1
|
Wang B, Luo Y, Zhong B, Xu H, Wang F, Li W, Lin M, Chen J, Chen L, Liang M, Dai X. The abscisic acid signaling negative regulator OsPP2C68 confers drought and salinity tolerance to rice. Sci Rep 2025; 15:6730. [PMID: 40000770 PMCID: PMC11861290 DOI: 10.1038/s41598-025-91226-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/19/2025] [Indexed: 02/27/2025] Open
Abstract
Clade A type 2 C protein phosphatases (PP2CAs) are core regulatory factors in the plant abscisic acid (ABA) signaling pathway. They play crucial roles in response to abiotic stress. However, a comprehensive understanding of the functions of individual members of rice PP2CA gene families remains limited. This study investigates the role of OsPP2C68 in response to abiotic stress. Our findings indicated that the OsPP2C68 is highly expressed in the embryo and endosperm, and is subcellular localized in the nucleus. OsPP2C68 knockout mutants reduced seed germination and root and stem lengths under ABA treatment. The mutants also exhibited higher stomatal closure rates, indicating increased sensitivity to ABA. In addition, the OsPP2C68 knockout mutants exhibited altered synthesis of osmolytes and antioxidant enzymes under drought and high salinity stress, along with the differential expression of genes associated with drought and salt stress responses, enhancing rice tolerance to drought and salt. These results collectively identify OsPP2C68 as a negative regulator in the rice ABA signaling pathway. It is responsive to drought and salt stress, and involved in regulating stomatal movement.
Collapse
Affiliation(s)
- Beilei Wang
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yuping Luo
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Binxia Zhong
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Han Xu
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Fengping Wang
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Wen Li
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Meiqi Lin
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Juan Chen
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Liangbi Chen
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Manzhong Liang
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| | - Xiaojun Dai
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
2
|
Zhou W, Wang ZG, Li Y, Wu GJ, Li M, Deng ZL, Cui FJ, Xu QQ, Li Y, Zhou YX. Comparative transcriptome and metabolome analysis reveals the differential response to salinity stress of two genotypes brewing sorghum. Sci Rep 2025; 15:3365. [PMID: 39870699 PMCID: PMC11772761 DOI: 10.1038/s41598-025-87100-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/16/2025] [Indexed: 01/29/2025] Open
Abstract
Salinity tolerance in brewing sorghum is a very important trait, especially in areas that are affected by soil salinity. In order to elucidate the mechanism underlying salt tolerance, we conducted a comparative analysis of the transcriptome and metabolome in two distinct sweet sorghum genotypes, namely the salt-tolerant line NY1298 and the salt-sensitive line MY1176, following exposure to salt treatment. Our initial findings indicate the presence of genotype-specific responses in brewing sorghum under salt stress conditions. Notably, there were variations in the expression of genes and metabolites among different genotypes in response to high-salt stress. Specifically, certain transcription factors belonging to the WRKY, MYB, and NAC families were identified as being involved in the response to increased external salinity. WGCNA analysis identified stage-specific gene expression for different salinity gradients in each cultivar, and explored the gene function by KEGG enrichment analysis. Combined analysis of DEGs and DEMs in hormone synthesis found AUX/IAA, SAUR, CRE1, A-ARR, PP2C, SNRK2 genes, and 3-indoleacetic acid and jasmonic acid were evidently differential expression among different salt concentrations. Taken together, our study carried out a comprehensive overview of two genotypes of brewing sorghum gene and metabolite expression differences in response to salt stress, and expanded the understanding of responsive mechanism of brewing sorghum to salt stress.
Collapse
Affiliation(s)
- Wei Zhou
- Agricultural College of Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia, China
| | - Zhen Guo Wang
- Tongliao Agriculture and Animal Husbandry Research Institute, Tongliao, 028000, Inner Mongolia, China
| | - Yan Li
- Tongliao Agriculture and Animal Husbandry Research Institute, Tongliao, 028000, Inner Mongolia, China
| | - Guo Jiang Wu
- Agricultural College of Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia, China
| | - Mo Li
- Tongliao Agriculture and Animal Husbandry Research Institute, Tongliao, 028000, Inner Mongolia, China
| | - Zhi Lan Deng
- Tongliao Agriculture and Animal Husbandry Research Institute, Tongliao, 028000, Inner Mongolia, China
| | - Feng Juan Cui
- Tongliao Agriculture and Animal Husbandry Research Institute, Tongliao, 028000, Inner Mongolia, China
| | - Qing Quan Xu
- Tongliao Agriculture and Animal Husbandry Research Institute, Tongliao, 028000, Inner Mongolia, China
| | - YiMeng Li
- Agricultural College of Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia, China
| | - Ya Xing Zhou
- Agricultural College of Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia, China.
- Agricultural College, Inner Mongolia Minzu University, Inner Mongolia Autonomous Region, No. 996 Xilamulun Street, Kerqin District, Tongliao, 028000, P.R. China.
| |
Collapse
|
3
|
Zhang S, Wang G, Yu W, Wei L, Gao C, Li D, Guo L, Yang J, Jian S, Liu N. Multi-omics analyses reveal the mechanisms underlying the responses of Casuarina equisetifolia ssp. incana to seawater atomization and encroachment stress. BMC PLANT BIOLOGY 2024; 24:854. [PMID: 39266948 PMCID: PMC11391710 DOI: 10.1186/s12870-024-05561-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024]
Abstract
Casuarina equisetifolia trees are used as windbreaks in subtropical and tropical coastal zones, while C. equisetifolia windbreak forests can be degraded by seawater atomization (SA) and seawater encroachment (SE). To investigate the mechanisms underlying the response of C. equisetifolia to SA and SE stress, the transcriptome and metabolome of C. equisetifolia seedlings treated with control, SA, and SE treatments were analyzed. We identified 737, 3232, 3138, and 3899 differentially expressed genes (SA and SE for 2 and 24 h), and 46, 66, 62, and 65 differentially accumulated metabolites (SA and SE for 12 and 24 h). The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that SA and SE stress significantly altered the expression of genes related to plant hormone signal transduction, plant-pathogen interaction, and starch and sucrose metabolism pathways. The accumulation of metabolites associated with the biosynthetic pathways of phenylpropanoid and amino acids, as well as starch and sucrose metabolism, and glycolysis/gluconeogenesis were significantly altered in C. equisetifolia subjected to SA and SE stress. In conclusion, C. equisetifolia responds to SA and SE stress by regulating plant hormone signal transduction, plant-pathogen interaction, biosynthesis of phenylpropanoid and amino acids, starch and sucrose metabolism, and glycolysis/gluconeogenesis pathways. Compared with SA stress, C. equisetifolia had a stronger perception and response to SE stress, which required more genes and metabolites to be regulated. This study enhances our understandings of how C. equisetifolia responds to two types of seawater stresses at transcriptional and metabolic levels. It also offers a theoretical framework for effective coastal vegetation management in tropical and subtropical regions.
Collapse
Affiliation(s)
- Shike Zhang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Institute of Geographical Sciences, Henan Academy of Sciences, Zhengzhou, 450052, China
| | - Guobing Wang
- Institute of Geographical Sciences, Henan Academy of Sciences, Zhengzhou, 450052, China
| | - Weiwei Yu
- Institute of Geographical Sciences, Henan Academy of Sciences, Zhengzhou, 450052, China
| | - Long Wei
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Coastal Shelterbelt Ecosystem National Observation and Research Station, Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Chao Gao
- Institute of Geographical Sciences, Henan Academy of Sciences, Zhengzhou, 450052, China
| | - Di Li
- Institute of Geographical Sciences, Henan Academy of Sciences, Zhengzhou, 450052, China
| | - Lili Guo
- Institute of Geographical Sciences, Henan Academy of Sciences, Zhengzhou, 450052, China
| | - Jianbo Yang
- Institute of Geographical Sciences, Henan Academy of Sciences, Zhengzhou, 450052, China
| | - Shuguang Jian
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| | - Nan Liu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
4
|
Shen Y, Zou J, Zhang Q, Luo P, Shang W, Sun T, Shi L, Wang Z, Li Y. Identification of PP2Cs in six rosaceae species highlights RcPP2C24 as a negative regulator in rose drought tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108782. [PMID: 38850728 DOI: 10.1016/j.plaphy.2024.108782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/29/2024] [Accepted: 05/28/2024] [Indexed: 06/10/2024]
Abstract
Drought is a major environmental stress that limits plant growth, so it's important to identify drought-responsive genes to understand the mechanism of drought response and breed drought-tolerant roses. Protein phosphatase 2C (PP2C) plays a crucial role in plant abiotic stress response. In this study, we identified 412 putative PP2Cs from six Rosaceae species. These genes were divided into twelve clades, with clade A containing the largest number of PP2Cs (14.1%). Clade A PP2Cs are known for their important role in ABA-mediated drought stress response; therefore, the analysis focused on these specific genes. Conserved motif analysis revealed that clade A PP2Cs in these six Rosaceae species shared conserved C-terminal catalytic domains. Collinearity analysis indicated that segmental duplication events played a significant role in the evolution of clade A PP2Cs in Rosaceae. Analysis of the expression of 11 clade A RcPP2Cs showed that approximately 60% of these genes responded to drought, high temperature, and salt stress. Among them, RcPP2C24 exhibited the highest responsiveness to both drought and ABA. Furthermore, overexpression of RcPP2C24 significantly reduced drought tolerance in transgenic tobacco by increasing stomatal aperture after exposure to drought stress. The transient overexpression of RcPP2C24 weakened the dehydration tolerance of rose petal discs, while its silencing increased their dehydration tolerance. In summary, our study identified PP2Cs in six Rosaceae species and highlighted the negative role of RcPP2C24 on rose's drought tolerance by inhibiting stomatal closure. Our findings provide valuable insights into understanding the mechanism behind rose's response to drought.
Collapse
Affiliation(s)
- Yuxiao Shen
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Jinyu Zou
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Qian Zhang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Ping Luo
- College of Horticulture Science, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Zhejiang Moutainous, Zhejiang A & F University, Hangzhou 311300, China
| | - Wenqian Shang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Tianxiao Sun
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Liyun Shi
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China.
| | - Zheng Wang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China.
| | - Yonghua Li
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
5
|
Daldoul S, Hanzouli F, Boubakri H, Nick P, Mliki A, Gargouri M. Deciphering the regulatory networks involved in mild and severe salt stress responses in the roots of wild grapevine Vitis vinifera spp. sylvestris. PROTOPLASMA 2024; 261:447-462. [PMID: 37963978 DOI: 10.1007/s00709-023-01908-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/06/2023] [Indexed: 11/16/2023]
Abstract
Transcriptional regulatory networks are pivotal components of plant's response to salt stress. However, plant adaptation strategies varied as a function of stress intensity, which is mainly modulated by climate change. Here, we determined the gene regulatory networks based on transcription factor (TF) TF_gene co-expression, using two transcriptomic data sets generated from the salt-tolerant "Tebaba" roots either treated with 50 mM NaCl (mild stress) or 150 mM NaCl (severe stress). The analysis of these regulatory networks identified specific TFs as key regulatory hubs as evidenced by their multiple interactions with different target genes related to stress response. Indeed, under mild stress, NAC and bHLH TFs were identified as central hubs regulating nitrogen storage process. Moreover, HSF TFs were revealed as a regulatory hub regulating various aspects of cellular metabolism including flavonoid biosynthesis, protein processing, phenylpropanoid metabolism, galactose metabolism, and heat shock proteins. These processes are essentially linked to short-term acclimatization under mild salt stress. This was further consolidated by the protein-protein interaction (PPI) network analysis showing structural and plant growth adjustment. Conversely, under severe salt stress, dramatic metabolic changes were observed leading to novel TF members including MYB family as regulatory hubs controlling isoflavonoid biosynthesis, oxidative stress response, abscisic acid signaling pathway, and proteolysis. The PPI network analysis also revealed deeper stress defense changes aiming to restore plant metabolic homeostasis when facing severe salt stress. Overall, both the gene co-expression and PPI network provided valuable insights on key transcription factor hubs that can be employed as candidates for future genetic crop engineering programs.
Collapse
Affiliation(s)
- Samia Daldoul
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cedria, BP. 901, Hammam-Lif, Tunisia.
| | - Faouzia Hanzouli
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cedria, BP. 901, Hammam-Lif, Tunisia
- Faculty of Sciences of Tunis, University Tunis El-Manar, El Manar II, 2092, Tunis, Tunisia
| | - Hatem Boubakri
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj-Cedria, B.P 901, 2050, Hammam-Lif, Tunisia
| | - Peter Nick
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Ahmed Mliki
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cedria, BP. 901, Hammam-Lif, Tunisia
| | - Mahmoud Gargouri
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cedria, BP. 901, Hammam-Lif, Tunisia.
| |
Collapse
|
6
|
Akter N, Islam MSU, Rahman MS, Zohra FT, Rahman SM, Manirujjaman M, Sarkar MAR. Genome-wide identification and characterization of protein phosphatase 2C (PP2C) gene family in sunflower (Helianthus annuus L.) and their expression profiles in response to multiple abiotic stresses. PLoS One 2024; 19:e0298543. [PMID: 38507444 PMCID: PMC10954154 DOI: 10.1371/journal.pone.0298543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 01/25/2024] [Indexed: 03/22/2024] Open
Abstract
Plant protein phosphatase 2C (PP2C) plays vital roles in responding to various stresses, stimulating growth factors, phytohormones, and metabolic activities in many important plant species. However, the PP2C gene family has not been investigated in the economically valuable plant species sunflower (Helianthus annuus L.). This study used comprehensive bioinformatics tools to identify and characterize the PP2C gene family members in the sunflower genome (H. annuus r1.2). Additionally, we analyzed the expression profiles of these genes using RNA-seq data under four different stress conditions in both leaf and root tissues. A total of 121 PP2C genes were identified in the sunflower genome distributed unevenly across the 17 chromosomes, all containing the Type-2C phosphatase domain. HanPP2C genes are divided into 15 subgroups (A-L) based on phylogenetic tree analysis. Analyses of conserved domains, gene structures, and motifs revealed higher structural and functional similarities within various subgroups. Gene duplication and collinearity analysis showed that among the 53 HanPP2C gene pairs, 48 demonstrated segmental duplications under strong purifying selection pressure, with only five gene pairs showing tandem duplications. The abundant segmental duplication was observed compared to tandem duplication, which was the major factor underlying the dispersion of the PP2C gene family in sunflowers. Most HanPP2C proteins were localized in the nucleus, cytoplasm, and chloroplast. Among the 121 HanPP2C genes, we identified 71 miRNAs targeting 86 HanPP2C genes involved in plant developmental processes and response to abiotic stresses. By analyzing cis-elements, we identified 63 cis-regulatory elements in the promoter regions of HanPP2C genes associated with light responsiveness, tissue-specificity, phytohormone, and stress responses. Based on RNA-seq data from two sunflower tissues (leaf and root), 47 HanPP2C genes exhibited varying expression levels in leaf tissue, while 49 HanPP2C genes showed differential expression patterns in root tissue across all stress conditions. Transcriptome profiling revealed that nine HanPP2C genes (HanPP2C12, HanPP2C36, HanPP2C38, HanPP2C47, HanPP2C48, HanPP2C53, HanPP2C54, HanPP2C59, and HanPP2C73) exhibited higher expression in leaf tissue, and five HanPP2C genes (HanPP2C13, HanPP2C47, HanPP2C48, HanPP2C54, and HanPP2C95) showed enhanced expression in root tissue in response to the four stress treatments, compared to the control conditions. These results suggest that these HanPP2C genes may be potential candidates for conferring tolerance to multiple stresses and further detailed characterization to elucidate their functions. From these candidates, 3D structures were predicted for six HanPP2C proteins (HanPP2C47, HanPP2C48, HanPP2C53, HanPP2C54, HanPP2C59, and HanPP2C73), which provided satisfactory models. Our findings provide valuable insights into the PP2C gene family in the sunflower genome, which could play a crucial role in responding to various stresses. This information can be exploited in sunflower breeding programs to develop improved cultivars with increased abiotic stress tolerance.
