 50134, Italy
| | - Fabrizio Chiti
- Department
of Experimental and Clinical Biomedical Sciences “Mario Serio”,
Section of Biochemistry, University of Florence, Viale Morgagni 50, Florence 50134, Italy
| |
Collapse
|
2
|
Pietrangeli P, Marcocci L, Pennacchietti V, Diop A, Di Felice M, Pagano L, Malagrinò F, Toto A, Brunori M, Gianni S. The Mechanism of Folding of Human Frataxin in Comparison to the Yeast Homologue - Broad Energy Barriers and the General Properties of the Transition State. J Mol Biol 2024; 436:168555. [PMID: 38552947 DOI: 10.1016/j.jmb.2024.168555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024]
Abstract
The funneled energy landscape theory suggests that the folding pathway of homologous proteins should converge at the late stages of folding. In this respect, proteins displaying a broad energy landscape for folding are particularly instructive, allowing inferring both the early, intermediate and late stages of folding. In this paper we explore the folding mechanisms of human frataxin, an essential mitochondrial protein linked to the neurodegenerative disorder Friedreich's ataxia. Building upon previous studies on the yeast homologue, the folding pathway of human frataxin is thoroughly examined, revealing a mechanism implying the presence of a broad energy barrier, reminiscent of the yeast counterpart. Through an extensive site-directed mutagenesis, we employed a Φ -value analysis to map native-like contacts in the folding transition state. The presence of a broad energy barrier facilitated the exploration of such contacts in both early and late folding events. We compared results from yeast and human frataxin providing insights into the impact of native topology on the folding mechanism and elucidating the properties of the underlying free energy landscape. The findings are discussed in the context of the funneled energy landscape theory of protein folding.
Collapse
Affiliation(s)
- Paola Pietrangeli
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, 00185 Rome, Italy
| | - Lucia Marcocci
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, 00185 Rome, Italy
| | - Valeria Pennacchietti
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, 00185 Rome, Italy
| | - Awa Diop
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, 00185 Rome, Italy
| | - Mariana Di Felice
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, 00185 Rome, Italy
| | - Livia Pagano
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, 00185 Rome, Italy
| | - Francesca Malagrinò
- Dipartimento di Medicina Clinica, Sanità Pubblica, Scienze Della Vita e Dell'ambiente, Università dell'Aquila, Piazzale Salvatore Tommasi 1, 67010 L'Aquila - Coppito, Italy
| | - Angelo Toto
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, 00185 Rome, Italy
| | - Maurizio Brunori
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, 00185 Rome, Italy
| | - Stefano Gianni
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, 00185 Rome, Italy.
| |
Collapse
|
3
|
Gautier C, Gianni S. A short structural extension dictates the early stages of folding of a PDZ domain. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140852. [PMID: 36055518 DOI: 10.1016/j.bbapap.2022.140852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/16/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
PDZ domains are highly abundant protein-protein interaction modules in human. One of the most extensively characterized PDZ domain, the third PDZ domain from PSD-95 (PDZ3), contains an α-helical C-terminal extension that has a key role in the function of the domain. Here we compared the folding of PDZ3 with a truncated variant (PDZ3Δα3), lacking the additional helix, by means of the so-called Φ-value analysis, an experimental technique that allows inferring the structure of folding transition states. Experiments reveal subtle but detectable differences in the folding of PDZ3Δα3 versus PDZ3, as probed by structural characterization of the folding transition states. These differences appear more remarkable in the early stages of folding, with a detectable shift of the folding nucleus. The presented results allow demonstrating that the native state exerts a weak bias at the early stages of folding, which appear to be characterized by alternative pathways.
Collapse
Affiliation(s)
- Candice Gautier
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy
| | - Stefano Gianni
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy.
| |
Collapse
|
4
|
Malagrinò F, Fusco G, Pennacchietti V, Toto A, Nardella C, Pagano L, de Simone A, Gianni S. Cryptic binding properties of a transient folding intermediate in a PDZ tandem repeat. Protein Sci 2022; 31:e4396. [PMID: 36040267 PMCID: PMC9375522 DOI: 10.1002/pro.4396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/10/2022] [Accepted: 07/01/2022] [Indexed: 12/17/2022]
Abstract
PDZ domains are the most diffused protein-protein interaction modules of the human proteome and are often present in tandem repeats. An example is PDZD2, a protein characterized by the presence of six PDZ domains that undergoes a proteolytic cleavage producing sPDZD2, comprising a tandem of two PDZ domains, namely PDZ5 and PDZ6. Albeit the physiopathological importance of sPDZD2 is well-established, the interaction with endogenous ligands has been poorly characterized. To understand the determinants of the stability and function of sPDZD2, we investigated its folding pathway. Our data highlights the presence of a complex scenario involving a transiently populated folding intermediate that may be accumulated from the concurrent denaturation of both PDZ5 and PDZ6 domains. Importantly, double jump kinetic experiments allowed us to pinpoint the ability of this transient intermediate to bind the physiological ligand of sPDZD2 with increased affinity compared to the native state. In summary, our results provide an interesting example of a functionally competent misfolded intermediate, which may exert a cryptic function that is not captured from the analysis of the native state only.
