1
|
Xu X, Zhao B, Shen B, Qi Z, Wang J, Cui H, Li B, Chen S, Wang G, Liu X. Using RNA-Seq Analysis to Select Key Genes Related to Seed Dormancy in ALS-Inhibiting Resistant Descurainia sophia with Pro-197-Thr Mutation. PLANTS (BASEL, SWITZERLAND) 2024; 13:2305. [PMID: 39204741 PMCID: PMC11360172 DOI: 10.3390/plants13162305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/26/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Flixweed (Descurainia sophia) is a weed that seriously affects wheat fields in China. Over the past 20 years, it has evolved resistance to the herbicide tribenuron-methyl. In the present study, a resistant D. sophia population with a Pro-197-Thr mutation of acetolactate synthetase (ALS) was found to have a resistance index of 457.37 for tribenuron-methyl. Under the same growth conditions, the seeds of resistant (R) and susceptible (S) populations exhibited similar vitality but the germination rates of R seeds were higher than those of S seeds. This result demonstrated that seed dormancy periods were shorter in the R seeds. RNA-Seq transcriptome analysis was then used to choose candidate genes that could regulate seed dormancy pathways in the R population. A total of 504,976,046 clean reads were selected from nine RNA-Seq libraries and assembled into 79,729 unigenes. Among these, 33,476 unigenes were assigned to 51 GO subgroups, and 26,117 unigenes were assigned to 20 KEGG secondary metabolic pathways. Next, 2473 differentially expressed genes (DEGs) were divided into three groups, as follows: G-24 h (germinating seeds) vs. D (dormant seeds); G-48 h (germinated seeds) vs. D; and G-48 h vs. G-24 h. From these 2473 DEGs, 8 were selected as candidate dormancy unigenes for the R population if their expression levels continuously decreased during the seed germination progress and their functional annotations were related to plant seed dormancy. One candidate unigene was annotated as CYP707A2; two unigenes were annotated as the transcription factors TGA4 and TGA2; one unigene was annotated as the cystathionine beta-synthase gene; and four unigenes could not be annotated as any gene listed in the six public databases. However, qRT-PCR-validated results showed that, during the germination of R seeds, the expression of the three candidate unigenes first decreased and then increased, indicating that they may have other growth-regulating functions in R populations. In brief, the dormancy function of the eight candidate dormancy unigenes needs to be further studied.
Collapse
Affiliation(s)
- Xian Xu
- Key Laboratory of Crop Cultivation Physiology and Green Production of Hebei Province, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China; (X.X.); (B.Z.); (B.S.); (Z.Q.); (J.W.); (H.C.); (B.L.)
| | - Bochui Zhao
- Key Laboratory of Crop Cultivation Physiology and Green Production of Hebei Province, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China; (X.X.); (B.Z.); (B.S.); (Z.Q.); (J.W.); (H.C.); (B.L.)
| | - Beibei Shen
- Key Laboratory of Crop Cultivation Physiology and Green Production of Hebei Province, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China; (X.X.); (B.Z.); (B.S.); (Z.Q.); (J.W.); (H.C.); (B.L.)
| | - Zhizun Qi
- Key Laboratory of Crop Cultivation Physiology and Green Production of Hebei Province, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China; (X.X.); (B.Z.); (B.S.); (Z.Q.); (J.W.); (H.C.); (B.L.)
| | - Jianping Wang
- Key Laboratory of Crop Cultivation Physiology and Green Production of Hebei Province, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China; (X.X.); (B.Z.); (B.S.); (Z.Q.); (J.W.); (H.C.); (B.L.)
| | - Haiyan Cui
- Key Laboratory of Crop Cultivation Physiology and Green Production of Hebei Province, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China; (X.X.); (B.Z.); (B.S.); (Z.Q.); (J.W.); (H.C.); (B.L.)
| | - Binghua Li
- Key Laboratory of Crop Cultivation Physiology and Green Production of Hebei Province, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China; (X.X.); (B.Z.); (B.S.); (Z.Q.); (J.W.); (H.C.); (B.L.)
| | - Silong Chen
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Guiqi Wang
- Key Laboratory of Crop Cultivation Physiology and Green Production of Hebei Province, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China; (X.X.); (B.Z.); (B.S.); (Z.Q.); (J.W.); (H.C.); (B.L.)
| | - Xiaomin Liu
- Key Laboratory of Crop Cultivation Physiology and Green Production of Hebei Province, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China; (X.X.); (B.Z.); (B.S.); (Z.Q.); (J.W.); (H.C.); (B.L.)