Collapse
Affiliation(s)
- Nasrin Akter
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md Shohel Ul Islam
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md. Shahedur Rahman
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Fatema Tuz Zohra
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Shaikh Mizanur Rahman
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - M. Manirujjaman
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana, LA, United States of America
| | - Md. Abdur Rauf Sarkar
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| |
Collapse
|
7
|
Pang Y, Cao L, Ye F, Ma C, Liang X, Song Y, Lu X. Identification of the Maize PP2C Gene Family and Functional Studies on the Role of ZmPP2C15 in Drought Tolerance. PLANTS (BASEL, SWITZERLAND) 2024; 13:340. [PMID: 38337873 PMCID: PMC10856965 DOI: 10.3390/plants13030340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024]
Abstract
The protein phosphatase PP2C plays an important role in plant responses to stress. Therefore, the identification of maize PP2C genes that respond to drought stress is particularly important for the improvement and creation of new drought-resistant assortments of maize. In this study, we identified 102 ZmPP2C genes in maize at the genome-wide level. We analyzed the physicochemical properties of 102 ZmPP2Cs and constructed a phylogenetic tree with Arabidopsis. By analyzing the gene structure, conserved protein motifs, and synteny, the ZmPP2Cs were found to be strongly conserved during evolution. Sixteen core genes involved in drought stress and rewatering were screened using gene co-expression network mapping and expression profiling. The qRT-PCR results showed 16 genes were induced by abscisic acid (ABA), drought, and NaCl treatments. Notably, ZmPP2C15 exhibited a substantial expression difference. Through genetic transformation, we overexpressed ZmPP2C15 and generated the CRISPR/Cas9 knockout maize mutant zmpp2c15. Overexpressing ZmPP2C15 in Arabidopsis under drought stress enhanced growth and survival compared with WT plants. The leaves exhibited heightened superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX), and catalase (CAT) activities, elevated proline (Pro) content, and reduced malondialdehyde (MDA) content. Conversely, zmpp2c15 mutant plants displayed severe leaf dryness, curling, and wilting under drought stress. Their leaf activities of SOD, POD, APX, and CAT were lower than those in B104, while MDA was higher. This suggests that ZmPP2C15 positively regulates drought tolerance in maize by affecting the antioxidant enzyme activity and osmoregulatory substance content. Subcellular localization revealed that ZmPP2C15 was localized in the nucleus and cytoplasm. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) experiments demonstrated ZmPP2C15's interaction with ZmWIN1, ZmADT2, ZmsodC, Zmcab, and ZmLHC2. These findings establish a foundation for understanding maize PP2C gene functions, offering genetic resources and insights for molecular design breeding for drought tolerance.
Collapse
Affiliation(s)
- Yunyun Pang
- Grain Crops Research Institute, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou 450002, China; (Y.P.); (L.C.); (F.Y.); (C.M.); (X.L.); (Y.S.)
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450002, China
| | - Liru Cao
- Grain Crops Research Institute, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou 450002, China; (Y.P.); (L.C.); (F.Y.); (C.M.); (X.L.); (Y.S.)
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Feiyu Ye
- Grain Crops Research Institute, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou 450002, China; (Y.P.); (L.C.); (F.Y.); (C.M.); (X.L.); (Y.S.)
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Chenchen Ma
- Grain Crops Research Institute, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou 450002, China; (Y.P.); (L.C.); (F.Y.); (C.M.); (X.L.); (Y.S.)
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Xiaohan Liang
- Grain Crops Research Institute, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou 450002, China; (Y.P.); (L.C.); (F.Y.); (C.M.); (X.L.); (Y.S.)
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Yinghui Song
- Grain Crops Research Institute, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou 450002, China; (Y.P.); (L.C.); (F.Y.); (C.M.); (X.L.); (Y.S.)
| | - Xiaomin Lu
- Grain Crops Research Institute, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou 450002, China; (Y.P.); (L.C.); (F.Y.); (C.M.); (X.L.); (Y.S.)
- The Shennong Laboratory, Zhengzhou 450002, China
| |
Collapse
|
8
|
Barratt LJ, Franco Ortega S, Harper AL. Identification of candidate regulators of the response to early heat stress in climate-adapted wheat landraces via transcriptomic and co-expression network analyses. FRONTIERS IN PLANT SCIENCE 2024; 14:1252885. [PMID: 38235195 PMCID: PMC10791870 DOI: 10.3389/fpls.2023.1252885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/29/2023] [Indexed: 01/19/2024]
Abstract
Introduction Climate change is likely to lead to not only increased global temperatures but also a more variable climate where unseasonal periods of heat stress are more prevalent. This has been evidenced by the observation of spring-time temperatures approaching 40°C in some of the main spring-wheat producing countries, such as the USA, in recent years. With an optimum growth temperature of around 20°C, wheat is particularly prone to damage by heat stress. A warming climate with increasingly common fluctuations in temperature therefore threatens wheat crops and subsequently the lives and livelihoods of billions of people who depend on the crop for food. To futureproof wheat against a variable climate, a better understanding of the response to early heat stress is required. Methods Here, we utilised DESeq2 to identify 7,827 genes which were differentially expressed in wheat landraces after early heat stress exposure. Candidate hub genes, which may regulate the transcriptional response to early heat stress, were identified via weighted gene co-expression network analysis (WGCNA), and validated by qRT-PCR. Results Two of the most promising candidate hub genes (TraesCS3B02G409300 and TraesCS1B02G384900) may downregulate the expression of genes involved in the drought, salinity, and cold responses-genes which are unlikely to be required under heat stress-as well as photosynthesis genes and stress hormone signalling repressors, respectively. We also suggest a role for a poorly characterised sHSP hub gene (TraesCS4D02G212300), as an activator of the heat stress response, potentially inducing the expression of a vast suite of heat shock proteins and transcription factors known to play key roles in the heat stress response. Discussion The present work represents an exploratory examination of the heat-induced transcriptional change in wheat landrace seedlings and identifies several candidate hub genes which may act as regulators of this response and, thus, may be targets for breeders in the production of thermotolerant wheat varieties.
Collapse
Affiliation(s)
| | | | - Andrea L. Harper
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, York, United Kingdom
| |
Collapse
|
9
|
Cao K, Sun Y, Zhang X, Zhao Y, Bian J, Zhu H, Wang P, Gao B, Sun X, Hu M, Guo Y, Wang X. The miRNA-mRNA regulatory networks of the response to NaHCO 3 stress in industrial hemp (Cannabis sativa L.). BMC PLANT BIOLOGY 2023; 23:509. [PMID: 37875794 PMCID: PMC10594861 DOI: 10.1186/s12870-023-04463-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 09/14/2023] [Indexed: 10/26/2023]
Abstract
BACKGROUND Industrial hemp is an important industrial crop and has strong resistance to saline-alkaline stress. However, research on the industrial hemp response to NaHCO3 stress is limited. Therefore, the response mechanisms of industrial hemp under NaHCO3 stress were analysed through miRNA-mRNA regulatory networks. RESULTS Seedlings of two salt-alkali tolerant and sensitive varieties were cultured in a solution containing 100 mM NaHCO3 and randomly sampled at 0, 6, 12, and 24 h. With prolonged NaHCO3 stress, the seedlings gradually withered, and the contents of jasmonic acid, lignin, trehalose, soluble protein, peroxidase, and superoxide dismutase in the roots increased significantly. The abscisic acid content decreased and then gradually increased. Overall, 18,215 mRNAs and 74 miRNAs were identified as differentially expressed under NaHCO3 stress. The network showed that 230 miRNA-mRNA interactions involved 16 miRNAs and 179 mRNAs, including some key hub novel mRNAs of these crucial pathways. Carbon metabolism, starch, sucrose metabolism, plant hormone signal transduction, and the spliceosome (SPL) were crucial pathways in industrial hemp's response to NaHCO3 stress. CONCLUSIONS It is speculated that industrial hemp can regulate SPL pathway by upregulating miRNAs such as novel_miR_179 and novel_miR_75, thus affecting starch and sucrose metabolism, plant hormone signal transduction and carbon metabolism and improving key physiological indices such as jasmonic acid content, trehalose content, and peroxidase and superoxide dismutase activities under NaHCO3 stress.
Collapse
Affiliation(s)
- Kun Cao
- Daqing Branch of Heilongjiang Academy of Sciences, Daqing, 163319, Heilongjiang, China
- Heilongjiang BaYi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Yufeng Sun
- Daqing Branch of Heilongjiang Academy of Sciences, Daqing, 163319, Heilongjiang, China
| | - Xiaoyan Zhang
- Daqing Branch of Heilongjiang Academy of Sciences, Daqing, 163319, Heilongjiang, China
| | - Yue Zhao
- Daqing Branch of Heilongjiang Academy of Sciences, Daqing, 163319, Heilongjiang, China
| | - Jing Bian
- Daqing Branch of Heilongjiang Academy of Sciences, Daqing, 163319, Heilongjiang, China
| | - Hao Zhu
- Daqing Branch of Heilongjiang Academy of Sciences, Daqing, 163319, Heilongjiang, China
| | - Pan Wang
- Daqing Branch of Heilongjiang Academy of Sciences, Daqing, 163319, Heilongjiang, China
| | - Baochang Gao
- Daqing Branch of Heilongjiang Academy of Sciences, Daqing, 163319, Heilongjiang, China
| | - Xiaoli Sun
- Heilongjiang BaYi Agricultural University, Daqing, 163319, Heilongjiang, China
- National Coarse Cereal Engineering Research Center, Daqing, 163319, Heilongjiang, China
- Heilongjaing Province Cultivating Collaborative Innovation Center for The Beidahuang Modern Agricultural Industry Technology, Daqing, 163319, Heilongjiang, China
| | - Ming Hu
- Daqing Branch of Heilongjiang Academy of Sciences, Daqing, 163319, Heilongjiang, China
| | - Yongxia Guo
- Heilongjiang BaYi Agricultural University, Daqing, 163319, Heilongjiang, China.
- National Coarse Cereal Engineering Research Center, Daqing, 163319, Heilongjiang, China.
- Heilongjaing Province Cultivating Collaborative Innovation Center for The Beidahuang Modern Agricultural Industry Technology, Daqing, 163319, Heilongjiang, China.
| | - Xiaonan Wang
- Daqing Branch of Heilongjiang Academy of Sciences, Daqing, 163319, Heilongjiang, China.
| |
Collapse
|
10
|
Chen Y, Zhao H, Wang Y, Qiu X, Gao G, Zhu A, Chen P, Wang X, Chen K, Chen J, Chen P, Chen J. Genome-Wide Identification and Expression Analysis of BnPP2C Gene Family in Response to Multiple Stresses in Ramie ( Boehmeria nivea L.). Int J Mol Sci 2023; 24:15282. [PMID: 37894962 PMCID: PMC10607689 DOI: 10.3390/ijms242015282] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
The protein phosphatase 2C (PP2C), a key regulator of the ABA signaling pathway, plays important roles in plant growth and development, hormone signaling, and abiotic stress response. Although the PP2C gene family has been identified in many species, systematic analysis was still relatively lacking in ramie (Boehmeria nivea L.). In the present study, we identified 63 BnPP2C genes from the ramie genome, using bioinformatics analysis, and classified them into 12 subfamilies, and this classification was consistently supported by their gene structures and conserved motifs. In addition, we observed that the functional differentiation of the BnPP2C family of genes was restricted and that fragment replication played a major role in the amplification of the BnPP2C gene family. The promoter cis-regulatory elements of BnPP2C genes were mainly involved in light response regulation, phytohormone synthesis, transport and signaling, environmental stress response and plant growth and development regulation. We identified BnPP2C genes with tissue specificity, using ramie transcriptome data from different tissues, in rhizome leaves and bast fibers. The qRT-PCR results showed that the BnPP2C1, BnPP2C26 and BnPP2C27 genes had a strong response to drought, high salt and ABA, and there were a large number of stress-responsive elements in the promoter region of BnPP2C1 and BnPP2C26. The results suggested that BnPP2C1 and BnPP2C26 could be used as the candidate genes for drought and salt tolerance in ramie. These results provide a reference for further studies on the function of the PP2C gene and advance the development of the mechanism of ramie stress response, with a view to providing candidate genes for the molecular breeding of ramie for drought and salt tolerance.
Collapse
Affiliation(s)
- Yu Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China; (Y.C.); (H.Z.); (Y.W.); (X.Q.); (G.G.); (A.Z.); (P.C.); (X.W.); (K.C.); (J.C.)
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Haohan Zhao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China; (Y.C.); (H.Z.); (Y.W.); (X.Q.); (G.G.); (A.Z.); (P.C.); (X.W.); (K.C.); (J.C.)
| | - Yue Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China; (Y.C.); (H.Z.); (Y.W.); (X.Q.); (G.G.); (A.Z.); (P.C.); (X.W.); (K.C.); (J.C.)
| | - Xiaojun Qiu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China; (Y.C.); (H.Z.); (Y.W.); (X.Q.); (G.G.); (A.Z.); (P.C.); (X.W.); (K.C.); (J.C.)
| | - Gang Gao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China; (Y.C.); (H.Z.); (Y.W.); (X.Q.); (G.G.); (A.Z.); (P.C.); (X.W.); (K.C.); (J.C.)
| | - Aiguo Zhu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China; (Y.C.); (H.Z.); (Y.W.); (X.Q.); (G.G.); (A.Z.); (P.C.); (X.W.); (K.C.); (J.C.)
| | - Ping Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China; (Y.C.); (H.Z.); (Y.W.); (X.Q.); (G.G.); (A.Z.); (P.C.); (X.W.); (K.C.); (J.C.)
| | - Xiaofei Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China; (Y.C.); (H.Z.); (Y.W.); (X.Q.); (G.G.); (A.Z.); (P.C.); (X.W.); (K.C.); (J.C.)
| | - Kunmei Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China; (Y.C.); (H.Z.); (Y.W.); (X.Q.); (G.G.); (A.Z.); (P.C.); (X.W.); (K.C.); (J.C.)
| | - Jia Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China; (Y.C.); (H.Z.); (Y.W.); (X.Q.); (G.G.); (A.Z.); (P.C.); (X.W.); (K.C.); (J.C.)
| | - Peng Chen
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Jikang Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China; (Y.C.); (H.Z.); (Y.W.); (X.Q.); (G.G.); (A.Z.); (P.C.); (X.W.); (K.C.); (J.C.)