Collapse
Affiliation(s)
- Francesca Malagrinò
- Istituto Pasteur – Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche “A. Rossi Fanelli” and Istituto di Biologia e Patologia Molecolari del CNRSapienza Università di RomaRomeItaly
| | - Giuliana Fusco
- Centre for Misfolding Diseases, Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeUK
| | - Valeria Pennacchietti
- Istituto Pasteur – Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche “A. Rossi Fanelli” and Istituto di Biologia e Patologia Molecolari del CNRSapienza Università di RomaRomeItaly
| | - Angelo Toto
- Istituto Pasteur – Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche “A. Rossi Fanelli” and Istituto di Biologia e Patologia Molecolari del CNRSapienza Università di RomaRomeItaly
| | - Caterina Nardella
- Istituto Pasteur – Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche “A. Rossi Fanelli” and Istituto di Biologia e Patologia Molecolari del CNRSapienza Università di RomaRomeItaly
| | - Livia Pagano
- Istituto Pasteur – Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche “A. Rossi Fanelli” and Istituto di Biologia e Patologia Molecolari del CNRSapienza Università di RomaRomeItaly
| | - Alfonso de Simone
- Dipartimento di FarmaciaUniversità degli Studi di Napoli Federico IINaplesItaly
| | - Stefano Gianni
- Dipartimento di FarmaciaUniversità degli Studi di Napoli Federico IINaplesItaly
| |
Collapse
|
5
|
Gautier C, Gianni S. Unveiling the Folding Mechanism of PDZ Domains. Methods Mol Biol 2021; 2256:149-156. [PMID: 34014521 DOI: 10.1007/978-1-0716-1166-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Understanding the mechanism of folding of single domain proteins demands a complete characterization of their equilibrium and kinetic properties. By using a well-studied class of protein domain, the PDZ domain, here we exemplify the typical procedure to address this problem.
Collapse
Affiliation(s)
- Candice Gautier
- Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Rome, Italy
| | - Stefano Gianni
- Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Rome, Italy.
| |
Collapse
|
6
|
Hidden kinetic traps in multidomain folding highlight the presence of a misfolded but functionally competent intermediate. Proc Natl Acad Sci U S A 2020; 117:19963-19969. [PMID: 32747559 PMCID: PMC7443948 DOI: 10.1073/pnas.2004138117] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Much of our current knowledge on protein folding is based on work focused on isolated domains. In this study, using a combination of NMR and kinetic experiments, we depict the folding pathway of a multidomain construct comprising two PDZ domains in tandem, belonging to the protein Whirlin. We demonstrate the presence of a misfolded intermediate that competes with productive folding. Interestingly, we show that, unexpectedly, this misfolded state retains the native-like functional ability to bind its physiological ligand, representing a clear example of a functionally competent misfolded state. On the basis of these results and a comparative analysis of the amino acidic sequences of Whirlin from different species, we propose a possible physiological role of the misfolded intermediate. Although more than 75% of the proteome is composed of multidomain proteins, current knowledge of protein folding is based primarily on studies of isolated domains. In this work, we describe the folding mechanism of a multidomain tandem construct comprising two distinct covalently bound PDZ domains belonging to a protein called Whirlin, a scaffolding protein of the hearing apparatus. In particular, via a synergy between NMR and kinetic experiments, we demonstrate the presence of a misfolded intermediate that competes with productive folding. In agreement with the view that tandem domain swapping is a potential source of transient misfolding, we demonstrate that such a kinetic trap retains native-like functional activity, as shown by the preserved ability to bind its physiological ligand. Thus, despite the general knowledge that protein misfolding is intimately associated with dysfunction and diseases, we provide a direct example of a functionally competent misfolded state. Remarkably, a bioinformatics analysis of the amino acidic sequence of Whirlin from different species suggests that the tendency to perform tandem domain swapping between PDZ1 and PDZ2 is highly conserved, as demonstrated by their unexpectedly high sequence identity. On the basis of these observations, we discuss on a possible physiological role of such misfolded intermediate.