| |
Collapse
|
2
|
Rout SS, de Grahl I, Yu X, Reumann S. Production of a viral surface protein in Nannochloropsis oceanica for fish vaccination against infectious pancreatic necrosis virus. Appl Microbiol Biotechnol 2022; 106:6535-6549. [PMID: 36069927 PMCID: PMC9449291 DOI: 10.1007/s00253-022-12106-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/24/2022] [Accepted: 07/27/2022] [Indexed: 11/15/2022]
Abstract
Nannochloropsis oceanica is a unicellular oleaginous microalga of emerging biotechnological interest with a sequenced, annotated genome, available transcriptomic and proteomic data, and well-established basic molecular tools for genetic engineering. To establish N. oceanica as a eukaryotic host for recombinant protein synthesis and develop molecular technology for vaccine production, we chose the viral surface protein 2 (VP2) of a pathogenic fish virus that causes infectious pancreatic necrosis as a model vaccine. Upon stable nuclear transformation of N. oceanica strain CCMP1779 with the codon-optimized VP2 gene, a Venus reporter fusion served to evaluate the strength of different endogenous promoters in transformant populations by qPCR and flow cytometry. The highest VP2 yields were achieved for the elongation factor promoter, with enhancer effects by its N-terminal leader sequence. Individual transformants differed in their production capability of reporter-free VP2 by orders of magnitude. When subjecting the best candidates to kinetic analyses of growth and VP2 production in photobioreactors, recombinant protein integrity was maintained until the early stationary growth phase, and a high yield of 4.4% VP2 of total soluble protein was achieved. The maximum yield correlated with multiple integrations of the expression vector into the nuclear genome. The results demonstrate that N. oceanica was successfully engineered to constitute a robust platform for high-level production of a model subunit vaccine. The molecular methodology established here can likely be adapted in a straightforward manner to the production of further vaccines in the same host, allowing their distribution to fish, vertebrates, or humans via a microalgae-containing diet. KEY POINTS: • We engineered N. oceanica for recombinant protein production. • The antigenic surface protein 2 of IPN virus could indeed be expressed in the host. • A high yield of 4.4% VP2 of total soluble protein was achieved in N. oceanica.
Collapse
Affiliation(s)
- Sweta Suman Rout
- Plant Biochemistry and Infection Biology, Institute of Plant Science and Microbiology, Universität Hamburg, Ohnhorststr. 18, 22609, Hamburg, Germany
| | - Imke de Grahl
- Plant Biochemistry and Infection Biology, Institute of Plant Science and Microbiology, Universität Hamburg, Ohnhorststr. 18, 22609, Hamburg, Germany
| | - Xiaohong Yu
- Plant Biochemistry and Infection Biology, Institute of Plant Science and Microbiology, Universität Hamburg, Ohnhorststr. 18, 22609, Hamburg, Germany
- Zybio Inc, Chongqing Municipality, 400084, China
| | - Sigrun Reumann
- Plant Biochemistry and Infection Biology, Institute of Plant Science and Microbiology, Universität Hamburg, Ohnhorststr. 18, 22609, Hamburg, Germany.
| |
Collapse
|
3
|
Carnovale G, Lama C, Torres S, Rosa F, Mantecón L, Horn SJ, Skjånes K, Infante C. Metabolic pathways for biosynthesis and degradation of starch in Tetraselmis chui during nitrogen deprivation and recovery. BIORESOURCE TECHNOLOGY 2022; 354:127222. [PMID: 35477101 DOI: 10.1016/j.biortech.2022.127222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
Tetraselmis chui is known to accumulate starch when subjected to stress. This phenomenon is widely studied for the purpose of industrial production and process development. Yet, knowledge about the metabolic pathways involved is still immature. Hence, in this study, transcription of 27 starch-related genes was monitored under nitrogen deprivation and resupply in 25 L tubular photobioreactors. T. chui proved to be an efficient starch producer under nitrogen deprivation, accumulating starch up to 56% of relative biomass content. The prolonged absence of nitrogen led to an overall down-regulation of the tested genes, in most instances maintained even after nitrogen replenishment when starch was actively degraded. These gene expression patterns suggest post-transcriptional regulatory mechanisms play a key role in T. chui under nutrient stress. Finally, the high productivity combined with an efficient recovery after nitrogen restitution makes this species a suitable candidate for industrial production of high-starch biomass.
