1
|
Fosch A, Pizarro DS, Zagmutt S, Reguera AC, Batallé G, Rodríguez-García M, García-Chica J, Freire-Agulleiro O, Miralpeix C, Zizzari P, Serra D, Herrero L, López M, Cota D, Rodríguez-Rodríguez R, Casals N. CPT1C deficiency in SF1 neurons impairs early metabolic adaptation to dietary fats, leading to obesity. Mol Metab 2025; 96:102155. [PMID: 40268191 PMCID: PMC12076790 DOI: 10.1016/j.molmet.2025.102155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 04/25/2025] Open
Abstract
OBJECTIVES SF1 neurons of the ventromedial hypothalamus (VMH) play a pivotal role in regulating body weight and adiposity, particularly in response to a high-fat diet (HFD), as well as in the recovery from insulin-induced hypoglycemia. While the brain-specific CPT1C isoform is well known for its role in controlling food intake and energy homeostasis, its function within specific hypothalamic neuronal populations remains largely unexplored. Here, we explore the role of CPT1C in SF1 neurons. METHODS Mice deficient in CPT1C within SF1 neurons were generated, and their response to a HFD was investigated. RESULTS SF1-Cpt1c-KO mice fail to adjust their caloric intake during initial HFD exposure, which is associated with impaired activation of the melanocortin system. Furthermore, these mice exhibit disrupted metabolic gene expression in the liver, muscle, and adipose tissue, leading to increased adiposity independently of food intake. In contrast, their response to glucose or insulin challenges remains intact. After long-term HFD exposure, SF1-Cpt1c-KO mice are more prone to developing obesity and glucose intolerance than control littermates, with males exhibiting a more severe phenotype. Interestingly, CPT1C deficiency in SF1 neurons also results in elevated hypothalamic endocannabinoid (eCB) levels under both chow and HFD conditions. We propose that this sustained eCB elevation reduces VMH activation by fatty acids and impairs the SF1-POMC drive upon fat intake. CONCLUSION Our findings establish CPT1C in SF1 neurons as essential for VMH-driven dietary fat sensing, satiety, and lipid metabolic adaptation.
Collapse
Affiliation(s)
- A Fosch
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain
| | - D S Pizarro
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain
| | - S Zagmutt
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain
| | - A C Reguera
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain
| | - G Batallé
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain
| | - M Rodríguez-García
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain
| | - J García-Chica
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain
| | - O Freire-Agulleiro
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
| | - C Miralpeix
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain; INSERM, Neurocentre Magendie, U1215, University of Bordeaux, 3300 Bordeaux, France
| | - P Zizzari
- INSERM, Neurocentre Magendie, U1215, University of Bordeaux, 3300 Bordeaux, France
| | - D Serra
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, 08028 Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - L Herrero
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, 08028 Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - M López
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - D Cota
- INSERM, Neurocentre Magendie, U1215, University of Bordeaux, 3300 Bordeaux, France
| | - R Rodríguez-Rodríguez
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - N Casals
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| |
Collapse
|
2
|
Wang Y, Yang H, Geerts C, Furtos A, Waters P, Cyr D, Wang S, Mitchell GA. The multiple facets of acetyl-CoA metabolism: Energetics, biosynthesis, regulation, acylation and inborn errors. Mol Genet Metab 2023; 138:106966. [PMID: 36528988 DOI: 10.1016/j.ymgme.2022.106966] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022]
Abstract
Acetyl-coenzyme A (Ac-CoA) is a core metabolite with essential roles throughout cell physiology. These functions can be classified into energetics, biosynthesis, regulation and acetylation of large and small molecules. Ac-CoA is essential for oxidative metabolism of glucose, fatty acids, most amino acids, ethanol, and of free acetate generated by endogenous metabolism or by gut bacteria. Ac-CoA cannot cross lipid bilayers, but acetyl groups from Ac-CoA can shuttle across membranes as part of carrier molecules like citrate or acetylcarnitine, or as free acetate or ketone bodies. Ac-CoA is the basic unit of lipid biosynthesis, providing essentially all of the carbon for the synthesis of fatty acids and of isoprenoid-derived compounds including cholesterol, coenzyme Q and dolichols. High levels of Ac-CoA in hepatocytes stimulate lipid biosynthesis, ketone body production and the diversion of pyruvate metabolism towards gluconeogenesis and away from oxidation; low levels exert opposite effects. Acetylation changes the properties of molecules. Acetylation is necessary for the synthesis of acetylcholine, acetylglutamate, acetylaspartate and N-acetyl amino sugars, and to metabolize/eliminate some xenobiotics. Acetylation is a major post-translational modification of proteins. Different types of protein acetylation occur. The most-studied form occurs at the epsilon nitrogen of lysine residues. In histones, lysine acetylation can alter gene transcription. Acetylation of other proteins has diverse, often incompletely-documented effects. Inborn errors related to Ac-CoA feature a broad spectrum of metabolic, neurological and other features. To date, a small number of studies of animals with inborn errors of CoA thioesters has included direct measurement of acyl-CoAs. These studies have shown that low levels of tissue Ac-CoA correlate with the development of clinical signs, hinting that shortage of Ac-CoA may be a recurrent theme in these conditions. Low levels of Ac-CoA could potentially disrupt any of its roles.