Collapse
|
7
|
The Conformational Plasticity Vista of PDZ Domains. Life (Basel) 2020; 10:life10080123. [PMID: 32726937 PMCID: PMC7460260 DOI: 10.3390/life10080123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/19/2020] [Accepted: 07/25/2020] [Indexed: 02/01/2023] Open
Abstract
The PDZ domain (PSD95-Discs large-ZO1) is a widespread modular domain present in the living organisms. A prevalent function in the PDZ family is to serve as scaffolding and adaptor proteins connecting multiple partners in signaling pathways. An explanation of the flexible functionality in this domain family, based just on a static perspective of the structure-activity relationship, might fall short. More dynamic and conformational aspects in the protein fold can be the reasons for such functionality. Folding studies indeed showed an ample and malleable folding landscape for PDZ domains where multiple intermediate states were experimentally detected. Allosteric phenomena that resemble energetic coupling between residues have also been found in PDZ domains. Additionally, several PDZ domains are modulated by post-translational modifications, which introduce conformational switches that affect binding. Altogether, the ability to connect diverse partners might arise from the intrinsic plasticity of the PDZ fold.
Collapse
|
8
|
Addressing the role of the α-helical extension in the folding of the third PDZ domain from PSD-95. Sci Rep 2017; 7:12593. [PMID: 28974728 PMCID: PMC5626748 DOI: 10.1038/s41598-017-12827-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/14/2017] [Indexed: 01/22/2023] Open
Abstract
PDZ domains are one of the most important protein-protein interaction domains in human. While presenting a conserved three dimensional structure, a substantial number of PDZ domains display structural extensions suggested to be involved in their folding and binding mechanisms. The C-terminal α-helix extension (α3) of the third PDZ domain from PSD-95 (PDZ3) has been reported to have a role in function of the domain as well as in the stabilization of the native fold. Here we report an evaluation of the effect of the truncation of this additional helix on the folding and unfolding kinetics of PDZ3. Fluorescent variants of full length and truncated PDZ3 were produced and stopped-flow fluorescence measurements were made under different experimental conditions (pH, ionic strength and temperature) to investigate the folding kinetics of the respective variant. The results show that folding of PDZ3 is robust and that the mechanism is only marginally affected by the truncation, which contributes to a destabilization of the native state, but otherwise do not change the overall observed kinetics. Furthermore, the increase in the unfolding rate constants, but not the folding rate constant upon deletion of α3 suggests that the α-helical extension is largely unstructured in the folding transition state.
Collapse
|
9
|
Murciano-Calles J, Güell-Bosch J, Villegas S, Martinez JC. Common features in the unfolding and misfolding of PDZ domains and beyond: the modulatory effect of domain swapping and extra-elements. Sci Rep 2016; 6:19242. [PMID: 26754462 PMCID: PMC4709687 DOI: 10.1038/srep19242] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/08/2015] [Indexed: 01/31/2023] Open
Abstract
PDZ domains are protein-protein interaction modules sharing the same structural arrangement. To discern whether they display common features in their unfolding/misfolding behaviour we have analyzed in this work the unfolding thermodynamics, together with the misfolding kinetics, of the PDZ fold using three archetypical examples: the second and third PDZ domains of the PSD95 protein and the Erbin PDZ domain. Results showed that all domains passed through a common intermediate, which populated upon unfolding, and that this in turn drove the misfolding towards worm-like fibrillar structures. Thus, the unfolding/misfolding behaviour appears to be shared within these domains. We have also analyzed how this landscape can be modified upon the inclusion of extra-elements, as it is in the nNOS PDZ domain, or the organization of swapped species, as happens in the second PDZ domain of the ZO2 protein. Although the intermediates still formed upon thermal unfolding, the misfolding was prevented to varying degrees.