Collapse
Affiliation(s)
- Giorgia Carnovale
- Norwegian Institute of Bioeconomy Research (NIBIO), Division of Biotechnology and Plant Health, PO 115, NO-1431 Ås, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Chemistry, Biotechnology and Food Science, P.O. Box 5003, NO-1432 Ås, Norway
| | - Carmen Lama
- Fitoplancton Marino, S.L., Dársena comercial s/n (Muelle pesquero), 11500 El Puerto de Santa María, Cádiz, Spain
| | - Sonia Torres
- Fitoplancton Marino, S.L., Dársena comercial s/n (Muelle pesquero), 11500 El Puerto de Santa María, Cádiz, Spain
| | - Filipa Rosa
- Norwegian Institute of Bioeconomy Research (NIBIO), Division of Biotechnology and Plant Health, PO 115, NO-1431 Ås, Norway
| | - Lalia Mantecón
- Fitoplancton Marino, S.L., Dársena comercial s/n (Muelle pesquero), 11500 El Puerto de Santa María, Cádiz, Spain
| | - Svein Jarle Horn
- Norwegian University of Life Sciences (NMBU), Faculty of Chemistry, Biotechnology and Food Science, P.O. Box 5003, NO-1432 Ås, Norway
| | - Kari Skjånes
- Norwegian Institute of Bioeconomy Research (NIBIO), Division of Biotechnology and Plant Health, PO 115, NO-1431 Ås, Norway.
| | - Carlos Infante
- Fitoplancton Marino, S.L., Dársena comercial s/n (Muelle pesquero), 11500 El Puerto de Santa María, Cádiz, Spain
| |
Collapse
|
4
|
Maréchal E. Grand Challenges in Microalgae Domestication. FRONTIERS IN PLANT SCIENCE 2021; 12:764573. [PMID: 34630500 PMCID: PMC8495258 DOI: 10.3389/fpls.2021.764573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
|
5
|
Zou L, Mei Z, Guan T, Zhang B, Deng Q. Underlying mechanisms of the effect of minocycline against Candida albicans biofilms. Exp Ther Med 2021; 21:413. [PMID: 33747154 PMCID: PMC7967842 DOI: 10.3892/etm.2021.9857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022] Open
Abstract
Minocycline (MH) is a broad-spectrum antimicrobial agent and semisynthetic tetracycline derivative, which has been widely used in the clinic due to its efficacy. Having the strongest anti-microbial effect, MH exceeded the traditional scope of antibiotics and its previously unknown antifungal activity is also gradually being discovered. To preliminarily investigate the inhibitory effect of MH on Candida albicans (C. albicans), changes of cell growth, hyphal formation and transition, biofilm production and signaling pathway gene expression of C. albicans in the presence of MH were assessed in the present study. An XTT reduction assay was performed to quantitatively detect the metabolic activity of biofilms and evaluate the inhibition of MH on this. The results suggested that biofilm formation was clearly inhibited by 67% (P<0.0001) in the presence of 250 µg/ml MH, while mature biofilms were not significantly affected. In addition, MH inhibited the transition from yeast to hypha in a dose-dependent manner. Furthermore, reverse transcription-quantitative PCR revealed that several hyphae- and adhesion-specific genes associated with the Ras/cyclic (c)AMP/protein kinase A (PKA) pathway were differentially expressed following MH treatment, including downregulation of ras family GTPase (RAS1), adenylyl cyclase-associated protein 1 (CAP1), thiamin pyrophosphokinase 1 (TPK1), adenylate cyclase (CDC35), transcription factor (TEC1), agglutinin-like protein 3 (ALS3) and hyphal wall protein 1 (HWP1) and upregulation of EFG1 (enhanced filamentous growth protein 1 gene) and PDE2 (high-affinity phosphodiesterase gene). The most obviously changed genes were TPK1, HWP1 and RAS1, downregulated by 0.33-, 0.48- and 0.55-fold, respectively. It was suggested that MH is associated with alterations in the morphology of C. albicans, such as the repression of hypha and biofilm formation of cells, and MH affected the Ras/cAMP pathway to regulate the expression of cAMP-associated genes.