- National Breeding Center or Bast Fiber Crops, MARA, Changsha 410221, China
| |
Collapse
|
11
|
Guo L, Lu S, Liu T, Nai G, Ren J, Gou H, Chen B, Mao J. Genome-Wide Identification and Abiotic Stress Response Analysis of PP2C Gene Family in Woodland and Pineapple Strawberries. Int J Mol Sci 2023; 24:ijms24044049. [PMID: 36835472 PMCID: PMC9961684 DOI: 10.3390/ijms24044049] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/07/2023] [Accepted: 02/12/2023] [Indexed: 02/22/2023] Open
Abstract
Protein phosphatase 2C (PP2C) is a negative regulator of serine/threonine residue protein phosphatase and plays an important role in abscisic acid (ABA) and abiotic-stress-mediated signaling pathways in plants. The genome complexity of woodland strawberry and pineapple strawberry is different due to the difference in chromosome ploidy. This study conducted a genome-wide investigation of the FvPP2C (Fragaria vesca) and FaPP2C (Fragaria ananassa) gene family. Fifty-six FvPP2C genes and 228 FaPP2C genes were identified from the woodland strawberry and pineapple strawberry genomes, respectively. FvPP2Cs were distributed on seven chromosomes, and FaPP2Cs were distributed on 28 chromosomes. The size of the FaPP2C gene family was significantly different from that of the FvPP2C gene family, but both FaPP2Cs and FvPP2Cs were localized in the nucleus, cytoplasm, and chloroplast. Phylogenetic analysis revealed that 56 FvPP2Cs and 228 FaPP2Cs could be divided into 11 subfamilies. Collinearity analysis showed that both FvPP2Cs and FaPP2Cs had fragment duplication, and the whole genome duplication was the main cause of PP2C gene abundance in pineapple strawberry. FvPP2Cs mainly underwent purification selection, and there were both purification selection and positive selection effects in the evolution of FaPP2Cs. Cis-acting element analysis found that the PP2C family genes of woodland and pineapple strawberries mainly contained light responsive elements, hormone responsive elements, defense and stress responsive elements, and growth and development-related elements. The results of quantitative real-time PCR (qRT-PCR) showed that the FvPP2C genes showed different expression patterns under ABA, salt, and drought treatment. The expression level of FvPP2C18 was upregulated after stress treatment, which may play a positive regulatory role in ABA signaling and abiotic stress response mechanisms. This study lays a foundation for further investigation on the function of the PP2C gene family.
Collapse
|
12
|
Wu Z, Luo L, Wan Y, Liu F. Genome-wide characterization of the PP2C gene family in peanut ( Arachis hypogaea L.) and the identification of candidate genes involved in salinity-stress response. FRONTIERS IN PLANT SCIENCE 2023; 14:1093913. [PMID: 36778706 PMCID: PMC9911800 DOI: 10.3389/fpls.2023.1093913] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Plant protein phosphatase 2C (PP2C) play important roles in response to salt stress by influencing metabolic processes, hormone levels, growth factors, etc. Members of the PP2C family have been identified in many plant species. However, they are rarely reported in peanut. In this study, 178 PP2C genes were identified in peanut, which were unevenly distributed across the 20 chromosomes, with segmental duplication in 78 gene pairs. AhPP2Cs could be divided into 10 clades (A-J) by phylogenetic analysis. AhPP2Cs had experienced segmental duplications and strong purifying selection pressure. 22 miRNAs from 14 different families were identified, targeting 57 AhPP2C genes. Gene structures and motifs analysis exhibited PP2Cs in subclades AI and AII had high structural and functional similarities. Phosphorylation sites of AhPP2C45/59/134/150/35/121 were predicted in motifs 2 and 4, which located within the catalytic site at the C-terminus. We discovered multiple MYB binding factors and ABA response elements in the promoter regions of the six genes (AhPP2C45/59/134/150/35/121) by cis-elements analysis. GO and KEGG enrichment analysis confirmed AhPP2C-A genes in protein binding, signal transduction, protein modification process response to abiotic stimulus through environmental information processing. Based on RNA-Seq data of 22 peanut tissues, clade A AhPP2Cs showed a varying degree of tissue specificity, of which, AhPP2C35 and AhPP2C121 specifically expressed in seeds, while AhPP2C45/59/134/150 expressed in leaves and roots. qRT-PCR indicated that AhPP2C45 and AhPP2C134 displayed significantly up-regulated expression in response to salt stress. These results indicated that AhPP2C45 and AhPP2C134 could be candidate PP2Cs conferring salt tolerance. These results provide further insights into the peanut PP2C gene family and indicate PP2Cs potentially involved in the response to salt stress, which can now be further investigated in peanut breeding efforts to obtain cultivars with improved salt tolerance.
Collapse
Affiliation(s)
- Zhanwei Wu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Lu Luo
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Yongshan Wan
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Fengzhen Liu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- College of Agronomy, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
13
|
Ma D, Cai J, Ma Q, Wang W, Zhao L, Li J, Su L. Comparative time-course transcriptome analysis of two contrasting alfalfa ( Medicago sativa L.) genotypes reveals tolerance mechanisms to salt stress. FRONTIERS IN PLANT SCIENCE 2022; 13:1070846. [PMID: 36570949 PMCID: PMC9773191 DOI: 10.3389/fpls.2022.1070846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Salt stress is a major abiotic stress affecting plant growth and crop yield. For the successful cultivation of alfalfa (Medicago sativa L.), a key legume forage, in saline-affected areas, it's essential to explore genetic modifications to improve salt-tolerance.Transcriptome assay of two comparative alfalfa genotypes, Adina and Zhaodong, following a 4 h and 8 h's 300 mM NaCl treatment was conducted in this study in order to investigate the molecular mechanism in alfalfa under salt stress conditions. Results showed that we obtained 875,023,571 transcripts and 662,765,594 unigenes were abtained from the sequenced libraries, and 520,091 assembled unigenes were annotated in at least one database. Among them, we identified 1,636 differentially expression genes (DEGs) in Adina, of which 1,426 were up-regulated and 210 down-regulated, and 1,295 DEGs in Zhaodong, of which 565 were up-regulated and 730 down-regulated. GO annotations and KEGG pathway enrichments of the DEGs based on RNA-seq data indicated that DEGs were involved in (1) ion and membrane homeostasis, including ABC transporter, CLC, NCX, and NHX; (2) Ca2+ sensing and transduction, including BK channel, EF-hand domain, and calmodulin binding protein; (3) phytohormone signaling and regulation, including TPR, FBP, LRR, and PP2C; (4) transcription factors, including zinc finger proteins, YABBY, and SBP-box; (5) antioxidation process, including GST, PYROX, and ALDH; (6) post-translational modification, including UCH, ubiquitin family, GT, MT and SOT. The functional roles of DEGs could explain the variations in salt tolerance performance observed between the two alfalfa genotypes Adina and Zhaodong. Our study widens the understanding of the sophisticated molecular response and tolerance mechanism to salt stress, providing novel insights on candidate genes and pathways for genetic modification involved in salt stress adaptation in alfalfa.
Collapse
Affiliation(s)
- Dongmei Ma
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwest China, Ningxia University, Yinchuan, China
- Ministry of Education Key Laboratory for Restoration and Reconstruction of Degraded Ecosystems in Northwest China, Ningxia University, Yinchuan, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Ningxia University, Yinchuan, China
| | - Jinjun Cai
- Institute of Agricultural Resources and Environment, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Qiaoli Ma
- Agricultural College, Ningxia University, Yinchuan, China
| | - Wenjing Wang
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwest China, Ningxia University, Yinchuan, China
- Ministry of Education Key Laboratory for Restoration and Reconstruction of Degraded Ecosystems in Northwest China, Ningxia University, Yinchuan, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Ningxia University, Yinchuan, China
| | - Lijuan Zhao
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwest China, Ningxia University, Yinchuan, China
- Ministry of Education Key Laboratory for Restoration and Reconstruction of Degraded Ecosystems in Northwest China, Ningxia University, Yinchuan, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Ningxia University, Yinchuan, China
| | - Jiawen Li
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwest China, Ningxia University, Yinchuan, China
- Ministry of Education Key Laboratory for Restoration and Reconstruction of Degraded Ecosystems in Northwest China, Ningxia University, Yinchuan, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Ningxia University, Yinchuan, China
| | - Lina Su
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwest China, Ningxia University, Yinchuan, China
- Ministry of Education Key Laboratory for Restoration and Reconstruction of Degraded Ecosystems in Northwest China, Ningxia University, Yinchuan, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Ningxia University, Yinchuan, China
| |
Collapse
|
14
|
Ren W, Chen L, Xie ZM, Peng X. Combined transcriptome and metabolome analysis revealed pathways involved in improved salt tolerance of Gossypium hirsutum L. seedlings in response to exogenous melatonin application. BMC PLANT BIOLOGY 2022; 22:552. [PMID: 36451095 PMCID: PMC9710056 DOI: 10.1186/s12870-022-03930-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Salinization is major abiotic stress limiting cotton production. Melatonin (MT) has been implicated in salt stress tolerance in multiple crops including upland cotton. Here, we explored the transcriptomic and metabolomic response of a salt-tolerant self-bred high-yielding cotton line SDS-01, which was exogenously sprayed with four MT concentrations (50, 100, 200, and 500 μM). RESULTS Here we found that MT improves plant biomass and growth under salt stress. The combined transcriptome sequencing and metabolome profiling approach revealed that photosynthetic efficiency is improved by increasing the expressions of chlorophyll metabolism and antenna proteins in MT-treated seedlings. Additionally, linoleic acid and flavonoid biosynthesis were improved after MT treatment. The Na+/K+ homeostasis-related genes were increasingly expressed in salt-stressed seedlings treated with MT as compared to the ones experiencing only salt stress. Melatonin treatment activated a cascade of plant-hormone signal transduction and reactive oxygen scavenging genes to alleviate the detrimental effects of salt stress. The global metabolome profile revealed an increased accumulation of flavonoids, organic acids, amino acids and derivatives, saccharides, and phenolic acids in MT-treated seedlings. Interestingly, N, N'-Diferuloylputrescine a known antioxidative compound was highly accumulated after MT treatment. CONCLUSION Collectively, our study concludes that MT is a salt stress regulator in upland cotton and alleviates salt-stress effects by modulating the expressions of photosynthesis (and related pathways), flavonoid, ROS scavenging, hormone signaling, linoleic acid metabolism, and ion homeostasis-related genes.
Collapse
Affiliation(s)
- Wei Ren
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011 China
- China Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang, 831505 Xinjiang China
| | - Li Chen
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011 China
- China Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang, 831505 Xinjiang China
| | - Zong ming Xie
- Xinjiang Production & Construction Group Key Laboratory of Crop Germplasm Enhancement and Gene Resources Utilization, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000, Xinjiang China
| | - Xiaofeng Peng
- Agricultural Science Research Institute of the third division of Xinjiang production and Construction Corps, Tumushuke, 843800 Xinjiang China
| |
Collapse
|
15
|
Lu X, Ma L, Zhang C, Yan H, Bao J, Gong M, Wang W, Li S, Ma S, Chen B. Grapevine (Vitis vinifera) responses to salt stress and alkali stress: transcriptional and metabolic profiling. BMC PLANT BIOLOGY 2022; 22:528. [PMID: 36376811 PMCID: PMC9661776 DOI: 10.1186/s12870-022-03907-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Soil salinization and alkalization are widespread environmental problems that limit grapevine (Vitis vinifera L.) growth and yield. However, little is known about the response of grapevine to alkali stress. This study investigated the differences in physiological characteristics, chloroplast structure, transcriptome, and metabolome in grapevine plants under salt stress and alkali stress. RESULTS We found that grapevine plants under salt stress and alkali stress showed leaf chlorosis, a decline in photosynthetic capacity, a decrease in chlorophyll content and Rubisco activity, an imbalance of Na+ and K+, and damaged chloroplast ultrastructure. Fv/Fm decreased under salt stress and alkali stress. NPQ increased under salt stress whereas decreased under alkali stress. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment showed the differentially expressed genes (DEGs) induced by salt stress and alkali stress were involved in different biological processes and have varied molecular functions. The expression of stress genes involved in the ABA and MAPK signaling pathways was markedly altered by salt stress and alkali stress. The genes encoding ion transporter (AKT1, HKT1, NHX1, NHX2, TPC1A, TPC1B) were up-regulated under salt stress and alkali stress. Down-regulation in the expression of numerous genes in the 'Porphyrin and chlorophyll metabolism', 'Photosynthesis-antenna proteins', and 'Photosynthesis' pathways were observed under alkali stress. Many genes in the 'Carbon fixation in photosynthetic organisms' pathway in salt stress and alkali stress were down-regulated. Metabolome showed that 431 and 378 differentially accumulated metabolites (DAMs) were identified in salt stress and alkali stress, respectively. L-Glutamic acid and 5-Aminolevulinate involved in chlorophyll synthesis decreased under salt stress and alkali stress. The abundance of 19 DAMs under salt stress related to photosynthesis decreased. The abundance of 16 organic acids in salt stress and 22 in alkali stress increased respectively. CONCLUSIONS Our findings suggested that alkali stress had more adverse effects on grapevine leaves, chloroplast structure, ion balance, and photosynthesis than salt stress. Transcriptional and metabolic profiling showed that there were significant differences in the effects of salt stress and alkali stress on the expression of key genes and the abundance of pivotal metabolites in grapevine plants.
Collapse
Affiliation(s)
- Xu Lu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - Lei Ma
- Agronomy College, Gansu Agricultural University, Lanzhou, 730070 China
| | - CongCong Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - HaoKai Yan
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - JinYu Bao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - MeiShuang Gong
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070 China
| | - WenHui Wang
- Basic Experimental Teaching Center, Gansu Agricultural University, Lanzhou, 730070 China
| | - Sheng Li
- College of HorticultureCollege of Life Science and Technology, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070 China
| | - ShaoYing Ma
- Basic Experimental Teaching Center, Gansu Agricultural University, Lanzhou, 730070 China
| | - BaiHong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| |
Collapse
|
16
|
Sisi C, Jieru D, Peidong C, Zhaolong Z, Yihang W, Shuwen C, Yan T, Tianyu W, Guiyan Y. Transcriptome-wide identification of walnut PP2C family genes in response to external stimulus. BMC Genomics 2022; 23:640. [PMID: 36076184 PMCID: PMC9461273 DOI: 10.1186/s12864-022-08856-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/23/2022] [Indexed: 11/11/2022] Open
Abstract
Walnut is an important economic tree species while confronting with global environmental stress, resulting in decline in quality and yield. Therefore, it is urgent to elucidate the molecular mechanism for the regulation of walnut response to adversity. The protein phosphatase 2C (PP2C) gene family participates in cellular processes in eukaryotes through reversible phosphorylation of proteins and signal transduction regulation. However, the stress response function of PP2C genes was far to be clarified. Therefore, to understand the stress response mechanism of walnut tree, in this study, a total of 41 PP2C genes with complete ORFs were identified from Juglans regia, whose basic bio-information and expression patterns in response to multiple stresses and ABA were confirmed. The results showed that the ORFs of JrPP2Cs were 495 ~ 3231 bp in length, the predicted JrPP2C proteins contained 164 to 1076 amino acids and the molecular weights were 18,581.96 ~ 118,853.34 Da, the pI was 4.55 ~ 9.58. These JrPP2C genes were unevenly distributed on 14 chromosomes, among which Chr11 and Chr13 contained the most genes. Phylogenetic analysis found that these JrPP2C proteins were classed into 9 subfamilies, among which group F covered most JrPP2Cs. The JrPP2Cs in the same subfamily exhibited similarities in the composition of conserved domains, amino acid sequences of motifs and exon/intron organization in DNA sequences. Each JrPP2C includes 4 ~ 10 motifs and each motif contained 15 ~ 37 amino acids. Among the motifs, motif1, motif2, motif3 and motif8 were most abundant. Most of the JrPP2C genes diversely response to osmotic, cadmium, and Colletotrichum gloeosporioide stress as well as ABA treatments, among which JrPP2C28, JrPP2C17, JrPP2C09, JrPP2C36 were more obvious and deserves further attention. All these results indicated that JrPP2C genes play potential vital roles in plant response to multiple stimulus, and are possibly involved in ABA-dependent signaling pathway.