Collapse
Affiliation(s)
- Javier Murciano-Calles
- Departmento de Química Física e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, 18071, Granada, Spain
| | - Jofre Güell-Bosch
- Department de Bioquímica I Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra 08193, Barcelona, Spain
| | - Sandra Villegas
- Department de Bioquímica I Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra 08193, Barcelona, Spain
| | - Jose C Martinez
- Departmento de Química Física e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, 18071, Granada, Spain
| |
Collapse
|
10
|
Di Silvio E, Toto A, Bonetti D, Morrone A, Gianni S. Understanding the effect of alternative splicing in the folding and function of the second PDZ from protein tyrosine phosphatase-BL. Sci Rep 2015; 5:9299. [PMID: 25788329 PMCID: PMC4365404 DOI: 10.1038/srep09299] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 02/26/2015] [Indexed: 11/10/2022] Open
Abstract
PDZ domains are the most prominent biological structural domains involved in protein-protein interactions in the human cell. The second PDZ domain of the protein tyrosine phosphatase BL (PDZ2) interacts and binds the C-termini of the tumour suppressor protein APC and of the LIM domain-containing protein RIL. One isoform of PDZ2 (PDZ2as) involves an alternative spliced form that exhibits an insertion of 5 residues in a loop. PDZ2as abrogates binding to its partners, even if the insertion is directly located in its binding pocket. Here, we investigate the folding and function of PDZ2as, in comparison to the previously characterized PDZ2 domain. Data reveal that, whilst the thermodynamic stability of PDZ2as appears as nearly identical to that of PDZ2, the insertion of 5 amino acids induces formation of some weak transient non-native interactions in the folding transition state, as mirrored by a concomitant increase of both the folding and unfolding rate constants. From a functional perspective, we show that the decrease in affinity is caused by a pronounced decrease of the association rate constants (by nearly ten fold), with no effect on the microscopic dissociation rate constants. The results are briefly discussed in the context of previous work on PDZ domains.
Collapse
Affiliation(s)
- Eva Di Silvio
- Istituto Pasteur - Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, P.le A. Moro 5, 00185, Rome, Italy
| | - Angelo Toto
- Istituto Pasteur - Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, P.le A. Moro 5, 00185, Rome, Italy
| | - Daniela Bonetti
- Istituto Pasteur - Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, P.le A. Moro 5, 00185, Rome, Italy
| | - Angela Morrone
- Istituto Pasteur - Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, P.le A. Moro 5, 00185, Rome, Italy
| | - Stefano Gianni
- 1] Istituto Pasteur - Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, P.le A. Moro 5, 00185, Rome, Italy [2] Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
11
|
Pedersen SW, Hultqvist G, Strømgaard K, Jemth P. The role of backbone hydrogen bonds in the transition state for protein folding of a PDZ domain. PLoS One 2014; 9:e95619. [PMID: 24748272 PMCID: PMC3991670 DOI: 10.1371/journal.pone.0095619] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 03/27/2014] [Indexed: 12/24/2022] Open
Abstract
Backbone hydrogen bonds are important for the structure and stability of proteins. However, since conventional site-directed mutagenesis cannot be applied to perturb the backbone, the contribution of these hydrogen bonds in protein folding and stability has been assessed only for a very limited set of small proteins. We have here investigated effects of five amide-to-ester mutations in the backbone of a PDZ domain, a 90-residue globular protein domain, to probe the influence of hydrogen bonds in a β-sheet for folding and stability. The amide-to-ester mutation removes NH-mediated hydrogen bonds and destabilizes hydrogen bonds formed by the carbonyl oxygen. The overall stability of the PDZ domain generally decreased for all amide-to-ester mutants due to an increase in the unfolding rate constant. For this particular region of the PDZ domain, it is therefore clear that native hydrogen bonds are formed after crossing of the rate-limiting barrier for folding. Moreover, three of the five amide-to-ester mutants displayed an increase in the folding rate constant suggesting that the hydrogen bonds are involved in non-native interactions in the transition state for folding.
Collapse
Affiliation(s)
- Søren W. Pedersen
- Department of Medical Biochemistry and Microbiology, Uppsala University, Biomedical Center, Uppsala, Sweden
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Greta Hultqvist
- Department of Medical Biochemistry and Microbiology, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - Kristian Strømgaard
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- * E-mail: (KS); (PJ)
| | - Per Jemth
- Department of Medical Biochemistry and Microbiology, Uppsala University, Biomedical Center, Uppsala, Sweden
- * E-mail: (KS); (PJ)
| |
Collapse
|
12
|
Ascenzi P, Gianni S. Functional role of transient conformations: Rediscovering “chronosteric effects” thirty years later. IUBMB Life 2013; 65:836-44. [DOI: 10.1002/iub.1208] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 07/22/2013] [Accepted: 08/19/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Paolo Ascenzi
- Interdepartmental Laboratory for Electron Microscopy; University Roma Tre; I-00146 Roma Italy
| | - Stefano Gianni
- Department of Biochemical Sciences “Alessandro Rossi Fanelli,”; La Sapienza University; I-00185 Roma Italy
- Department of Chemistry; University of Cambridge; Lensfield Road, Cambridge CB2 1EW United Kingdom
| |
Collapse
|