Collapse
Affiliation(s)
- Li Zou
- Department of Clinical Laboratory, The People's Hospital of China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Zhao Mei
- Department of Pharmacy, The People's Hospital of China Three Gorges University, Yichang, Hubei 443000, P.R. China.,Medical College of China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Tao Guan
- Department of Clinical Laboratory, The People's Hospital of China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Bo Zhang
- Department of Clinical Laboratory, The People's Hospital of China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Qun Deng
- Department of Clinical Laboratory, The People's Hospital of China Three Gorges University, Yichang, Hubei 443000, P.R. China
| |
Collapse
|
6
|
Torres S, Lama C, Mantecón L, Flemetakis E, Infante C. Selection and validation of reference genes for quantitative real-time PCR in the green microalgae Tetraselmis chui. PLoS One 2021; 16:e0245495. [PMID: 33444403 PMCID: PMC7808622 DOI: 10.1371/journal.pone.0245495] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 12/30/2020] [Indexed: 01/08/2023] Open
Abstract
Quantitative real-time reverse transcription PCR (RT-qPCR) is a highly sensitive technique that can be applied to analyze how genes are modulated by culture conditions, but identification of appropriate reference genes for normalization is a critical factor to be considered. For this reason, the expression stability of 18 candidate reference genes was evaluated for the green microalgae Tetraselmis chui using the widely employed algorithms geNorm, NormFinder, BestKeeper, the comparative ΔCT method, and RefFinder. Microalgae samples were collected from large scale outdoor photobioreactors during the growing phase (OUT_GP), and during the semi-continuous phase at different times of the day (OUT_DC). Samples from standard indoor cultures under highly controlled conditions (IND) were also collected to complement the other data. Different rankings for the candidate reference genes were obtained depending on the culture conditions and the algorithm employed. After comparison of the achieved ranks with the different methods, the references genes selected for samples from specific culture conditions were ALD and EFL in OUT_GP, RPL32 and UBCE in OUT_DC, and cdkA and UBCE in IND. Moreover, the genes EFL and cdkA or EFL and UBCE appeared as appropriate combinations for pools generated from all samples (ALL). Examination in the OUT_DC cultures of genes encoding the large and small subunits of ADP-glucose pyrophosphorylase (AGPL and AGPS, respectively) confirmed the reliability of the identified reference genes, RPL32 and UBCE. The present study represents a useful contribution for studies of gene expression in T. chui, and also represents the first step to set-up an RT-qPCR platform for quality control of T. chui biomass production in industrial facilities.
Collapse
Affiliation(s)
- Sonia Torres
- Fitoplancton Marino, S.L., El Puerto de Santa María, Cádiz, Spain
| | - Carmen Lama
- Fitoplancton Marino, S.L., El Puerto de Santa María, Cádiz, Spain
| | - Lalia Mantecón
- Fitoplancton Marino, S.L., El Puerto de Santa María, Cádiz, Spain
| | - Emmanouil Flemetakis
- Laboratory of Molecular Biology, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Carlos Infante
- Fitoplancton Marino, S.L., El Puerto de Santa María, Cádiz, Spain
| |
Collapse
|
7
|
de Grahl I, Rout SS, Maple-Grødem J, Reumann S. Development of a constitutive and an auto-inducible high-yield expression system for recombinant protein production in the microalga Nannochloropsis oceanica. Appl Microbiol Biotechnol 2020; 104:8747-8760. [PMID: 32902683 PMCID: PMC7502441 DOI: 10.1007/s00253-020-10789-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/10/2020] [Accepted: 07/19/2020] [Indexed: 01/28/2023]
Abstract
Photoautotrophic microalgae offer a great potential as novel hosts for efficient recombinant protein production. Nannochloropsis oceanica produces an extraordinarily high content of polyunsaturated fatty acids, and its robust growth characteristics, published genome sequence and efficient nuclear transformation make N. oceanica a promising candidate for biotechnological applications. To establish a robust and flexible system for recombinant protein production, we cloned six endogenous, potentially constitutive or inducible promoters from N. oceanica strain CCMP1779 and investigated their strength using monomeric Venus as reporter gene. Microscopic pre-screening of individual transformants revealed that the promoters of elongation factor (EF), tubulin (TUB) and nitrate reductase (NR) enabled high reporter gene expression. Comparative quantitative analyses of transformant populations by flow cytometry and qRT-PCR demonstrated the highest Venus expression from the EF promoter and the NR promoter if extended by an N-terminal 14-amino acid leader sequence. The kinetics of reporter gene expression were analysed during photobioreactor cultivation, achieving Venus yields of 0.3% (for EF) and 4.9% (for NR::LS) of total soluble protein. Since inducible expression systems enable the production of toxic proteins, we developed an auto-induction medium for the NR promoter transformants. By switching the N source from ammonium to nitrate in the presence of low ammonium concentrations, the starting point of Venus induction could be fine-tuned and shifted towards exponential growth phase while maintaining high recombinant protein yields. Taken together, we demonstrate that a model recombinant protein can be produced robustly and at very high levels in N. oceanica not only under constitutive but also under auto-inducible cultivation conditions. KEY POINTS: • Nannochloropsis oceanica might serve as host for recombinant protein production. • Comparative promoter strength analyses were conducted for twelve different constructs. • Robust high-yield recombinant protein production was achieved under constitutive conditions. • The nitrate reductase promoter enabled protein production under auto-induction conditions.