Collapse
Affiliation(s)
- Youlin Wang
- Medical Genetics Service, Department of Pediatrics and Research Center, CHU Sainte-Justine and Université de Montréal, Montréal, Québec, Canada
| | - Hao Yang
- Medical Genetics Service, Department of Pediatrics and Research Center, CHU Sainte-Justine and Université de Montréal, Montréal, Québec, Canada
| | - Chloé Geerts
- Medical Genetics Service, Department of Pediatrics and Research Center, CHU Sainte-Justine and Université de Montréal, Montréal, Québec, Canada
| | - Alexandra Furtos
- Département de Chimie, Université de Montréal, Montréal, Québec, Canada
| | - Paula Waters
- Medical Genetics Service, Department of Laboratory Medicine, CHU Sherbrooke and Department of Pediatrics, Université de Sherbrooke, Québec, Canada
| | - Denis Cyr
- Medical Genetics Service, Department of Laboratory Medicine, CHU Sherbrooke and Department of Pediatrics, Université de Sherbrooke, Québec, Canada
| | - Shupei Wang
- Medical Genetics Service, Department of Pediatrics and Research Center, CHU Sainte-Justine and Université de Montréal, Montréal, Québec, Canada
| | - Grant A Mitchell
- Medical Genetics Service, Department of Pediatrics and Research Center, CHU Sainte-Justine and Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
3
|
Clifford MN, King LJ, Kerimi A, Pereira-Caro MG, Williamson G. Metabolism of phenolics in coffee and plant-based foods by canonical pathways: an assessment of the role of fatty acid β-oxidation to generate biologically-active and -inactive intermediates. Crit Rev Food Sci Nutr 2022; 64:3326-3383. [PMID: 36226718 DOI: 10.1080/10408398.2022.2131730] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
ω-Phenyl-alkenoic acids are abundant in coffee, fruits, and vegetables. Along with ω-phenyl-alkanoic acids, they are produced from numerous dietary (poly)phenols and aromatic amino acids in vivo. This review addresses how phenyl-ring substitution and flux modulates their gut microbiota and endogenous β-oxidation. 3',5'-Dihydroxy-derivatives (from alkyl-resorcinols, flavanols, proanthocyanidins), and 4'-hydroxy-phenolic acids (from tyrosine, p-coumaric acid, naringenin) are β-oxidation substrates yielding benzoic acids. In contrast, 3',4',5'-tri-substituted-derivatives, 3',4'-dihydroxy-derivatives and 3'-methoxy-4'-hydroxy-derivatives (from coffee, tea, cereals, many fruits and vegetables) are poor β-oxidation substrates with metabolism diverted via gut microbiota dehydroxylation, phenylvalerolactone formation and phase-2 conjugation, possibly a strategy to conserve limited pools of coenzyme A. 4'-Methoxy-derivatives (citrus fruits) or 3',4'-dimethoxy-derivatives (coffee) are susceptible to hepatic "reverse" hydrogenation suggesting incompatibility with enoyl-CoA-hydratase. Gut microbiota-produced 3'-hydroxy-4'-methoxy-derivatives (citrus fruits) and 3'-hydroxy-derivatives (numerous (poly)phenols) are excreted as the phenyl-hydracrylic acid β-oxidation intermediate suggesting incompatibility with hydroxy-acyl-CoA dehydrogenase, albeit with considerable inter-individual variation. Further investigation is required to explain inter-individual variation, factors determining the amino acid to which C6-C3 and C6-C1 metabolites are conjugated, the precise role(s) of l-carnitine, whether glycine might be limiting, and whether phenolic acid-modulation of β-oxidation explains how phenolic acids affect key metabolic conditions, such as fatty liver, carbohydrate metabolism and insulin resistance.