Collapse
Affiliation(s)
- Chen Sisi
- Labortory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Deng Jieru
- Labortory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Cheng Peidong
- Labortory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Zhang Zhaolong
- Labortory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Wang Yihang
- Labortory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Chen Shuwen
- Labortory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Tang Yan
- Labortory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Wang Tianyu
- Labortory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Yang Guiyan
- Labortory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling, 712100, Shaanxi, China. .,Key Laboratory of Economic Plant Resources Development and Utilization in Shaanxi Province, College of Forestry, Northwest A & F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
17
|
Zhang G, Zhang Z, Luo S, Li X, Lyu J, Liu Z, Wan Z, Yu J. Genome-wide identification and expression analysis of the cucumber PP2C gene family. BMC Genomics 2022; 23:563. [PMID: 35933381 PMCID: PMC9356470 DOI: 10.1186/s12864-022-08734-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Background Type 2C protein phosphatase (PP2C) is a negative regulator of ABA signaling pathway, which plays important roles in stress signal transduction in plants. However, little research on the PP2C genes family of cucumber (Cucumis sativus L.), as an important economic vegetable, has been conducted. Results This study conducted a genome-wide investigation of the CsPP2C gene family. Through bioinformatics analysis, 56 CsPP2C genes were identified in cucumber. Based on phylogenetic analysis, the PP2C genes of cucumber and Arabidopsis were divided into 13 groups. Gene structure and conserved motif analysis showed that CsPP2C genes in the same group had similar gene structure and conserved domains. Collinearity analysis showed that segmental duplication events played a key role in the expansion of the cucumber PP2C genes family. In addition, the expression of CsPP2Cs under different abiotic treatments was analyzed by qRT-PCR. The results reveal that CsPP2C family genes showed different expression patterns under ABA, drought, salt, and cold treatment, and that CsPP2C3, 11–17, 23, 45, 54 and 55 responded significantly to the four stresses. By predicting the cis-elements in the promoter, we found that all CsPP2C members contained ABA response elements and drought response elements. Additionally, the expression patterns of CsPP2C genes were specific in different tissues. Conclusions The results of this study provide a reference for the genome-wide identification of the PP2C gene family in other species and provide a basis for future studies on the function of PP2C genes in cucumber. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08734-y.
Collapse
Affiliation(s)
- Guobin Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China.,College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zeyu Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Shilei Luo
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China.,College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xia Li
- Gansu Institute of Geological and Natural Disaster Prevention, Lanzhou, 730000, China
| | - Jian Lyu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zeci Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zilong Wan
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jihua Yu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China. .,College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
18
|
Baudouin E, Puyaubert J, Meimoun P, Blein-Nicolas M, Davanture M, Zivy M, Bailly C. Dynamics of Protein Phosphorylation during Arabidopsis Seed Germination. Int J Mol Sci 2022; 23:ijms23137059. [PMID: 35806063 PMCID: PMC9266807 DOI: 10.3390/ijms23137059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
Seed germination is critical for early plantlet development and is tightly controlled by environmental factors. Nevertheless, the signaling networks underlying germination control remain elusive. In this study, the remodeling of Arabidopsis seed phosphoproteome during imbibition was investigated using stable isotope dimethyl labeling and nanoLC-MS/MS analysis. Freshly harvested seeds were imbibed under dark or constant light to restrict or promote germination, respectively. For each light regime, phosphoproteins were extracted and identified from dry and imbibed (6 h, 16 h, and 24 h) seeds. A large repertoire of 10,244 phosphopeptides from 2546 phosphoproteins, including 110 protein kinases and key regulators of seed germination such as Delay Of Germination 1 (DOG1), was established. Most phosphoproteins were only identified in dry seeds. Early imbibition led to a similar massive downregulation in dormant and non-dormant seeds. After 24 h, 411 phosphoproteins were specifically identified in non-dormant seeds. Gene ontology analyses revealed their involvement in RNA and protein metabolism, transport, and signaling. In addition, 489 phosphopeptides were quantified, and 234 exhibited up or downregulation during imbibition. Interaction networks and motif analyses revealed their association with potential signaling modules involved in germination control. Our study provides evidence of a major role of phosphosignaling in the regulation of Arabidopsis seed germination.
Collapse
Affiliation(s)
- Emmanuel Baudouin
- Laboratoire de Biologie du Développement, UMR 7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, CNRS, F-75005 Paris, France; (J.P.); (P.M.); (C.B.)
- Correspondence: ; Tel.: +33-1-44-27-59-87
| | - Juliette Puyaubert
- Laboratoire de Biologie du Développement, UMR 7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, CNRS, F-75005 Paris, France; (J.P.); (P.M.); (C.B.)
| | - Patrice Meimoun
- Laboratoire de Biologie du Développement, UMR 7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, CNRS, F-75005 Paris, France; (J.P.); (P.M.); (C.B.)
| | - Mélisande Blein-Nicolas
- PAPPSO, Génétique Quantitative et Evolution (GQE), Université Paris-Saclay, INRAE, CNRS, AgroParisTech, F-91190 Gif-sur-Yvette, France; (M.B.-N.); (M.D.); (M.Z.)
| | - Marlène Davanture
- PAPPSO, Génétique Quantitative et Evolution (GQE), Université Paris-Saclay, INRAE, CNRS, AgroParisTech, F-91190 Gif-sur-Yvette, France; (M.B.-N.); (M.D.); (M.Z.)
| | - Michel Zivy
- PAPPSO, Génétique Quantitative et Evolution (GQE), Université Paris-Saclay, INRAE, CNRS, AgroParisTech, F-91190 Gif-sur-Yvette, France; (M.B.-N.); (M.D.); (M.Z.)
| | - Christophe Bailly
- Laboratoire de Biologie du Développement, UMR 7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, CNRS, F-75005 Paris, France; (J.P.); (P.M.); (C.B.)
| |
Collapse
|
19
|
Luo M, Liu X, Su H, Li M, Li M, Wei J. Regulatory Networks of Flowering Genes in Angelica sinensis during Vernalization. PLANTS (BASEL, SWITZERLAND) 2022; 11:1355. [PMID: 35631780 PMCID: PMC9144295 DOI: 10.3390/plants11101355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 11/29/2022]
Abstract
Angelica sinensis is a low-temperature and long-day perennial herb that has been widely used for cardio-cerebrovascular diseases in recent years. In commercial cultivation, up to 40% of flowering decreases the officinal yield of roots and accumulation of bioactive compounds. Although the regulatory mechanism of flowering genes during the photoperiod has been revealed, the networks during vernalization have not been mapped. Here, transcriptomics profiles of A. sinensis with uncompleted (T1), completed (T2) and avoided vernalization (T3) were performed using RNA-seq, and genes expression was validated with qRT-PCR. A total of 61,241 isoforms were annotated on KEGG, KOG, Nr and Swiss-Prot databases; 4212 and 5301 differentially expressed genes (DEGs) were observed; and 151 and 155 genes involved in flowering were dug out at T2 vs. T1 and T3 vs. T1, respectively. According to functional annotation, 104 co-expressed genes were classified into six categories: FLC expression (22; e.g., VILs, FCA and FLK), sucrose metabolism (12; e.g., TPSs, SUS3 and SPSs), hormone response (18; e.g., GID1B, RAP2s and IAAs), circadian clock (2; i.e., ELF3 and COR27), downstream floral integrators and meristem identity (15; e.g., SOC1, AGL65 and SPLs) and cold response (35; e.g., PYLs, ERFs and CORs). The expression levels of candidate genes were almost consistent with FPKM values and changes in sugar and hormone contents. Based on their functions, four pathways that regulate flowering during vernalization were mapped, including the vernalization pathway, the autonomic pathway, the age pathway and the GA (hormone) pathway. This transcriptomic analysis provides new insights into the gene-regulatory networks of flowering in A. sinensis.
Collapse
Affiliation(s)
- Mimi Luo
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (M.L.); (X.L.); (H.S.); (M.L.)
| | - Xiaoxia Liu
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (M.L.); (X.L.); (H.S.); (M.L.)
| | - Hongyan Su
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (M.L.); (X.L.); (H.S.); (M.L.)
| | - Meiling Li
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (M.L.); (X.L.); (H.S.); (M.L.)
| | - Mengfei Li
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (M.L.); (X.L.); (H.S.); (M.L.)
| | - Jianhe Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
20
|
Zeng J, Zuo T, Liu Y, Tao H, Mo Y, Li C, Zhao L, Gao J. Phylogenetic analysis of PP2C proteins and interactive proteins analyze of BjuPP2C52 in Brassica juncea. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 179:25-31. [PMID: 35306327 DOI: 10.1016/j.plaphy.2022.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Brassica juncea var. tumida Tsen et Lee (Tumorous stem mustard) is an unique vegetable in China. Its enlarged tumorous stem was used as main raw material to produce pickle (Zhacai). In practice, early-bolting happens around 15% of planting area all year and inhibits its production. Here, about 209 PP2C proteins were identified through HMMER software and divided into 13 sub-families in B. juncea. BjuPP2C52 belongs to E sub-family, was up-regulated at reproductive growth stages and interacts with BjuFKF1, a key protein in regulating plant photoperiod flowering, in vitro and in vivo. To explore interactive proteins, BjuPP2C52 was used as bait, 12 potential interactive proteins were screened from yeast library, and they are BjuCOL3, BjuCOL5, BjuAP2, BjuAP2-1, BjuSVP-1, BjuFLC-2, BjuSKP1f, BjuA014572, BjuA008686, BjuO002119, BjuB036787 and BjuA019268. Further study verified that 10 out of the 12 screened proteins interacted with BjuPP2C52 in vivo. qRT-PCR was conducted to understand the expression pattern of those 10 interactive proteins in different tissues and development stages in B. juncea. The results showed that BjuCOL3, BjuCOL5, BjuB036787 and BjuA019268 were significantly up-regulated, while BjuA008686 and BjuO002119 were down-regulated in flowers compared with other four tissues. In developmental stages, BjuCOL5, BjuAP2, BjuAP2-1, BjuA014572, BjuB036787 and BjuA019268 were significantly up-regulated, while BjuSVP-1, BjuA008686 and BjuO002119 were down-regulated at reproductive stages. Based on the results, BjuCOL5, BjuAP2, BjuAP2-1, BjuSVP-1, BjuA014572, BjuB036787 and BjuA019268 may function in regulating flowering time in B. juncea.
Collapse
Affiliation(s)
- Jing Zeng
- School of Life Advanced Agriculture Bioengineering, Yangtze Normal University, Chongqing, 408100, PR China.
| | - Tonghong Zuo
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, PR China
| | - Yihua Liu
- School of Life Advanced Agriculture Bioengineering, Yangtze Normal University, Chongqing, 408100, PR China
| | - Hongying Tao
- Chongqing Southeast Academy of Agricultural Sciences, Chongqing, 408100, PR China
| | - Yanling Mo
- School of Life Advanced Agriculture Bioengineering, Yangtze Normal University, Chongqing, 408100, PR China
| | - Changman Li
- School of Life Advanced Agriculture Bioengineering, Yangtze Normal University, Chongqing, 408100, PR China
| | - Liang Zhao
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Jian Gao
- School of Life Advanced Agriculture Bioengineering, Yangtze Normal University, Chongqing, 408100, PR China
| |
Collapse
|
21
|
Qiu J, Ni L, Xia X, Chen S, Zhang Y, Lang M, Li M, Liu B, Pan Y, Li J, Zhang X. Genome-Wide Analysis of the Protein Phosphatase 2C Genes in Tomato. Genes (Basel) 2022; 13:genes13040604. [PMID: 35456410 PMCID: PMC9032827 DOI: 10.3390/genes13040604] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 01/27/2023] Open
Abstract
The plant protein phosphatase 2C (PP2C) plays an irreplaceable role in phytohormone signaling, developmental processes, and manifold stresses. However, information about the PP2C gene family in tomato (Solanum lycopersicum) is relatively restricted. In this study, a genome-wide investigation of the SlPP2C gene family was performed. A total of 92 SlPP2C genes were identified, they were distributed on 11 chromosomes, and all the SlPP2C proteins have the type 2C phosphatase domains. Based on phylogenetic analysis of PP2C genes in Arabidopsis, rice, and tomato, SlPP2C genes were divided into eight groups, designated A–H, which is also supported by the analyses of gene structures and protein motifs. Gene duplication analysis revealed that the duplication of whole genome and chromosome segments was the main cause of SLPP2Cs expansion. A total of 26 cis-elements related to stress, hormones, and development were identified in the 3 kb upstream region of these SlPP2C genes. Expression profile analysis revealed that the SlPP2C genes display diverse expression patterns in various tomato tissues. Furthermore, we investigated the expression patterns of SlPP2C genes in response to Ralstonia solanacearum infection. RNA-seq and qRT-PCR data reveal that nine SlPP2Cs are correlated with R. solanacearum. The above evidence hinted that SlPP2C genes play multiple roles in tomato and may contribute to tomato resistance to bacterial wilt. This study obtained here will give an impetus to the understanding of the potential function of SlPP2Cs and lay a solid foundation for tomato breeding and transgenic resistance to plant pathogens.
Collapse
Affiliation(s)
- Jianfang Qiu
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, The Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (J.Q.); (L.N.); (X.X.); (S.C.); (Y.Z.); (M.L.); (M.L.); (B.L.); (Y.P.); (J.L.)
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Lei Ni
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, The Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (J.Q.); (L.N.); (X.X.); (S.C.); (Y.Z.); (M.L.); (M.L.); (B.L.); (Y.P.); (J.L.)
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Xue Xia
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, The Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (J.Q.); (L.N.); (X.X.); (S.C.); (Y.Z.); (M.L.); (M.L.); (B.L.); (Y.P.); (J.L.)
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Shihao Chen
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, The Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (J.Q.); (L.N.); (X.X.); (S.C.); (Y.Z.); (M.L.); (M.L.); (B.L.); (Y.P.); (J.L.)
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Yan Zhang
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, The Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (J.Q.); (L.N.); (X.X.); (S.C.); (Y.Z.); (M.L.); (M.L.); (B.L.); (Y.P.); (J.L.)
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Min Lang
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, The Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (J.Q.); (L.N.); (X.X.); (S.C.); (Y.Z.); (M.L.); (M.L.); (B.L.); (Y.P.); (J.L.)
| | - Mengyu Li
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, The Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (J.Q.); (L.N.); (X.X.); (S.C.); (Y.Z.); (M.L.); (M.L.); (B.L.); (Y.P.); (J.L.)
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Binman Liu
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, The Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (J.Q.); (L.N.); (X.X.); (S.C.); (Y.Z.); (M.L.); (M.L.); (B.L.); (Y.P.); (J.L.)
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Yu Pan
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, The Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (J.Q.); (L.N.); (X.X.); (S.C.); (Y.Z.); (M.L.); (M.L.); (B.L.); (Y.P.); (J.L.)
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Jinhua Li
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, The Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (J.Q.); (L.N.); (X.X.); (S.C.); (Y.Z.); (M.L.); (M.L.); (B.L.); (Y.P.); (J.L.)
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Xingguo Zhang
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, The Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (J.Q.); (L.N.); (X.X.); (S.C.); (Y.Z.); (M.L.); (M.L.); (B.L.); (Y.P.); (J.L.)
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China
- Correspondence: ; Tel.: +86-23-68250974; Fax: +86-23-68251274
| |
Collapse
|
22
|
Li X, Guo D, Xue M, Li G, Yan Q, Jiang H, Liu H, Chen J, Gao Y, Duan L, Xie L. Genome-Wide Association Study of Salt Tolerance at the Seed Germination Stage in Flax (Linum usitatissimum L.). Genes (Basel) 2022; 13:genes13030486. [PMID: 35328040 PMCID: PMC8949523 DOI: 10.3390/genes13030486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/03/2022] [Accepted: 03/05/2022] [Indexed: 02/04/2023] Open
Abstract
Soil salinization seriously affects the growth and distribution of flax. However, there is little information about the salt tolerance of flax. In this study, the salt tolerance of 200 diverse flax accessions during the germination stage was evaluated, and then the Genome-wide Association Study (GWAS) was carried out based on the relative germination rate (RGR), relative shoot length (RSL) and relative root length (RRL), whereby quantitative trait loci (QTLs) related to salt tolerance were identified. The results showed that oil flax had a better salt tolerance than fiber flax. A total of 902 single nucleotide polymorphisms (SNPs) were identified on 15 chromosomes. These SNPs were integrated into 64 QTLs, explaining 14.48 to 29.38% (R2) of the phenotypic variation. In addition, 268 candidate genes were screened by combining previous transcriptome data and homologous gene annotation. Among them, Lus10033213 is a single-point SNP repeat mapping gene, which encodes a Glutathione S-transferase (GST). This study is the first to use GWAS to excavate genes related to salt tolerance during the germination stage of flax. The results of this study provide important information for studying the genetic mechanism of salt tolerance of flax, and also provide the possibility to improve the salt tolerance of flax.
Collapse
|
23
|
Nie L, Xu Z, Wu L, Chen X, Cui Y, Wang Y, Song J, Yao H. Genome-wide identification of protein phosphatase 2C family members in Glycyrrhiza uralensis Fisch. and their response to abscisic acid and polyethylene glycol stress. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2022. [DOI: 10.1080/16583655.2022.2027650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Liping Nie
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
- Engineering Research Center of Chinese Medicine Resources, Ministry of Education, Beijing, People’s Republic of China
| | - Zhichao Xu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
- Engineering Research Center of Chinese Medicine Resources, Ministry of Education, Beijing, People’s Republic of China
| | - Liwei Wu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
- Engineering Research Center of Chinese Medicine Resources, Ministry of Education, Beijing, People’s Republic of China
| | - Xinlian Chen
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
- Engineering Research Center of Chinese Medicine Resources, Ministry of Education, Beijing, People’s Republic of China
| | - Yingxian Cui
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
- Engineering Research Center of Chinese Medicine Resources, Ministry of Education, Beijing, People’s Republic of China
| | - Yu Wang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
- Engineering Research Center of Chinese Medicine Resources, Ministry of Education, Beijing, People’s Republic of China
| | - Jingyuan Song
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
- Engineering Research Center of Chinese Medicine Resources, Ministry of Education, Beijing, People’s Republic of China
| | - Hui Yao
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
- Engineering Research Center of Chinese Medicine Resources, Ministry of Education, Beijing, People’s Republic of China
| |
Collapse
|
24
|
Ma X, Liu JN, Yan L, Liang Q, Fang H, Wang C, Dong Y, Chai Z, Zhou R, Bao Y, Hou W, Yang KQ, Wu D. Comparative Transcriptome Analysis Unravels Defense Pathways of Fraxinus velutina Torr Against Salt Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:842726. [PMID: 35310642 PMCID: PMC8931533 DOI: 10.3389/fpls.2022.842726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/17/2022] [Indexed: 05/03/2023]
Abstract
Fraxinus velutina Torr with high salt tolerance has been widely grown in saline lands in the Yellow River Delta, China. However, the salt-tolerant mechanisms of F. velutina remain largely elusive. Here, we identified two contrasting cutting clones of F. velutina, R7 (salt-tolerant), and S4 (salt-sensitive) by measuring chlorophyll fluorescence characteristics (Fv/Fm ratio) in the excised leaves and physiological indexes in roots or leaves under salt treatment. To further explore the salt resistance mechanisms, we compared the transcriptomes of R7 and S4 from leaf and root tissues exposed to salt stress. The results showed that when the excised leaves of S4 and R7 were, respectively, exposed to 250 mM NaCl for 48 h, Fv/Fm ratio decreased significantly in S4 compared with R7, confirming that R7 is more tolerant to salt stress. Comparative transcriptome analysis showed that salt stress induced the significant upregulation of stress-responsive genes in R7, making important contributions to the high salt tolerance. Specifically, in the R7 leaves, salt stress markedly upregulated key genes involved in plant hormone signaling and mitogen-activated protein kinase signaling pathways; in the R7 roots, salt stress induced the upregulation of main genes involved in proline biosynthesis and starch and sucrose metabolism. In addition, 12 genes encoding antioxidant enzyme peroxidase were all significantly upregulated in both leaves and roots. Collectively, our findings revealed the crucial defense pathways underlying high salt tolerance of R7 through significant upregulation of some key genes involving metabolism and hub signaling pathways, thus providing novel insights into salt-tolerant F. velutina breeding.
Collapse
Affiliation(s)
- Xinmei Ma
- College of Forestry, Shandong Agricultural University, Tai’an, China
| | - Jian Ning Liu
- College of Forestry, Shandong Agricultural University, Tai’an, China
| | - Liping Yan
- Shandong Provincial Academy of Forestry, Jinan, China
| | - Qiang Liang
- College of Forestry, Shandong Agricultural University, Tai’an, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Agricultural University, Tai’an, China
- Shandong Taishan Forest Ecosystem Research Station, Shandong Agricultural University, Tai’an, China
| | - Hongcheng Fang
- College of Forestry, Shandong Agricultural University, Tai’an, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Agricultural University, Tai’an, China
- Shandong Taishan Forest Ecosystem Research Station, Shandong Agricultural University, Tai’an, China
| | - Changxi Wang
- College of Forestry, Shandong Agricultural University, Tai’an, China
| | - Yuhui Dong
- College of Forestry, Shandong Agricultural University, Tai’an, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Agricultural University, Tai’an, China
- Shandong Taishan Forest Ecosystem Research Station, Shandong Agricultural University, Tai’an, China
| | - Zejia Chai
- College of Forestry, Shandong Agricultural University, Tai’an, China
| | - Rui Zhou
- College of Forestry, Shandong Agricultural University, Tai’an, China
| | - Yan Bao
- College of Forestry, Shandong Agricultural University, Tai’an, China
| | - Wenrui Hou
- College of Forestry, Shandong Agricultural University, Tai’an, China
| | - Ke Qiang Yang
- College of Forestry, Shandong Agricultural University, Tai’an, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Agricultural University, Tai’an, China
- Shandong Taishan Forest Ecosystem Research Station, Shandong Agricultural University, Tai’an, China
- *Correspondence: Ke Qiang Yang,
| | - Dejun Wu
- Shandong Provincial Academy of Forestry, Jinan, China
- Dejun Wu,
| |
Collapse
|
25
|
Liu X, Yang X, Zhang B. Transcriptome analysis and functional identification of GmMYB46 in soybean seedlings under salt stress. PeerJ 2021; 9:e12492. [PMID: 34824922 PMCID: PMC8590805 DOI: 10.7717/peerj.12492] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/25/2021] [Indexed: 01/19/2023] Open
Abstract
Salinity is one of the major abiotic stress that limits crop growth and productivity. We investigated the transcriptomes of salt-treated soybean seedlings versus a control using RNA-seq to better understand the molecular mechanisms of the soybean (Glycine max L.) response to salt stress. Transcriptome analysis revealed 1,235 differentially expressed genes (DEGs) under salt stress. Several important pathways and key candidate genes were identified by KEGG enrichment. A total of 116 differentially expressed transcription factors (TFs) were identified, and 17 TFs were found to belong to MYB families. Phylogenetic analysis revealed that these TFs may be involved in salt stress adaptation. Further analysis revealed that GmMYB46 was up-regulated by salt and mannitol and was localized in the nucleus. The salt tolerance of transgenic Arabidopsis overexpressing GmMYB46 was significantly enhanced compared to wild-type (WT). GmMYB46 activates the expression of salt stress response genes (P5CS1, SOD, POD, NCED3) in Arabidopsis under salt stress, indicating that the GmMYB46 protein mediates the salt stress response through complex regulatory mechanisms. This study provides information with which to better understand the molecular mechanism of salt tolerance in soybeans and to genetically improve the crop.
Collapse
Affiliation(s)
- Xun Liu
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China.,College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xinxia Yang
- Department of Logistics, Hunan University of Science and Engineering, Yongzhou, China
| | - Bin Zhang
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| |
Collapse
|
26
|
Ahmad H, Maher M, Abdel-Salam EM, Li Y, Yang C, ElSafty N, Ewas M, Nishawy E, Luo J. Integrated de novo Analysis of Transcriptional and Metabolic Variations in Salt-Treated Solenostemma argel Desert Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:744699. [PMID: 34868128 PMCID: PMC8640078 DOI: 10.3389/fpls.2021.744699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/14/2021] [Indexed: 06/01/2023]
Abstract
Solenostemma argel (Delile) Hayne is a desert plant that survives harsh environmental conditions with several vital medicinal properties. Salt stress is a major constraint limiting agricultural production around the globe. However, response mechanisms behind the adaptation of S. argel plants to salt stress are still poorly understood. In the current study, we applied an omics approach to explore how this plant adapts to salt stress by integrating transcriptomic and metabolomic changes in the roots and leaves of S. argel plants under salt stress. De novo assembly of transcriptome produced 57,796 unigenes represented by 165,147 transcripts/isoforms. A total of 730 differentially expressed genes (DEGs) were identified in the roots (396 and 334 were up- and down-regulated, respectively). In the leaves, 927 DEGs were identified (601 and 326 were up- and down-regulated, respectively). Gene ontology and Kyoto Encyclopedia of Genes And Genomes pathway enrichment analyses revealed that several defense-related biological processes, such as response to osmotic and oxidative stress, hormonal signal transduction, mitogen-activated protein kinase signaling, and phenylpropanoid biosynthesis pathways are the potential mechanisms involved in the tolerance of S. argel plants to salt stress. Furthermore, liquid chromatography-tandem mass spectrometry was used to detect the metabolic variations of the leaves and roots of S. argel under control and salt stress. 45 and 56 critical metabolites showed changes in their levels in the stressed roots and leaves, respectively; there were 20 metabolites in common between the roots and leaves. Differentially accumulated metabolites included amino acids, polyamines, hydroxycinnamic acids, monolignols, flavonoids, and saccharides that improve antioxidant ability and osmotic adjustment of S. argel plants under salt stress. The results present insights into potential salt response mechanisms in S. argel desert plants and increase the knowledge in order to generate more tolerant crops to salt stress.
Collapse
Affiliation(s)
- Hasan Ahmad
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
- National Gene Bank, Agricultural Research Center, Giza, Egypt
| | - Mohamed Maher
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Eslam M. Abdel-Salam
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Yufei Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Chenkun Yang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Nagwa ElSafty
- Plant Genetics Resources Department, Desert Research Center, Cairo, Egypt
| | - Mohamed Ewas
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
- Plant Genetics Resources Department, Desert Research Center, Cairo, Egypt
| | - Elsayed Nishawy
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
- Plant Genetics Resources Department, Desert Research Center, Cairo, Egypt
| | - Jie Luo
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
- College of Tropical Crops, Hainan University, Haikou, China
| |
Collapse
|
27
|
Wu F, Huang H, Peng M, Lai Y, Ren Q, Zhang J, Huang Z, Yang L, Rensing C, Chen L. Adaptive Responses of Citrus grandis Leaves to Copper Toxicity Revealed by RNA-Seq and Physiology. Int J Mol Sci 2021; 22:ijms222112023. [PMID: 34769452 PMCID: PMC8585100 DOI: 10.3390/ijms222112023] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/24/2021] [Accepted: 10/29/2021] [Indexed: 01/29/2023] Open
Abstract
Copper (Cu)-toxic effects on Citrus grandis growth and Cu uptake, as well as gene expression and physiological parameters in leaves were investigated. Using RNA-Seq, 715 upregulated and 573 downregulated genes were identified in leaves of C. grandis seedlings exposed to Cu-toxicity (LCGSEC). Cu-toxicity altered the expression of 52 genes related to cell wall metabolism, thus impairing cell wall metabolism and lowering leaf growth. Cu-toxicity downregulated the expression of photosynthetic electron transport-related genes, thus reducing CO2 assimilation. Some genes involved in thermal energy dissipation, photorespiration, reactive oxygen species scavenging and cell redox homeostasis and some antioxidants (reduced glutathione, phytochelatins, metallothioneins, l-tryptophan and total phenolics) were upregulated in LCGSEC, but they could not protect LCGSEC from oxidative damage. Several adaptive responses might occur in LCGSEC. LCGSEC displayed both enhanced capacities to maintain homeostasis of Cu via reducing Cu uptake by leaves and preventing release of vacuolar Cu into the cytoplasm, and to improve internal detoxification of Cu by accumulating Cu chelators (lignin, reduced glutathione, phytochelatins, metallothioneins, l-tryptophan and total phenolics). The capacities to maintain both energy homeostasis and Ca homeostasis might be upregulated in LCGSEC. Cu-toxicity increased abscisates (auxins) level, thus stimulating stomatal closure and lowering water loss (enhancing water use efficiency and photosynthesis).
Collapse
|
28
|
Krahmer J, Hindle M, Perby LK, Mogensen HK, Nielsen TH, Halliday KJ, VanOoijen G, LeBihan T, Millar AJ. The circadian clock gene circuit controls protein and phosphoprotein rhythms in Arabidopsis thaliana. Mol Cell Proteomics 2021; 21:100172. [PMID: 34740825 PMCID: PMC8733343 DOI: 10.1016/j.mcpro.2021.100172] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/27/2021] [Accepted: 11/01/2021] [Indexed: 11/29/2022] Open
Abstract
Twenty-four-hour, circadian rhythms control many eukaryotic mRNA levels, whereas the levels of their more stable proteins are not expected to reflect the RNA rhythms, emphasizing the need to test the circadian regulation of protein abundance and modification. Here we present circadian proteomic and phosphoproteomic time series from Arabidopsis thaliana plants under constant light conditions, estimating that just 0.4% of quantified proteins but a much larger proportion of quantified phospho-sites were rhythmic. Approximately half of the rhythmic phospho-sites were most phosphorylated at subjective dawn, a pattern we term the “phospho-dawn.” Members of the SnRK/CDPK family of protein kinases are candidate regulators. A CCA1-overexpressing line that disables the clock gene circuit lacked most circadian protein phosphorylation. However, the few phospho-sites that fluctuated despite CCA1-overexpression still tended to peak in abundance close to subjective dawn, suggesting that the canonical clock mechanism is necessary for most but perhaps not all protein phosphorylation rhythms. To test the potential functional relevance of our datasets, we conducted phosphomimetic experiments using the bifunctional enzyme fructose-6-phosphate-2-kinase/phosphatase (F2KP), as an example. The rhythmic phosphorylation of diverse protein targets is controlled by the clock gene circuit, implicating posttranslational mechanisms in the transmission of circadian timing information in plants. Circadian (phospho)proteomics time courses of plants with or without functional clock. Most protein abundance/phosphorylation rhythms require a transcriptional oscillator. The majority of rhythmic phosphosites peak around subjective dawn (“phospho-dawn”). A phosphorylated serine of the metabolic enzyme F2KP has functional relevance.