Collapse
Affiliation(s)
- Michael N Clifford
- School of Bioscience and Medicine, University of Surrey, Guildford, UK
- Department of Nutrition, Dietetics and Food, Monash University, Clayton, Australia
| | - Laurence J King
- School of Bioscience and Medicine, University of Surrey, Guildford, UK
| | - Asimina Kerimi
- Department of Nutrition, Dietetics and Food, Monash University, Clayton, Australia
| | - Maria Gema Pereira-Caro
- Department of Food Science and Health, Instituto Andaluz de Investigacion y Formacion Agraria Pesquera Alimentaria y de la Produccion Ecologica, Sevilla, Spain
| | - Gary Williamson
- Department of Nutrition, Dietetics and Food, Monash University, Clayton, Australia
| |
Collapse
|
4
|
Miralpeix C, Reguera AC, Fosch A, Casas M, Lillo J, Navarro G, Franco R, Casas J, Alexander SPH, Casals N, Rodríguez-Rodríguez R. Carnitine palmitoyltransferase 1C negatively regulates the endocannabinoid hydrolase ABHD6 in mice, depending on nutritional status. Br J Pharmacol 2021; 178:1507-1523. [PMID: 33444462 PMCID: PMC9328656 DOI: 10.1111/bph.15377] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 11/09/2020] [Accepted: 11/13/2020] [Indexed: 01/05/2023] Open
Abstract
Background and Purpose The enzyme α/β‐hydrolase domain containing 6 (ABHD6), a new member of the endocannabinoid system, is a promising therapeutic target against neuronal‐related diseases. However, how ABHD6 activity is regulated is not known. ABHD6 coexists in protein complexes with the brain‐specific carnitine palmitoyltransferase 1C (CPT1C). CPT1C is involved in neuro‐metabolic functions, depending on brain malonyl–CoA levels. Our aim was to study CPT1C–ABHD6 interaction and determine whether CPT1C is a key regulator of ABHD6 activity depending on nutritional status. Experimental Approach Co‐immunoprecipitation and FRET assays were used to explore ABHD6 interaction with CPT1C or modified malonyl–CoA‐insensitive or C‐terminal truncated CPT1C forms. Cannabinoid CB1 receptor‐mediated signalling was investigated by determining cAMP levels. A novel highly sensitive fluorescent method was optimized to measure ABHD6 activity in non‐neuronal and neuronal cells and in brain tissues from wild‐type (WT) and CPT1C–KO mice. Key Results CPT1C interacted with ABHD6 and negatively regulated its hydrolase activity, thereby regulating 2‐AG downstream signalling. Accordingly, brain tissues of CPT1C–KO mice showed increased ABHD6 activity. CPT1C malonyl–CoA sensing was key to the regulatory role on ABHD6 activity and CB1 receptor signalling. Fasting, which attenuates brain malonyl–CoA, significantly increased ABHD6 activity in hypothalamus from WT, but not CPT1C–KO, mice. Conclusions and Implications Our finding that negative regulation of ABHD6 activity, particularly in the hypothalamus, is sensitive to nutritional status throws new light on the characterization and the importance of the proteins involved as potential targets against diseases affecting the CNS.
Collapse
Affiliation(s)
- Cristina Miralpeix
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain.,INSERM, Neurocentre Magendie, University of Bordeaux, Bordeaux, France
| | - Ana Cristina Reguera
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain
| | - Anna Fosch
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain
| | - Maria Casas
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain.,Department of Physiology and Membrane Biology, University of California, Davis, Davis, California, USA
| | - Jaume Lillo
- Molecular Neurobiology Laboratory, Department of Biochemistry and Physiology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Gemma Navarro
- INSERM, Neurocentre Magendie, University of Bordeaux, Bordeaux, France
| | - Rafael Franco
- INSERM, Neurocentre Magendie, University of Bordeaux, Bordeaux, France
| | - Josefina Casas
- Department on Biomedical Chemistry, Research Unit of BioActive Molecules, Institut de Química Avançada de Catalunya (IQAC), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Núria Casals
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Rosalía Rodríguez-Rodríguez
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain
| |
Collapse
|
5
|
Fadó R, Rodríguez-Rodríguez R, Casals N. The return of malonyl-CoA to the brain: Cognition and other stories. Prog Lipid Res 2020; 81:101071. [PMID: 33186641 DOI: 10.1016/j.plipres.2020.101071] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/11/2022]
Abstract
Nutrients, hormones and the energy sensor AMP-activated protein kinase (AMPK) tightly regulate the intracellular levels of the metabolic intermediary malonyl-CoA, which is a precursor of fatty acid synthesis and a negative regulator of fatty acid oxidation. In the brain, the involvement of malonyl-CoA in the control of food intake and energy homeostasis has been known for decades. However, recent data uncover a new role in cognition and brain development. The sensing of malonyl-CoA by carnitine palmitoyltransferase 1 (CPT1) proteins regulates a variety of functions, such as the fate of neuronal stem cell precursors, the motility of lysosomes in developing axons, the trafficking of glutamate receptors to the neuron surface (necessary for proper synaptic function) and the metabolic coupling between astrocytes and neurons. We discuss the relevance of those recent findings evidencing how nutrients and metabolic disorders impact cognition. We also enumerate all nutritional and hormonal conditions that are known to regulate malonyl-CoA levels in the brain, reflect on protein malonylation as a new post-translational modification, and give a reasoned vision of the opportunities and challenges that future research in the field could address.