Collapse
Affiliation(s)
- Johanna Krahmer
- SynthSys and School of Biological Sciences, CH Waddington Building, Max Born Crescent, Kings Buildings, University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom; Institute for Molecular Plant Science, School of Biological Sciences, Daniel Rutherford Building, Building, Max Born Crescent, Kings Buildings, University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom.
| | - Matthew Hindle
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, Easter Bush, Edinburgh, EH25 9RG, United Kingdom
| | - Laura K Perby
- Department of Plant and Environmental Sciences, University of Copenhagen, Section for Molecular Plant Biology, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Helle K Mogensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Section for Molecular Plant Biology, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Tom H Nielsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Section for Molecular Plant Biology, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Karen J Halliday
- Institute for Molecular Plant Science, School of Biological Sciences, Daniel Rutherford Building, Building, Max Born Crescent, Kings Buildings, University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom
| | - Gerben VanOoijen
- Institute for Molecular Plant Science, School of Biological Sciences, Daniel Rutherford Building, Building, Max Born Crescent, Kings Buildings, University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom
| | - Thierry LeBihan
- SynthSys and School of Biological Sciences, CH Waddington Building, Max Born Crescent, Kings Buildings, University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom
| | - Andrew J Millar
- SynthSys and School of Biological Sciences, CH Waddington Building, Max Born Crescent, Kings Buildings, University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom.
| |
Collapse
|
29
|
Song GQ, Han X, Ryner JT, Thompson A, Wang K. Utilizing MIKC-type MADS-box protein SOC1 for yield potential enhancement in maize. PLANT CELL REPORTS 2021; 40:1679-1693. [PMID: 34091722 PMCID: PMC8376726 DOI: 10.1007/s00299-021-02722-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/25/2021] [Indexed: 05/26/2023]
Abstract
Overexpression of Zea mays SOC gene promotes flowering, reduces plant height, and leads to no reduction in grain production per plant, suggesting enhanced yield potential, at least, through increasing planting density. MIKC-type MADS-box gene SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) is an integrator conserved in the plant flowering pathway. In this study, the maize SOC1 (ZmSOC1) gene was cloned and overexpressed in transgenic maize Hi-II genotype. The T0 plants were backcrossed with nontransgenic inbred B73 to produce first generation backcross (BC1) seeds. Phenotyping of both transgenic and null segregant (NT) BC1 plants was conducted in three independent experiments. The BC1 transgenic plants showed new attributes such as increased vegetative growth, accelerated flowering time, reduced overall plant height, and increased grain weight. Second generation backcross (BC2) plants were evaluated in the field using two planting densities. Compared to BC2 NT plants, BC2 transgenic plants, were 12-18% shorter, flowered 5 days earlier, and showed no reduction in grain production per plant and an increase in fat, starch, and simple sugars in the grain. Transcriptome comparison in young leaves of 56-day-old BC1 plants revealed that the overexpressed ZmSOC1 resulted in 107 differentially expressed genes. The upregulated transcription factor DNA BINDING WITH ONE FINGER 5.4 (DOF5.4) was among the genes responsible for the reduced plant height. Modulating expression of SOC1 opens a new and effective approach to promote flowering and reduce plant height, which may have potential to enhance crop yield and improve grain quality.
Collapse
Affiliation(s)
- Guo-Qing Song
- Department of Horticulture, Plant Biotechnology Resource and Outreach Center, Michigan State University, East Lansing, MI, 48824, USA.
| | - Xue Han
- Department of Horticulture, Plant Biotechnology Resource and Outreach Center, Michigan State University, East Lansing, MI, 48824, USA
| | - John T Ryner
- Department of Horticulture, Plant Biotechnology Resource and Outreach Center, Michigan State University, East Lansing, MI, 48824, USA
| | - Addie Thompson
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Kan Wang
- Department of Agronomy, Crop Bioengineering Center, Iowa State University, Ames, IA, 50011-1051, USA
| |
Collapse
|
30
|
Lv J, Liu J, Ming Y, Shi Y, Song C, Gong Z, Yang S, Ding Y. Reciprocal regulation between the negative regulator PP2CG1 phosphatase and the positive regulator OST1 kinase confers cold response in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1568-1587. [PMID: 33871153 DOI: 10.1111/jipb.13100] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 04/18/2021] [Indexed: 06/12/2023]
Abstract
Protein phosphorylation and dephosphorylation have been reported to play important roles in plant cold responses. In addition, phospho-regulatory feedback is a conserved mechanism for biological processes and stress responses in animals and plants. However, it is less well known that a regulatory feedback loop is formed by the protein kinase and the protein phosphatase in plant responses to cold stress. Here, we report that OPEN STOMATA 1 (OST1) and PROTEIN PHOSPHATASE 2C G GROUP 1 (PP2CG1) reciprocally regulate the activity during the cold stress response. The interaction of PP2CG1 and OST1 is inhibited by cold stress, which results in the release of OST1 at the cytoplasm and nucleus from suppression by PP2CG1. Interestingly, cold-activated OST1 phosphorylates PP2CG1 to suppress its phosphatase activity, thereby amplifying cold signaling in plants. Mutations of PP2CG1 and its homolog PP2CG2 enhance freezing tolerance, whereas overexpression of PP2CG1 decreases freezing tolerance. Moreover, PP2CG1 negatively regulates protein levels of C-REPEAT BINDING FACTORs (CBFs) under cold stress. Our results uncover a phosphor/dephosphor-regulatory feedback loop mediated by PP2CG1 phosphatase and OST1 protein kinase in plant cold responses.
Collapse
Affiliation(s)
- Jian Lv
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jingyan Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yuhang Ming
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yiting Shi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Chunpeng Song
- Institute of Plant Stress Biology, Collaborative Innovation Center of Crop Stress Biology, Henan University, Kaifeng, 475001, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yanglin Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
31
|
Chu M, Chen P, Meng S, Xu P, Lan W. The Arabidopsis phosphatase PP2C49 negatively regulates salt tolerance through inhibition of AtHKT1;1. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:528-542. [PMID: 32877013 DOI: 10.1111/jipb.13008] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/31/2020] [Indexed: 05/08/2023]
Abstract
Type 2C protein phosphatases (PP2Cs) are the largest protein phosphatase family. PP2Cs dephosphorylate substrates for signaling in Arabidopsis, but the functions of most PP2Cs remain unknown. Here, we characterized PP2C49 (AT3G62260, a Group G PP2C), which regulates Na+ distribution under salt stress and is localized to the cytoplasm and nucleus. PP2C49 was highly expressed in root vascular tissues and its disruption enhanced plant tolerance to salt stress. Compared with wild type, the pp2c49 mutant contained more Na+ in roots but less Na+ in shoots and xylem sap, suggesting that PP2C49 regulates shoot Na+ extrusion. Reciprocal grafting revealed a root-based mechanism underlying the salt tolerance of pp2c49. Systemic Na+ distribution largely depends on AtHKT1;1 and loss of function of AtHKT1;1 in the pp2c49 background overrode the salt tolerance of pp2c49, resulting in salt sensitivity. Furthermore, compared with plants overexpressing PP2C49 in the wild-type background, plants overexpressing PP2C49 in the athtk1;1 mutant background were sensitive to salt, like the athtk1;1 mutants. Moreover, protein-protein interaction and two-voltage clamping assays demonstrated that PP2C49 physically interacts with AtHKT1;1 and inhibits the Na+ permeability of AtHKT1;1. This study reveals that PP2C49 negatively regulates AtHKT1;1 activity and thus determines systemic Na+ allocation during salt stress.
Collapse
Affiliation(s)
- Moli Chu
- State Key Laboratory for Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Pengwang Chen
- State Key Laboratory for Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Sufang Meng
- State Key Laboratory for Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Peng Xu
- State Key Laboratory for Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Wenzhi Lan
- State Key Laboratory for Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
32
|
Xing B, Gu C, Zhang T, Zhang Q, Yu Q, Jiang J, Liu G. Functional Study of BpPP2C1 Revealed Its Role in Salt Stress in Betula platyphylla. FRONTIERS IN PLANT SCIENCE 2021; 11:617635. [PMID: 33519877 PMCID: PMC7841333 DOI: 10.3389/fpls.2020.617635] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/17/2020] [Indexed: 05/15/2023]
Abstract
PP2C protein phosphatase family is one of the largest gene families in the plant genome. Many PP2C family members are involved in the regulation of abiotic stress. We found that BpPP2C1 gene has highly up-regulated in root under salt stress in Betula platyphylla. Thus, transgenic plants of Betula platyphylla with overexpression and knockout of BpPP2C1 gene were generated using a zygote transformation system. Under NaCl stress treatment, we measured the phenotypic traits of transgenic plants, chlorophyll-fluorescence parameters, peroxidase (POD) activity, superoxide dismutase (SOD) activity, and malondialdehyde (MDA) content. We found that BpPP2C1 overexpressed lines showed obvious salt tolerance, while BpPP2C1 knocked out plants were sensitive to salt stress. Transcriptome analysis identified significantly amount of differentially expressed genes associated with salt stress in BpPP2C1 transgenic lines, especially genes in abscisic acid signaling pathway, flavonoid biosynthetic pathway, oxidative stress and anion transport. Functional study of BpPP2C1 in Betula platyphylla revealed its role in salt stress.
Collapse
Affiliation(s)
- Baoyue Xing
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Chenrui Gu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Tianxu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Qingzhu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Qibin Yu
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Jing Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Guifeng Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| |
Collapse
|
33
|
Zhang Y, Zhou J, Wei F, Song T, Yu Y, Yu M, Fan Q, Yang Y, Xue G, Zhang X. Nucleoredoxin Gene TaNRX1 Positively Regulates Drought Tolerance in Transgenic Wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2021; 12:756338. [PMID: 34868149 PMCID: PMC8632643 DOI: 10.3389/fpls.2021.756338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/18/2021] [Indexed: 05/13/2023]
Abstract
Drought is the main abiotic stress factor limiting the growth and yield of wheat (Triticum aestivum L.). Therefore, improving wheat tolerance to drought stress is essential for maintaining yield. Previous studies have reported on the important role of TaNRX1 in conferring drought stress tolerance. Therefore, to elucidate the regulation mechanism by which TaNRX1 confers drought resistance in wheat, we generated TaNRX1 overexpression (OE) and RNA interference (RNAi) wheat lines. The results showed that the tolerance of the OE lines to drought stress were significantly enhanced. The survival rate, leaf chlorophyll, proline, soluble sugar content, and activities of the antioxidant enzymes (catalase, superoxide dismutase, and peroxidase) of the OE lines were higher than those of the wild type (WT); however, the relative electrical conductivity and malondialdehyde, hydrogen peroxide, and superoxide anion levels of the OE lines were lower than those of the WT; the RNAi lines showed the opposite results. RNA-seq results showed that the common differentially expressed genes of TaNRX1 OE and RNAi lines, before and after drought stress, were mainly distributed in the plant-pathogen interaction, plant hormone signal transduction, phenylpropane biosynthesis, starch and sucrose metabolism, and carbon metabolism pathways and were related to the transcription factors, including WRKY, MYB, and bHLH families. This study suggests that TaNRX1 positively regulates drought stress tolerance in wheat.
Collapse
Affiliation(s)
- Yunrui Zhang
- College of Agronomy, Northwest A&F University, Xianyang, China
| | - Jianfei Zhou
- College of Agronomy, Northwest A&F University, Xianyang, China
| | - Fan Wei
- College of Agronomy, Northwest A&F University, Xianyang, China
| | - Tianqi Song
- College of Agronomy, Northwest A&F University, Xianyang, China
| | - Yang Yu
- College of Agronomy, Northwest A&F University, Xianyang, China
| | - Ming Yu
- College of Agronomy, Northwest A&F University, Xianyang, China
| | - Qiru Fan
- College of Agronomy, Northwest A&F University, Xianyang, China
| | - Yanning Yang
- College of Agronomy, Northwest A&F University, Xianyang, China
| | - Gang Xue
- College of Tobacco, Henan Agricultural University, Zhengzhou, China
- *Correspondence: Gang Xue,
| | - Xiaoke Zhang
- College of Agronomy, Northwest A&F University, Xianyang, China
- Xiaoke Zhang,
| |
Collapse
|
34
|
Transcriptomic profile analysis of the halophyte Suaeda rigida response and tolerance under NaCl stress. Sci Rep 2020; 10:15148. [PMID: 32939003 PMCID: PMC7494938 DOI: 10.1038/s41598-020-71529-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 08/17/2020] [Indexed: 11/17/2022] Open
Abstract
Suaeda rigida is a lignified, true haplotype that predominantly grows in the Tarim basin, China. It has significant economic and ecological value. Herein, with aim to determine the genes associated with salt tolerance, transcriptome sequencing was performed on its stem, leaves and root over three set NaCl gradients regimens at treatment intervals of 3 h and 5 days. From our findings, we identified 829,095 unigenes, with 331,394 being successfully matched to at least one annotation database. In roots, under 3 h treatment, no up-regulated DEGs were identified in 100 and 500 mM NaCl treated samples. Under 5 days treatment, 97, 60 and 242 up-regulated DEGs were identified in 100, 300, 500 mM NaCl treated samples, respectively. We identified 50, 22 and 255 down-regulated DEGs in 100, 300, 500 mM NaCl treated samples, respectively. GO biological process enrichment analysis established that down-regulated DEGs were associated with nitrogen compound transport, organic substance transport and intracellular protein transport while the up-regulated genes were enriched in cell wall biogenesis, such as plant-type cell wall biogenesis, cell wall assembly, extracellular matrix organization and plant-type cell wall organization. These findings provide valuable knowledge on genes associated with salt tolerance of Suaeda rigida, and can be applied in other downstream haplotype studies.
Collapse
|
35
|
Chen F, Fang P, Zeng W, Ding Y, Zhuang Z, Peng Y. Comparing transcriptome expression profiles to reveal the mechanisms of salt tolerance and exogenous glycine betaine mitigation in maize seedlings. PLoS One 2020; 15:e0233616. [PMID: 32470066 PMCID: PMC7259585 DOI: 10.1371/journal.pone.0233616] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/09/2020] [Indexed: 01/29/2023] Open
Abstract
Salt stress is a common abiotic stress that limits the growth, development and yield of maize (Zea mays L.). To better understand the response of maize to salt stress and the mechanism by which exogenous glycine betaine (GB) alleviates the damaging effects of salt stress, the morphology, physiological and biochemical indexes, and root transcriptome expression profiles of seedlings of salt-sensitive inbred line P138 and salt-tolerant inbred line 8723 were compared under salt stress and GB-alleviated salt stress conditions. The results showed that under salt stress the growth of P138 was significantly inhibited and the vivo ion balance was disrupted, whereas 8723 could prevent salt injury by maintaining a high ratio of K+ to Na+. The addition of a suitable concentration of GB could effectively alleviate the damage caused by salt stress, and the mitigating effect on salt-sensitive inbred line P138 was more obvious than that on 8723. Transcriptome analysis revealed that 219 differentially expressed genes (DEGs) were up-regulated and 153 DEGs were down-regulated in both P138 and 8723 under NaCl treatment, and that 487 DEGs were up-regulated and 942 DEGs were down-regulated in both P138 and 8723 under salt plus exogenous GB treatment. In 8723 the response to salt stress is mainly achieved through stabilizing ion homeostasis, strong signal transduction activation, increasing reactive oxygen scavenging. GB alleviates salt stress in maize mainly by inducing gene expression changes to enhance the ion balance, secondary metabolic level, reactive oxygen scavenging mechanism, signal transduction activation. In addition, the transcription factors involved in the regulation of salt stress response and exogenous GB mitigation mainly belong to the MYB, MYB-related, AP2-EREBP, bHLH, and NAC families. We verified 10 selected up-regulated DEGs by quantitative real-time polymerase chain reaction (qRT-PCR), and the expression results were basically consistent with the transcriptome expression profiles. Our results from this study may provide the theoretical basis for determining maize salt tolerance mechanisms and the mechanism by which GB regulates salt tolerance.