Collapse
Affiliation(s)
- Rut Fadó
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, E-08195 Sant Cugat del Vallès, Spain; Institut de Neurociències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Cerdanyola del Vallès, Spain.
| | - Rosalía Rodríguez-Rodríguez
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, E-08195 Sant Cugat del Vallès, Spain.
| | - Núria Casals
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, E-08195 Sant Cugat del Vallès, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain.
| |
Collapse
|
6
|
Naquet P, Kerr EW, Vickers SD, Leonardi R. Regulation of coenzyme A levels by degradation: the 'Ins and Outs'. Prog Lipid Res 2020; 78:101028. [PMID: 32234503 DOI: 10.1016/j.plipres.2020.101028] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/09/2020] [Accepted: 02/22/2020] [Indexed: 02/06/2023]
Abstract
Coenzyme A (CoA) is the predominant acyl carrier in mammalian cells and a cofactor that plays a key role in energy and lipid metabolism. CoA and its thioesters (acyl-CoAs) regulate a multitude of metabolic processes at different levels: as substrates, allosteric modulators, and via post-translational modification of histones and other non-histone proteins. Evidence is emerging that synthesis and degradation of CoA are regulated in a manner that enables metabolic flexibility in different subcellular compartments. Degradation of CoA occurs through distinct intra- and extracellular pathways that rely on the activity of specific hydrolases. The pantetheinase enzymes specifically hydrolyze pantetheine to cysteamine and pantothenate, the last step in the extracellular degradation pathway for CoA. This reaction releases pantothenate in the bloodstream, making this CoA precursor available for cellular uptake and de novo CoA synthesis. Intracellular degradation of CoA depends on specific mitochondrial and peroxisomal Nudix hydrolases. These enzymes are also active against a subset of acyl-CoAs and play a key role in the regulation of subcellular (acyl-)CoA pools and CoA-dependent metabolic reactions. The evidence currently available indicates that the extracellular and intracellular (acyl-)CoA degradation pathways are regulated in a coordinated and opposite manner by the nutritional state and maximize the changes in the total intracellular CoA levels that support the metabolic switch between fed and fasted states in organs like the liver. The objective of this review is to update the contribution of these pathways to the regulation of metabolism, physiology and pathology and to highlight the many questions that remain open.
Collapse
Affiliation(s)
- Philippe Naquet
- Aix Marseille Univ, INSERM, CNRS, Centre d'Immunologie de Marseille-Luminy, Marseille, France.
| | - Evan W Kerr
- Department of Biochemistry, West Virginia University, Morgantown, West Virginia 26506, United States of America
| | - Schuyler D Vickers
- Department of Biochemistry, West Virginia University, Morgantown, West Virginia 26506, United States of America
| | - Roberta Leonardi
- Department of Biochemistry, West Virginia University, Morgantown, West Virginia 26506, United States of America.
| |
Collapse
|
7
|
Chohnan S, Matsuno S, Shimizu K, Tokutake Y, Kohari D, Toyoda A. Coenzyme A and Its Thioester Pools in Obese Zucker and Zucker Diabetic Fatty Rats. Nutrients 2020; 12:E417. [PMID: 32041091 PMCID: PMC7071249 DOI: 10.3390/nu12020417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 12/29/2022] Open
Abstract
Feeding behavior is closely related to hypothalamic malonyl-CoA level in the brain and diet-induced obesity affects total CoA pools in liver. Herein, we performed a comprehensive analysis of the CoA pools formed in thirteen tissues of Zucker and Zucker diabetic fatty (ZDF) rats. Hypothalamic malonyl-CoA levels in obese rats remained low and were almost the same as those of lean rats, despite obese rats having much higher content of leptin, insulin, and glucose in their sera. Regardless of the fa-genotypes, larger total CoA pools were formed in the livers of ZDF rats and the size of hepatic total CoA pools in Zucker rats showed almost one tenth of the size of ZDF rats. The decreased total CoA pool sizes in Zucker rats was observed in the brown adipose tissues, while ZDF-fatty rats possessed 6% of total CoA pool in the lean rats in response to fa deficiency. This substantially lower CoA content in the obese rats would be disadvantageous to non-shivering thermogenesis. Thus, comparing the intracellular CoA behaviors between Zucker and ZDF rats, as well as the lean and fatty rats of each strain would help to elucidate features of obesity and type 2 diabetes in combination with result (s) of differential gene expression analysis and/or comparative genomics.
Collapse
Affiliation(s)
- Shigeru Chohnan
- Department of Food and Life Sciences, Ibaraki University College of Agriculture, 3-21-1 Chuo, Ami, Ibaraki 300-0393, Japan; (S.M.); (K.S.); (D.K.); (A.T.)
| | - Shiori Matsuno
- Department of Food and Life Sciences, Ibaraki University College of Agriculture, 3-21-1 Chuo, Ami, Ibaraki 300-0393, Japan; (S.M.); (K.S.); (D.K.); (A.T.)
| | - Kei Shimizu
- Department of Food and Life Sciences, Ibaraki University College of Agriculture, 3-21-1 Chuo, Ami, Ibaraki 300-0393, Japan; (S.M.); (K.S.); (D.K.); (A.T.)
| | - Yuka Tokutake
- Department of Applied Life Science, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo 183-8509, Japan;
| | - Daisuke Kohari
- Department of Food and Life Sciences, Ibaraki University College of Agriculture, 3-21-1 Chuo, Ami, Ibaraki 300-0393, Japan; (S.M.); (K.S.); (D.K.); (A.T.)
| | - Atsushi Toyoda
- Department of Food and Life Sciences, Ibaraki University College of Agriculture, 3-21-1 Chuo, Ami, Ibaraki 300-0393, Japan; (S.M.); (K.S.); (D.K.); (A.T.)
| |
Collapse
|
8
|
Palomo-Guerrero M, Fadó R, Casas M, Pérez-Montero M, Baena M, Helmer PO, Domínguez JL, Roig A, Serra D, Hayen H, Stenmark H, Raiborg C, Casals N. Sensing of nutrients by CPT1C regulates late endosome/lysosome anterograde transport and axon growth. eLife 2019; 8:51063. [PMID: 31868590 PMCID: PMC6927751 DOI: 10.7554/elife.51063] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/09/2019] [Indexed: 12/14/2022] Open
Abstract
Anterograde transport of late endosomes or lysosomes (LE/Lys) is crucial for proper axon growth. However, the role of energetic nutrients has been poorly explored. Malonyl-CoA is a precursor of fatty acids, and its intracellular levels highly fluctuate depending on glucose availability or the energy sensor AMP-activated protein kinase (AMPK). We demonstrate in HeLa cells that carnitine palmitoyltransferase 1C (CPT1C) senses malonyl-CoA and enhances LE/Lys anterograde transport by interacting with the endoplasmic reticulum protein protrudin and facilitating the transfer of Kinesin-1 from protrudin to LE/Lys. In cultured mouse cortical neurons, glucose deprivation, pharmacological activation of AMPK or inhibition of malonyl-CoA synthesis decreases LE/Lys abundance at the axon terminal, and shortens axon length in a CPT1C-dependent manner. These results identify CPT1C as a new regulator of anterograde LE/Lys transport in response to malonyl-CoA changes, and give insight into how axon growth is controlled by nutrients.
Collapse
Affiliation(s)
- Marta Palomo-Guerrero
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain
| | - Rut Fadó
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain
| | - Maria Casas
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain
| | - Marta Pérez-Montero
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain
| | - Miguel Baena
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain
| | - Patrick O Helmer
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany
| | - José Luis Domínguez
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain
| | - Aina Roig
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain
| | - Dolors Serra
- Department of Biochemistry and Physiology, School of Pharmacy, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Heiko Hayen
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany
| | - Harald Stenmark
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - Camilla Raiborg
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - Núria Casals
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
9
|
Shumar SA, Kerr EW, Fagone P, Infante AM, Leonardi R. Overexpression of Nudt7 decreases bile acid levels and peroxisomal fatty acid oxidation in the liver. J Lipid Res 2019; 60:1005-1019. [PMID: 30846528 PMCID: PMC6495166 DOI: 10.1194/jlr.m092676] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/04/2019] [Indexed: 12/14/2022] Open
Abstract
Lipid metabolism requires CoA, an essential cofactor found in multiple subcellular compartments, including the peroxisomes. In the liver, CoA levels are dynamically adjusted between the fed and fasted states. Elevated CoA levels in the fasted state are driven by increased synthesis; however, this also correlates with decreased expression of Nudix hydrolase (Nudt)7, the major CoA-degrading enzyme in the liver. Nudt7 resides in the peroxisomes, and we overexpressed this enzyme in mouse livers to determine its effect on the size and composition of the hepatic CoA pool in the fed and fasted states. Nudt7 overexpression did not change total CoA levels, but decreased the concentration of short-chain acyl-CoAs and choloyl-CoA in fasted livers, when endogenous Nudt7 activity was lowest. The effect on these acyl-CoAs correlated with a significant decrease in the hepatic bile acid content and in the rate of peroxisomal fatty acid oxidation, as estimated by targeted and untargeted metabolomics, combined with the measurement of fatty acid oxidation in intact hepatocytes. Identification of the CoA species and metabolic pathways affected by the overexpression on Nudt7 in vivo supports the conclusion that the nutritionally driven modulation of Nudt7 activity could contribute to the regulation of the peroxisomal CoA pool and peroxisomal lipid metabolism.