Collapse
Affiliation(s)
- Fenqi Chen
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Peng Fang
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Wenjing Zeng
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Yongfu Ding
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Zelong Zhuang
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Yunling Peng
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
- Gansu Provincial Key Lab of Aridland Crop Science, Lanzhou, China
| |
Collapse
|
36
|
Wang J, An C, Guo H, Yang X, Chen J, Zong J, Li J, Liu J. Physiological and transcriptomic analyses reveal the mechanisms underlying the salt tolerance of Zoysia japonica Steud. BMC PLANT BIOLOGY 2020; 20:114. [PMID: 32169028 PMCID: PMC7071773 DOI: 10.1186/s12870-020-02330-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/05/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND Areas with saline soils are sparsely populated and have fragile ecosystems, which severely restricts the sustainable development of local economies. Zoysia grasses are recognized as excellent warm-season turfgrasses worldwide, with high salt tolerance and superior growth in saline-alkali soils. However, the mechanism underlying the salt tolerance of Zoysia species remains unknown. RESULTS The phenotypic and physiological responses of two contrasting materials, Zoysia japonica Steud. Z004 (salt sensitive) and Z011 (salt tolerant) in response to salt stress were studied. The results show that Z011 was more salt tolerant than was Z004, with the former presenting greater K+/Na+ ratios in both its leaves and roots. To study the molecular mechanisms underlying salt tolerance further, we compared the transcriptomes of the two materials at different time points (0 h, 1 h, 24 h, and 72 h) and from different tissues (leaves and roots) under salt treatment. The 24-h time point and the roots might make significant contributions to the salt tolerance. Moreover, GO and KEGG analyses of different comparisons revealed that the key DEGs participating in the salt-stress response belonged to the hormone pathway, various TF families and the DUF family. CONCLUSIONS Zoysia salt treatment transcriptome shows the 24-h and roots may make significant contributions to the salt tolerance. The auxin signal transduction family, ABA signal transduction family, WRKY TF family and bHLH TF family may be the most important families in Zoysia salt-stress regulation.
Collapse
Affiliation(s)
- Jingjing Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Cong An
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Hailin Guo
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China.
| | - Xiangyang Yang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Jingbo Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Junqin Zong
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Jianjian Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Jianxiu Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| |
Collapse
|
37
|
Sun BR, Fu CY, Fan ZL, Chen Y, Chen WF, Zhang J, Jiang LQ, Lv S, Pan DJ, Li C. Genomic and transcriptomic analysis reveal molecular basis of salinity tolerance in a novel strong salt-tolerant rice landrace Changmaogu. RICE (NEW YORK, N.Y.) 2019; 12:99. [PMID: 31883029 PMCID: PMC6934643 DOI: 10.1186/s12284-019-0360-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 12/19/2019] [Indexed: 05/14/2023]
Abstract
BACKGROUND Salt stress is an important factor that limits rice yield. We identified a novel, strongly salt tolerant rice landrace called Changmaogu (CMG) collected from a coastal beach of Zhanjiang, Guangdong Province, China. The salt tolerance of CMG was much better than that of the international recognized salt tolerant rice cultivar Pokkali in the germination and seedling stages. RESULTS To understand the molecular basis of salt tolerance in CMG, we performed BSA-seq for two extreme bulks derived from the cross between CMG and a cultivar sensitive to salt, Zhefu802. Transcriptomic sequencing was conducted for CMG at the germination and young seedling stages. Six candidate regions for salt tolerance were mapped on Chromosome 1 by BSA-seq using the extreme populations. Based on the polymorphisms identified between both parents, we detected 32 genes containing nonsynonymous coding single nucleotide polymorphisms (SNPs) and frameshift mutations in the open reading frame (ORF) regions. With transcriptomic sequencing, we detected a large number of differentially expressed genes (DEGs) at the germination and seedling stages under salt stress. KEGG analysis indicated two of 69 DEGs shared at the germination and seedling stages were significantly enriched in the pathway of carotenoid biosynthesis. Of the 169 overlapping DEGs among three sample points at the seedling stage, 13 and six DEGs were clustered into the pathways of ABA signal transduction and carotenoid biosynthesis, respectively. Of the 32 genes carrying sequence variation, only OsPP2C8 (Os01g0656200) was differentially expressed in the young seedling stage under salt stress and also showed sequence polymorphism in the ORFs between CMG and Zhefu802. CONCLUSION OsPP2C8 was identified as the target candidate gene for salinity tolerance in the seedling stage. This provides an important genetic resource for the breeding of novel salt tolerant rice cultivars.
Collapse
Affiliation(s)
- Bing-Rui Sun
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Chong-Yun Fu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Zhi-Lan Fan
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
| | - Yu Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
| | - Wen-Feng Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
| | - Jing Zhang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
| | - Li-Qun Jiang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
| | - Shuwei Lv
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
| | - Da-Jian Pan
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
| | - Chen Li
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
| |
Collapse
|
38
|
Bhaskara GB, Wong MM, Verslues PE. The flip side of phospho-signalling: Regulation of protein dephosphorylation and the protein phosphatase 2Cs. PLANT, CELL & ENVIRONMENT 2019; 42:2913-2930. [PMID: 31314921 DOI: 10.1111/pce.13616] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/21/2019] [Accepted: 06/29/2019] [Indexed: 05/12/2023]
Abstract
Protein phosphorylation is a key signalling mechanism and has myriad effects on protein function. Phosphorylation by protein kinases can be reversed by protein phosphatases, thus allowing dynamic control of protein phosphorylation. Although this may suggest a straightforward kinase-phosphatase relationship, plant genomes contain five times more kinases than phosphatases. Here, we examine phospho-signalling from a protein phosphatase centred perspective and ask how relatively few phosphatases regulate many phosphorylation sites. The most abundant class of plant phosphatases, the protein phosphatase 2Cs (PP2Cs), is surrounded by a web of regulation including inhibitor and activator proteins as well as posttranslational modifications that regulate phosphatase activity, control phosphatase stability, or determine the subcellular locations where the phosphatase is present and active. These mechanisms are best established for the Clade A PP2Cs, which are key components of stress and abscisic acid signalling. We also describe other PP2C clades and illustrate how these phosphatases are highly regulated and involved in a wide range of physiological functions. Together, these examples of multiple layers of phosphatase regulation help explain the unbalanced kinase-phosphatase ratio. Continued use of phosphoproteomics to examine phosphatase targets and phosphatase-kinase relationships will be important for deeper understanding of phosphoproteome regulation.
Collapse
Affiliation(s)
| | - Min May Wong
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Paul E Verslues
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| |
Collapse
|
39
|
Tian L, Zhang Y, Kang E, Ma H, Zhao H, Yuan M, Zhu L, Fu Y. Basic-leucine zipper 17 and Hmg-CoA reductase degradation 3A are involved in salt acclimation memory in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:1062-1084. [PMID: 30450762 DOI: 10.1111/jipb.12744] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 11/12/2018] [Indexed: 05/18/2023]
Abstract
Salt acclimation, which is induced by previous salt exposure, increases the resistance of plants to future exposure to salt stress. However, little is known about the underlying mechanism, particularly how plants store the "memory" of salt exposure. In this study, we established a system to study salt acclimation in Arabidopsis thaliana. Following treatment with a low concentration of salt, seedlings were allowed to recover to allow transitory salt responses to subside while maintaining the sustainable effects of salt acclimation. We performed transcriptome profiling analysis of these seedlings to identify genes related to salt acclimation memory. Notably, the expression of Basic-leucine zipper 17 (bZIP17) and Hmg-CoA reductase degradation 3A (HRD3A), which are important in the unfolded protein response (UPR) and endoplasmic reticulum-associated degradation (ERAD), respectively, increased following treatment with a low concentration of salt and remained at stably high levels after the stimulus was removed, a treatment which improved plant tolerance to future high-salinity challenge. Our findings suggest that the upregulated expression of important genes involved in the UPR and ERAD represents a "memory" of the history of salt exposure and enables more potent responses to future exposure to salt stress, providing new insights into the mechanisms underlying salt acclimation in plants.
Collapse
Affiliation(s)
- Lin Tian
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yan Zhang
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Erfang Kang
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Huifang Ma
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Huan Zhao
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ming Yuan
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lei Zhu
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ying Fu
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
40
|
Sadhukhan A, Enomoto T, Kobayashi Y, Watanabe T, Iuchi S, Kobayashi M, Sahoo L, Yamamoto YY, Koyama H. Sensitive to Proton Rhizotoxicity1 Regulates Salt and Drought Tolerance of Arabidopsis thaliana through Transcriptional Regulation of CIPK23. PLANT & CELL PHYSIOLOGY 2019; 60:2113-2126. [PMID: 31241160 DOI: 10.1093/pcp/pcz120] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/11/2019] [Indexed: 05/10/2023]
Abstract
The transcription factor sensitive to proton rhizotoxicity 1 (STOP1) regulates multiple stress tolerances. In this study, we confirmed its involvement in NaCl and drought tolerance. The root growth of the T-DNA insertion mutant of STOP1 (stop1) was sensitive to NaCl-containing solidified MS media. Transcriptome analysis of stop1 under NaCl stress revealed that STOP1 regulates several genes related to salt tolerance, including CIPK23. Among all available homozygous T-DNA insertion mutants of the genes suppressed in stop1, only cipk23 showed a NaCl-sensitive root growth phenotype comparable to stop1. The CIPK23 promoter had a functional STOP1-binding site, suggesting a strong CIPK23 suppression led to NaCl sensitivity of stop1. This possibility was supported by in planta complementation of CIPK23 in the stop1 background, which rescued the short root phenotype under NaCl. Both stop1 and cipk23 exhibited a drought tolerant phenotype and increased abscisic acid-regulated stomatal closure, while the complementation of CIPK23 in stop1 reversed these traits. Our findings uncover additional pleiotropic roles of STOP1 mediated by CIPK23, which regulates various ion transporters including those regulating K+-homeostasis, which may induce a trade-off between drought tolerance and other traits.
Collapse
Affiliation(s)
- Ayan Sadhukhan
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Japan
| | - Takuo Enomoto
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Japan
| | - Yuriko Kobayashi
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Japan
| | - Toshihiro Watanabe
- Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kitaku, Sapporo, Japan
| | - Satoshi Iuchi
- Experimental Plant Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Masatomo Kobayashi
- Experimental Plant Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Lingaraj Sahoo
- Department of Biosciences and bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Yoshiharu Y Yamamoto
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Japan
| | - Hiroyuki Koyama
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Japan
| |
Collapse
|
41
|
Yu X, Han J, Wang E, Xiao J, Hu R, Yang G, He G. Genome-Wide Identification and Homoeologous Expression Analysis of PP2C Genes in Wheat ( Triticum aestivum L.). Front Genet 2019; 10:561. [PMID: 31249596 PMCID: PMC6582248 DOI: 10.3389/fgene.2019.00561] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/29/2019] [Indexed: 01/03/2023] Open
Abstract
Plant protein phosphatase 2Cs (PP2Cs) play crucial roles in phytohormone signaling, developmental processes, and both biotic and abiotic stress responses. However, little research has been conducted on the PP2C gene family in hexaploid wheat (Triticum aestivum L.), which is an important cereal crop. In this study, a genome-wide investigation of TaPP2C gene family was performed. A total of 257 homoeologs of 95 TaPP2C genes were identified, of which 80% of genes had all the three homoeologs across A, B, and D subgenomes. Domain analysis indicated that all the TaPP2C homoeologs harbored the type 2C phosphatase domains. Based on the phylogenetic analysis, TaPP2Cs were divided into 13 groups (A-M) and 4 single branches, which corresponded to the results of gene structure and protein motif analyses. Results of chromosomal location and synteny relationship analysis of TaPP2C homoeologs revealed that known chromosome translocation events and pericentromeric inversions were responsible for the formation of TaPP2C gene family. Expression patterns of TaPP2C homoeologs in various tissues and under diverse stress conditions were analyzed using publicly available RNA-seq data. The results suggested that TaPP2C genes regulate wheat developmental processes and stress responses. Homoeologous expression patterns of TaPP2C triad homoeologs from A, B, and D subgenomes, revealed expression bias within triads under the normal condition, and variability in expression under different stress treatments. Quantitative real-time PCR (qRT-PCR) analysis of eight TaPP2C genes in group A revealed that they were all up-regulated after abscisic acid treatment. Some genes in group A also responded to other phytohormones such as methyl jasmonate and gibberellin. Yeast two-hybrid assays showed that group A TaPP2Cs also interacted with TaSnRK2.1 and TaSnRK2.2 from subclass II, besides with subclass III TaSnRK2s. TaPP2C135 in group A was transformed into Arabidopsis and germination assay revealed that ectopic expression of TaPP2C135 in Arabidopsis enhanced its tolerance to ABA. Overall, these results enhance our understanding of the function of TaPP2Cs in wheat, and provide novel insights into the roles of group A TaPP2Cs. This information will be useful for in-depth functional analysis of TaPP2Cs in future studies and for wheat breeding.
Collapse
Affiliation(s)
| | | | | | | | | | - Guangxiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Guangyuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
42
|
Genome-Wide Identification, Evolution, and Transcriptional Profiling of PP2C Gene Family in Brassica rapa. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2965035. [PMID: 31073524 PMCID: PMC6470454 DOI: 10.1155/2019/2965035] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 01/06/2019] [Accepted: 02/12/2019] [Indexed: 11/18/2022]
Abstract
The type 2C protein which belongs to the major group of protein phosphatases (PP2C) plays a vital role in abscisic acid (ABA) signaling and signal transductions processes. In the present study, 131 PP2C genes were identified in total in Brassica rapa and categorized into thirteen subgroups based on their phylogenetic relationships. These B. rapa PP2C are structurally conserved based on amino acid sequence alignment, phylogenetic analysis, and conserved domains. Moreover, we utilized previously reported RNA-sequence data on various tissues (root, stem, leaf, flower, and silique), which suggests overlapping expression pattern in 29 paralogous gene pairs. The qRT-PCR validation of 15 paralogous gene pairs depicts distinct expression patterns in response to various abiotic stresses, such as heat, cold, ABA, and drought. Interestingly, stress-responsive BraPP2C candidate genes were also identified, suggesting their significance in stress-tolerance mechanism in B. rapa. The evolutionary analysis for 15 paralogous gene pairs suggested that only three pairs have the positive selection and remaining were purifying in nature. The presented results of this study hasten our understanding of the molecular evolution of the PP2C gene family in B. rapa. Thus, it will be ultimately helping in future research for facilitating the functional characterization of BraPP2C genes in developing the abiotic stress tolerant plants.
Collapse
|
43
|
Identification and Expression Profiling of Protein Phosphatases ( PP2C) Gene Family in Gossypium hirsutum L. Int J Mol Sci 2019; 20:ijms20061395. [PMID: 30897702 PMCID: PMC6471114 DOI: 10.3390/ijms20061395] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/16/2019] [Accepted: 03/18/2019] [Indexed: 01/02/2023] Open
Abstract
The protein phosphatase (PP2C) gene family, known to participate in cellular processes, is one of the momentous and conserved plant-specific gene families that regulate signal transduction in eukaryotic organisms. Recently, PP2Cs were identified in Arabidopsis and various other crop species, but analysis of PP2C in cotton is yet to be reported. In the current research, we found 87 (Gossypiumarboreum), 147 (Gossypiumbarbadense), 181 (Gossypiumhirsutum), and 99 (Gossypiumraimondii) PP2C-encoding genes in total from the cotton genome. Herein, we provide a comprehensive analysis of the PP2C gene family in cotton, such as gene structure organization, gene duplications, expression profiling, chromosomal mapping, protein motif organization, and phylogenetic relationships of each species. Phylogenetic analysis further categorized PP2C genes into 12 subgroups based on conserved domain composition analysis. Moreover, we observed a strong signature of purifying selection among duplicated pairs (i.e., segmental and dispersed) of Gossypiumhirsutum. We also observed the tissue-specific response of GhPP2C genes in organ and fiber development by comparing the RNA-sequence (RNA-seq) data reported on different organs. The qRT-PCR validation of 30 GhPP2C genes suggested their critical role in cotton by exposure to heat, cold, drought, and salt stress treatments. Hence, our findings provide an overview of the PP2C gene family in cotton based on various bioinformatic tools that demonstrated their critical role in organ and fiber development, and abiotic stress tolerance, thereby contributing to the genetic improvement of cotton for the resistant cultivar.