Collapse
Affiliation(s)
- Stephanie A Shumar
- Department of Biochemistry, West Virginia University, Morgantown, WV 26506
| | - Evan W Kerr
- Department of Biochemistry, West Virginia University, Morgantown, WV 26506
| | - Paolo Fagone
- Department of Biochemistry, West Virginia University, Morgantown, WV 26506; Protein Core Facility West Virginia University, Morgantown, WV 26506
| | - Aniello M Infante
- Genomics Core Facility West Virginia University, Morgantown, WV 26506
| | - Roberta Leonardi
- Department of Biochemistry, West Virginia University, Morgantown, WV 26506.
| |
Collapse
|
10
|
Kulkarni RA, Worth AJ, Zengeya TT, Shrimp JH, Garlick JM, Roberts AM, Montgomery DC, Sourbier C, Gibbs BK, Mesaros C, Tsai YC, Das S, Chan KC, Zhou M, Andresson T, Weissman AM, Linehan WM, Blair IA, Snyder NW, Meier JL. Discovering Targets of Non-enzymatic Acylation by Thioester Reactivity Profiling. Cell Chem Biol 2017; 24:231-242. [PMID: 28163016 DOI: 10.1016/j.chembiol.2017.01.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 10/14/2016] [Accepted: 01/10/2017] [Indexed: 01/15/2023]
Abstract
Non-enzymatic protein modification driven by thioester reactivity is thought to play a major role in the establishment of cellular lysine acylation. However, the specific protein targets of this process are largely unknown. Here we report an experimental strategy to investigate non-enzymatic acylation in cells. Specifically, we develop a chemoproteomic method that separates thioester reactivity from enzymatic utilization, allowing selective enrichment of non-enzymatic acylation targets. Applying this method to cancer cell lines identifies numerous candidate targets of non-enzymatic acylation, including several enzymes in lower glycolysis. Functional studies highlight malonyl-CoA as a reactive thioester metabolite that can modify and inhibit glycolytic enzyme activity. Finally, we show that synthetic thioesters can be used as novel reagents to probe non-enzymatic acylation in living cells. Our studies provide new insights into the targets and drivers of non-enzymatic acylation, and demonstrate the utility of reactivity-based methods to experimentally investigate this phenomenon in biology and disease.
Collapse
Affiliation(s)
- Rhushikesh A Kulkarni
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Andrew J Worth
- Penn SRP Center, Center for Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Thomas T Zengeya
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Jonathan H Shrimp
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Julie M Garlick
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Allison M Roberts
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - David C Montgomery
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Carole Sourbier
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20817, USA
| | - Benjamin K Gibbs
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20817, USA
| | - Clementina Mesaros
- Penn SRP Center, Center for Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yien Che Tsai
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Sudipto Das
- Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - King C Chan
- Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Ming Zhou
- Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Thorkell Andresson
- Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Allan M Weissman
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - W Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20817, USA
| | - Ian A Blair
- Penn SRP Center, Center for Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nathaniel W Snyder
- Drexel University, A.J. Drexel Autism Institute, 3020 Market Street, Philadelphia, PA 19104, USA
| | - Jordan L Meier
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
| |
Collapse
|
11
|
Kubota Y, Goto T, Hagiya Y, Chohnan S, Toyoda A. Decreased hepatic contents of coenzyme A molecular species in mice after subchronic mild social defeat stress. Stress 2016; 19:192-7. [PMID: 26864137 DOI: 10.3109/10253890.2015.1137558] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Social stress may precipitate psychiatric disorders such as depression, which is related to the occurrence of the metabolic syndrome, including obesity and type 2 diabetes. We have evaluated the effects of social stress on central and peripheral metabolism using a model of depression in mice. In the present study, we focused on coenzyme A (CoA) molecular species [i.e. non-esterified CoA (CoASH), acetyl-CoA and malonyl-CoA] which play important roles in numerous metabolic pathways, and we analyzed changes in expression of these molecules in the hypothalamus and liver of adult male mice (C57BL/6J) subjected to 10 days of subchronic mild social defeat stress (sCSDS) with ICR mice as aggressors. Mice (n = 12) exposed to showed hyperphagia- and polydipsia-like symptoms and increased body weight gain compared with control mice which were not affected by exposure to ICR mice (n = 12). To elucidate the underlying metabolic features in the sCSDS model, acetyl-CoA, malonyl-CoA and CoASH tissue levels were analyzed using the acyl-CoA cycling method. The levels of hypothalamic malonyl-CoA, which decreases feeding behavior, were not influenced by sCSDS. However, sCSDS reduced levels of acetyl-CoA, malonyl-CoA and total CoA (sum of the three CoA molecular species) in the liver. Hence, hyperphagia-like symptoms in sCSDS mice evidently occurred independently of hypothalamic malonyl-CoA, but might consequently lead to down-regulation of hepatic CoA via altered expression of nudix hydrolase 7. Future studies should investigate the molecular mechanism(s) underlying the down-regulation of liver CoA pools in sCSDS mice.
Collapse
Affiliation(s)
- Yoshifumi Kubota
- a College of Agriculture, Ibaraki University , Ami , Ibaraki , Japan
- b National Federation of Agricultural Cooperative Associations, Central Research Institute for Feed and Livestock, Swine Research Sec , Tsukuba , Ibaraki , Japan
| | - Tatsuhiko Goto
- a College of Agriculture, Ibaraki University , Ami , Ibaraki , Japan
- c Ibaraki University Cooperation between Agriculture and Medical Science (IUCAM) , Ami , Ibaraki , Japan , and
| | - Yuki Hagiya
- a College of Agriculture, Ibaraki University , Ami , Ibaraki , Japan
| | - Shigeru Chohnan
- a College of Agriculture, Ibaraki University , Ami , Ibaraki , Japan
- c Ibaraki University Cooperation between Agriculture and Medical Science (IUCAM) , Ami , Ibaraki , Japan , and
- d United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology , Fuchu-City, Tokyo , Japan
| | - Atsushi Toyoda
- a College of Agriculture, Ibaraki University , Ami , Ibaraki , Japan
- c Ibaraki University Cooperation between Agriculture and Medical Science (IUCAM) , Ami , Ibaraki , Japan , and
- d United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology , Fuchu-City, Tokyo , Japan
| |
Collapse
|
12
|
Cotter DG, Ercal B, Huang X, Leid JM, d'Avignon DA, Graham MJ, Dietzen DJ, Brunt EM, Patti GJ, Crawford PA. Ketogenesis prevents diet-induced fatty liver injury and hyperglycemia. J Clin Invest 2014; 124:5175-90. [PMID: 25347470 DOI: 10.1172/jci76388] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 09/18/2014] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) spectrum disorders affect approximately 1 billion individuals worldwide. However, the drivers of progressive steatohepatitis remain incompletely defined. Ketogenesis can dispose of much of the fat that enters the liver, and dysfunction in this pathway could promote the development of NAFLD. Here, we evaluated mice lacking mitochondrial 3-hydroxymethylglutaryl CoA synthase (HMGCS2) to determine the role of ketogenesis in preventing diet-induced steatohepatitis. Antisense oligonucleotide-induced loss of HMGCS2 in chow-fed adult mice caused mild hyperglycemia, increased hepatic gluconeogenesis from pyruvate, and augmented production of hundreds of hepatic metabolites, a suite of which indicated activation of the de novo lipogenesis pathway. High-fat diet feeding of mice with insufficient ketogenesis resulted in extensive hepatocyte injury and inflammation, decreased glycemia, deranged hepatic TCA cycle intermediate concentrations, and impaired hepatic gluconeogenesis due to sequestration of free coenzyme A (CoASH). Supplementation of the CoASH precursors pantothenic acid and cysteine normalized TCA intermediates and gluconeogenesis in the livers of ketogenesis-insufficient animals. Together, these findings indicate that ketogenesis is a critical regulator of hepatic acyl-CoA metabolism, glucose metabolism, and TCA cycle function in the absorptive state and suggest that ketogenesis may modulate fatty liver disease.
Collapse
|
13
|
Iio W, Tokutake Y, Koike H, Matsukawa N, Tsukahara T, Chohnan S, Toyoda A. Effects of chronic mild food restriction on behavior and the hypothalamic malonyl-CoA signaling pathway. Anim Sci J 2014; 86:181-8. [PMID: 25040023 DOI: 10.1111/asj.12255] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 03/25/2014] [Indexed: 01/22/2023]
Abstract
Depression induces anorexia, leading to suppressed feeding behaviors and energy intake. Previously, we revealed that chronic social defeat induced a mild suppression of feeding in rats with elevated levels of hypothalamic malonyl-CoA which regulates feeding. Therefore, we attempted to elucidate the effects of chronic mild food restriction on behavior and on hypothalamic malonyl-CoA. The chronic mild food restricted rats were fed a restricted diet approximately 80% to 90% amount of diet compared to the control for 5 weeks. Ratios of restriction were adjusted with feed consumption in the chronic social defeat stressed rats. Chronic mild food restricted rats exhibited a suppression of body weight gain similar to that of the chronic social defeat stressed rats. Also these rats showed increased time spent in the center area of an open field (OF), prolonged immobility time in forced swim, increased phosphorylation of hypothalamic adenosine monophosphate-activated protein kinase (AMPK) and acetyl-CoA carboxylase and a decreased concentration of hypothalamic malonyl-CoA. Weight of the adrenal glands, locomotion in an OF, mitogen-activated protein kinase cascade and calcium/calmodulin-dependent protein kinases II in the hippocampus were not affected by chronic mild food restriction. Our findings suggest that chronic mild food restriction activates AMPK following a decreased hypothalamic malonyl-CoA.