Collapse
|
44
|
Haider MS, Khan N, Pervaiz T, Zhongjie L, Nasim M, Jogaiah S, Mushtaq N, Jiu S, Jinggui F. Genome-wide identification, evolution, and molecular characterization of the PP2C gene family in woodland strawberry. Gene 2019; 702:27-35. [PMID: 30890476 DOI: 10.1016/j.gene.2019.03.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/09/2019] [Accepted: 03/14/2019] [Indexed: 12/11/2022]
Abstract
The protein phosphatase 2C (PP2C) gene family is one of the momentous and conserved plant-specific gene families, known to participate in cellular processes via reversible protein phosphorylation and regulates signal transduction in eukaryotic organisms. Recently, PP2Cs were identified in Arabidopsis and maize, however, the whole-genome analysis of PP2C in strawberry has not yet been reported. In the current research, we found 62 PP2C-encoding genes in total from the strawberry genome. Further, the phylogenetic analysis categorized FvPP2C genes into twelve subgroups with significant structural conservation based on conserved domain and amino acid sequence. Moreover, we observed a strong signature of purifying selection between the comparison of orthologous gene pairs of strawberry and Arabidopsis. The comparison of RNA-sequence (RNA-seq) data published on various vegetative and reproductive tissues of strawberry plant suggested the significant role of FvPP2C genes in organ development. The qRT-PCR validation of thirty FvPP2C genes indicated their critical tolerance-related role under abiotic stress stimuli in strawberry. Finally, the subcellular localization of FvPP2C51 gene proves that it resides and stimulates its function in the nucleus. Our findings provide an overview of the identification of strawberry FvPP2C gene family and demonstrate their critical role in tissue-specific response and abiotic stress-tolerance, thereby, intimating their significance in the strawberry molecular breeding for the resistant cultivars.
Collapse
Affiliation(s)
- Muhammad Salman Haider
- Key Laboratory of Genetics and Fruit Development, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Nadeem Khan
- Key Laboratory of Genetics and Fruit Development, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Tariq Pervaiz
- Key Laboratory of Genetics and Fruit Development, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Liu Zhongjie
- Key Laboratory of Genetics and Fruit Development, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Maazullah Nasim
- Key Laboratory of Genetics and Fruit Development, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Sudisha Jogaiah
- Laboratory of Plant Healthcare and Diagnostics, P.G. Department of Biotechnology and Microbiology, Karnataka University, Dharwad, India
| | - Naveed Mushtaq
- Key Laboratory of Genetics and Fruit Development, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Songtao Jiu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Fang Jinggui
- Key Laboratory of Genetics and Fruit Development, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
45
|
Wang GL, Ren XQ, Liu JX, Yang F, Wang YP, Xiong AS. Transcript profiling reveals an important role of cell wall remodeling and hormone signaling under salt stress in garlic. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 135:87-98. [PMID: 30529171 DOI: 10.1016/j.plaphy.2018.11.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/07/2018] [Accepted: 11/28/2018] [Indexed: 06/09/2023]
Abstract
Salt stress is one of the environmental factors that evidently limit plant growth and yield. Despite the fact that understanding plant response to salt stress is important to agricultural practice, the molecular mechanisms underlying salt tolerance in garlic remain unclear. In this study, garlic seedlings were exposed to 200 mM NaCl stress for 0, 1, 4, and 12 h, respectively. RNA-seq was applied to analyze the transcriptional response under salinity conditions. A total of 13,114 out of 25,530 differentially expressed unigenes were identified to have pathway annotation, which were mainly involved in purine metabolism, starch and sucrose metabolism, plant hormone signal transduction, flavone and flavonol biosynthesis, isoflavonoid biosynthesis, MAPK signaling pathway, and circadian rhythm. In addition, 272 and 295 differentially expressed genes were identified to be cell wall and hormone signaling-related, respectively, and their interactions under salinity stress were extensively discussed. The results from the current work would provide new resources for the breeding aimed at improving salt tolerance in garlic.
Collapse
Affiliation(s)
- Guang-Long Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Xu-Qin Ren
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Jie-Xia Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Yang
- Institute of Horticulture, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Xuzhou, 221131, China
| | - Yun-Peng Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
46
|
Liu Q, Tang J, Wang W, Zhang Y, Yuan H, Huang S. Transcriptome analysis reveals complex response of the medicinal/ornamental halophyte Iris halophila Pall. to high environmental salinity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 165:250-260. [PMID: 30199796 DOI: 10.1016/j.ecoenv.2018.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/28/2018] [Accepted: 09/01/2018] [Indexed: 05/25/2023]
Abstract
The remediation and subsequent use of saline-alkaline land are of great significance to ecological environment construction and sustainable agricultural development. Iris halophila Pall. is a salt-tolerant medicinal and ornamental plant, which has good application prospects in the ecological construction of saline-alkaline land; therefore, study of the molecular mechanisms of salt tolerance in I. halophila has important theoretical and practical value. To evaluate the molecular mechanism of the response of I. halophila to salt toxicity, I. halophila seedlings were treated with salt (300 mM NaCl) and subjected to deep RNA sequencing. The clean reads were obtained and assembled into 297,188 unigenes. Among them, 1120 and 100 salt-responsive genes were identified in I. halophila shoots and roots, respectively. Among them, the key flavonoid and lignin biosynthetic genes, hormone signaling genes, sodium/potassium ion transporter genes, and transcription factors were analyzed and summarized. Quantitative reverse-transcription PCR analysis strengthened the reliability of the RNA sequencing results. This work provides an overview of the transcriptomic responses to salt toxicity in I. halophila and identifies the responsive genes that may contribute to its reduced salt toxicity. These results lay an important foundation for further study of the molecular mechanisms of salt tolerance in I. halophila and related species.
Collapse
Affiliation(s)
- Qingquan Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Jun Tang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China; Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Weilin Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Yongxia Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Haiyan Yuan
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Suzhen Huang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China.
| |
Collapse
|
47
|
Tao F, Wang J, Guo Z, Hu J, Xu X, Yang J, Chen X, Hu X. Transcriptomic Analysis Reveal the Molecular Mechanisms of Wheat Higher-Temperature Seedling-Plant Resistance to Puccinia striiformis f. sp. tritici. FRONTIERS IN PLANT SCIENCE 2018; 9:240. [PMID: 29541084 PMCID: PMC5835723 DOI: 10.3389/fpls.2018.00240] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is a destructive disease of wheat worldwide. The disease is preferably controlled by growing resistant cultivars. Wheat cultivar Xiaoyan 6 (XY 6) has been resistant to stripe rust since its release. In the previous studies, XY 6 was found to have higher-temperature seedling-plant (HTSP) resistance. However, the molecular mechanisms of HTSP resistance were not clear. To identify differentially expressed genes (DEGs) involved in HTSP resistance, we sequenced 30 cDNA libraries constructed from XY 6 seedlings exposed to several temperature treatments. Compared to the constant normal (15°C) and higher (20°C) temperature treatments, 1395 DEGs were identified in seedlings exposed to 20°C for 24 h (to activate HTSP resistance) and then kept at 15°C. These DEGs were located on all 21 chromosomes, with 29.2% on A, 41.1% on B and 29.7% on D genomes, by mapping to the Chinese Spring wheat genome. The 1395 DEGs were enriched in ribosome, plant-pathogen interaction and glycerolipid metabolism pathways, and some of them were identified as hub proteins (phosphatase 2C10), resistance protein homologs, WRKY transcription factors and protein kinases. The majority of these genes were up-regulated in HTSP resistance. Based on the differential expression, we found that phosphatase 2C10 and LRR receptor-like serine/threonine protein kinases are particularly interesting as they may be important for HTSP resistance through interacting with different resistance proteins, leading to a hypersensitive response.
Collapse
Affiliation(s)
- Fei Tao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Junjuan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Zhongfeng Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jingjing Hu
- Wuhan UnigueGene Bioinformatics Science and Technology Co., Ltd, Wuhan, China
| | - Xiangming Xu
- NIAB East Malling Research (EMR), East Malling, United Kingdom
| | - Jiarong Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
- *Correspondence: Jiarong Yang
| | - Xianming Chen
- Agricultural Research Service, United States Department of Agriculture and Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Xiaoping Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
- Xiaoping Hu
| |
Collapse
|
48
|
Cao J, Jiang M, Li P, Chu Z. Genome-wide identification and evolutionary analyses of the PP2C gene family with their expression profiling in response to multiple stresses in Brachypodium distachyon. BMC Genomics 2016; 17:175. [PMID: 26935448 PMCID: PMC4776448 DOI: 10.1186/s12864-016-2526-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 02/24/2016] [Indexed: 12/21/2022] Open
Abstract
Background The type-2C protein phosphatases (PP2Cs), negatively regulating ABA responses and MAPK cascade pathways, play important roles in stress signal transduction in plants. Brachypodium distachyon is a new model plant for exploring the functional genomics of temperate grasses, cereals and biofuel crops. To date, genome-wide identification and analysis of the PP2C gene family in B. distachyon have not been investigated. Results In this study, 86 PP2C genes in B. distachyon were identified. Domain-based analyses of PP2C proteins showed that they all contained the phosphatase domains featured as 11 conserved signature motifs. Although not all phosphatase domains of BdPP2C members included all 11 motifs, tertiary structure analysis showed that four residues contributing to magnesium/manganese ions (Mg2+/Mn2+) coordination were conserved, except for two noncanonical members. The analysis of their chromosomal localizations showed that most of the BdPP2C genes were located within the low CpG density region. Phylogenetic tree and synteny blocks analyses among B. distachyon, Arabidopsis thaliana and Oryza sativa revealed that all PP2C members from the three species can be phylogenetically categorized into 13 subgroups (A–M) and BdPP2Cs were evolutionarily more closely related to OsPP2Cs than to AtPP2Cs. Segmental duplications contributed particularly to the expansion of the BdPP2C gene family and all duplicated BdPP2Cs evolved mainly from purifying selection. Real-time quantitative reverse transcription PCR (qRT-PCR) analysis showed that BdPP2Cs were broadly expressed in disparate tissues. We also found that almost all members displayed up-regulation in response to abiotic stresses such as cold, heat, PEG and NaCl treatments, but down-regulation to biotic stresses such as Ph14, Guy11 and F0968 infection. Conclusions In the present study, a comprehensive analysis of genome-wide identification and characterization of protein domains, phylogenetic relationship, gene and protein structure, chromosome location and expression pattern of the PP2C gene family was carried out for the first time in a new model monocot, i.e., B. distachyon. Our results provide a reference for genome-wide identification of the PP2C gene family of other species and also provide a foundation for future functional research on PP2C genes in B. distachyon. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2526-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jianmei Cao
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China.
| | - Min Jiang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China.
| | - Peng Li
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China.
| | - Zhaoqing Chu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China. .,Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, 201602, China.
| |
Collapse
|
49
|
Jin H, Dong D, Yang Q, Zhu D. Salt-Responsive Transcriptome Profiling of Suaeda glauca via RNA Sequencing. PLoS One 2016; 11:e0150504. [PMID: 26930632 PMCID: PMC4773115 DOI: 10.1371/journal.pone.0150504] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 02/15/2016] [Indexed: 12/04/2022] Open
Abstract
Background Suaeda glauca, a succulent halophyte of the Chenopodiaceae family, is widely distributed in coastal areas of China. Suaeda glauca is highly resistant to salt and alkali stresses. In the present study, the salt-responsive transcriptome of Suaeda glauca was analyzed to identify genes involved in salt tolerance and study halophilic mechanisms in this halophyte. Results Illumina HiSeq 2500 was used to sequence cDNA libraries from salt-treated and control samples with three replicates each treatment. De novo assembly of the six transcriptomes identified 75,445 unigenes. A total of 23,901 (31.68%) unigenes were annotated. Compared with transcriptomes from the three salt-treated and three salt-free samples, 231 differentially expressed genes (DEGs) were detected (including 130 up-regulated genes and 101 down-regulated genes), and 195 unigenes were functionally annotated. Based on the Gene Ontology (GO), Clusters of Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) classifications of the DEGs, more attention should be paid to transcripts associated with signal transduction, transporters, the cell wall and growth, defense metabolism and transcription factors involved in salt tolerance. Conclusions This report provides a genome-wide transcriptional analysis of a halophyte, Suaeda glauca, under salt stress. Further studies of the genetic basis of salt tolerance in halophytes are warranted.
Collapse
Affiliation(s)
- Hangxia Jin
- Zhejiang Academy of Agricultural Science, Institute of Crops and Nuclear Technology Utilization, Hangzhou Zhejiang 310021, People’s Republic of China
| | - Dekun Dong
- Zhejiang Academy of Agricultural Science, Institute of Crops and Nuclear Technology Utilization, Hangzhou Zhejiang 310021, People’s Republic of China
| | - Qinghua Yang
- Zhejiang Academy of Agricultural Science, Institute of Crops and Nuclear Technology Utilization, Hangzhou Zhejiang 310021, People’s Republic of China
| | - Danhua Zhu
- Zhejiang Academy of Agricultural Science, Institute of Crops and Nuclear Technology Utilization, Hangzhou Zhejiang 310021, People’s Republic of China
- * E-mail:
| |
Collapse
|
50
|
Hu W, Yan Y, Hou X, He Y, Wei Y, Yang G, He G, Peng M. TaPP2C1, a Group F2 Protein Phosphatase 2C Gene, Confers Resistance to Salt Stress in Transgenic Tobacco. PLoS One 2015; 10:e0129589. [PMID: 26057628 PMCID: PMC4461296 DOI: 10.1371/journal.pone.0129589] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 05/11/2015] [Indexed: 11/19/2022] Open
Abstract
Group A protein phosphatases 2Cs (PP2Cs) are essential components of abscisic acid (ABA) signaling in Arabidopsis; however, the function of group F2 subfamily PP2Cs is currently less known. In this study, TaPP2C1 which belongs to group F2 was isolated and characterized from wheat. Expression of the TaPP2C1-GFP fusion protein suggested its ubiquitous localization within a cell. TaPP2C1 expression was downregulated by abscisic acid (ABA) and NaCl treatments, but upregulated by H2O2 treatment. Overexpression of TaPP2C1 in tobacco resulted in reduced ABA sensitivity and increased salt resistance of transgenic seedlings. Additionally, physiological analyses showed that improved resistance to salt stress conferred by TaPP2C1 is due to the reduced reactive oxygen species (ROS) accumulation, the improved antioxidant system, and the increased transcription of genes in the ABA-independent pathway. Finally, transgenic tobacco showed increased resistance to oxidative stress by maintaining a more effective antioxidant system. Taken together, these results demonstrated that TaPP2C1 negatively regulates ABA signaling, but positively regulates salt resistance. TaPP2C1 confers salt resistance through activating the antioxidant system and ABA-independent gene transcription process.
Collapse
Affiliation(s)
- Wei Hu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Yan Yan
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Xiaowan Hou
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Yanzhen He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, 430074, China
| | - Yunxie Wei
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Guangxiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, 430074, China
| | - Guangyuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, 430074, China
| | - Ming Peng
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| |
Collapse
|