Collapse
Affiliation(s)
- Wataru Iio
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Japan; College of Agriculture, Ibaraki University, Ami, Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
Ogata Y, Katoh H, Asayama M, Chohnan S. Role of prokaryotic type I and III pantothenate kinases in the coenzyme A biosynthetic pathway of Bacillus subtilis. Can J Microbiol 2014; 60:297-305. [PMID: 24784177 DOI: 10.1139/cjm-2013-0793] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pantothenate kinases (CoaAs) catalyze the phosphorylation of pantothenate in the first step of the coenzyme A (CoA) biosynthetic pathway. These bacterial enzymes have been categorized into 3 types, the prokaryotic type I, II, and III CoaAs. Bacteria typically carry a single CoaA gene on their genome, but Bacillus subtilis possesses 2 proteins homologous to type I and III CoaAs, known as BsCoaA and BsCoaX, respectively. Both recombinant proteins exhibited the expected kinase activity and the characteristic properties of type I and III CoaAs, i.e., regulation by CoASH and acyl-CoAs in BsCoaA and the requirement of a monovalent cation in BsCoaX. Both gene disruptants appeared to grow in a manner similar to the wild-type strain. With the BsCoaX disruptant, the BsCoaA had the ability to completely fill the intracellular CoA pool, whereas the BsCoaA disruptant did not. These findings clearly indicate that these 2 CoaAs are employed together in the CoA biosynthetic pathway in B. subtilis and that the contribution of the type I CoaA (BsCoaA) to the formation of the intracellular CoA pool is larger than that of the type III CoaA (BsCoaX).
Collapse
Affiliation(s)
- Yuta Ogata
- Department of Bioresource Science, Ibaraki University College of Agriculture, 3-21-1 Chuo, Ami, Ibaraki 300-0393, Japan
| | | | | | | |
Collapse
|
15
|
Miura S, Kai Y, Tadaishi M, Tokutake Y, Sakamoto K, Bruce CR, Febbraio MA, Kita K, Chohnan S, Ezaki O. Marked phenotypic differences of endurance performance and exercise-induced oxygen consumption between AMPK and LKB1 deficiency in mouse skeletal muscle: changes occurring in the diaphragm. Am J Physiol Endocrinol Metab 2013; 305:E213-29. [PMID: 23695215 DOI: 10.1152/ajpendo.00114.2013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
LKB1 phosphorylates members of the AMP-activated protein kinase (AMPK) family. LKB1 and AMPK in the skeletal muscle are believed to regulate not only fuel oxidation during exercise but also exercise capacity. LKB1 was also required to prevent diaphragm fatigue, which was shown to affect exercise performance. Using mice expressing dominant negative (DN) mutants of LKB1 and AMPK, specifically in the skeletal muscle but not in the heart, we investigated the roles of LKB1 and AMPK activity in exercise performance and the effects of these kinases on the characteristics of respiratory and locomotive muscles. In the diaphragm and gastrocnemius, both AMPK-DN and LKB1-DN mice showed complete loss of AMPKα2 activity, and LKB1-DN mice showed a reduction in LKB1 activity. Exercise capacity was significantly reduced in LKB1-DN mice, with a marked reduction in oxygen consumption and carbon dioxide production during exercise. The diaphragm from LKB1-DN mice showed an increase in myosin heavy chain IIB and glycolytic enzyme expression. Normal respiratory chain function and CPT I activity were shown in the isolated mitochondria from LKB1-DN locomotive muscle, and the expression of genes related to fiber type, mitochondria function, glucose and lipid metabolism, and capillarization in locomotive muscle was not different between LKB1-DN and AMPK-DN mice. We concluded that LKB1 in the skeletal muscle contributes significantly to exercise capacity and oxygen uptake during exercise. LKB1 mediated the change of fiber-type distribution in the diaphragm independently of AMPK and might be responsible for the phenotypes we observed.
Collapse
Affiliation(s)
- Shinji Miura
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|