Collapse
Affiliation(s)
- Imke de Grahl
- Plant Biochemistry and Infection Biology, Institute of Plant Science and Microbiology, Universität Hamburg, Ohnhorststr. 18, D-22609, Hamburg, Germany
| | - Sweta Suman Rout
- Plant Biochemistry and Infection Biology, Institute of Plant Science and Microbiology, Universität Hamburg, Ohnhorststr. 18, D-22609, Hamburg, Germany
| | - Jodi Maple-Grødem
- The Norwegian Centre for Movement Disorders, Stavanger University Hospital, N-4021, Stavanger, Norway.,Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, N-4036, Stavanger, Norway
| | - Sigrun Reumann
- Plant Biochemistry and Infection Biology, Institute of Plant Science and Microbiology, Universität Hamburg, Ohnhorststr. 18, D-22609, Hamburg, Germany.
| |
Collapse
|
8
|
Xing G, Liu K, Li W, Li J, Xing C, Yuan H, Yang J. Evaluation of internal reference genes in Auxenochlorella protothecoides under continuous heterotrophic culture conditions at normal, low and high temperatures. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Liu Q, Xing Y, Li Y, Wang H, Mi T, Zhen Y, Yu Z. Carbon fixation gene expression in Skeletonema marinoi in nitrogen-, phosphate-, silicate-starvation, and low-temperature stress exposure. JOURNAL OF PHYCOLOGY 2020; 56:310-323. [PMID: 31628865 DOI: 10.1111/jpy.12936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
Diatoms are unicellular algae with a set of extraordinary genes, metabolic pathways, and physiological functions acquired by secondary endosymbiosis, especially for their efficient photosynthetic carbon fixation mechanisms, which can be a reason for their successful environmental adaptation and great contribution to primary production. Based on the available genomic information, the expression patterns of carbon fixation genes were analyzed using transcriptomic sequencing and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in Skeletonema marinoi. Meanwhile, suitable reference genes applying to specific experimental treatments were selected. In our results, carbon fixation genes were standardized by actin and TATA box-binding protein-coding genes in growth phase samples and stress conditions, respectively. It was found that a series of carbon fixation genes, such as the pyruvate orthophosphate dikinase (PPDK)-coding gene, had significantly up-regulated expression in nitrogen-starvation, phosphate-starvation, and low-temperature conditions, but consistently down-regulated in silicate-starvation treatment. These carbon fixation genes exhibited variable expression levels in different conditions and will be useful for investigating gene expression mechanisms in S. marinoi and improve our understanding of diatom carbon fixation pathways.
Collapse
Affiliation(s)
- Qian Liu
- Key laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao, 266100, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Yongze Xing
- Key laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao, 266100, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
- Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Mangrove Research Center, Guangxi Sciences Academy, Beihai, 536000, China
| | - Ying Li
- Key laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao, 266100, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Hualong Wang
- Key laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao, 266100, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Tiezhu Mi
- Key laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao, 266100, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yu Zhen
- Key laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao, 266100, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Zhigang Yu
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
- Key Laboratory of Marine Chemical Theory and Technology, Ministry of Education, Qingdao, 266100, China
| |
Collapse
|
10
|
Gao Y, Gao Y, Huang B, Meng Z, Jia Y. Reference gene validation for quantification of gene expression during ovarian development of turbot (Scophthalmus maximus). Sci Rep 2020; 10:823. [PMID: 31964949 PMCID: PMC6972784 DOI: 10.1038/s41598-020-57633-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 01/03/2020] [Indexed: 12/21/2022] Open
Abstract
Quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) is a powerful and sensitive method used in gene expression analysis. Suitable reference genes, which are stable under all experimental circumstances and tissues significantly improve the accuracy of qRT-PCR data. In this study, the stability of six genes, namely, 18S ribosomal RNA (18s), beta-actin (actb), elongation factor 1-alpha (ef1α), glyceraldehyde-3-phosphate-dehydrogenase (gapdh), cathepsin D (ctsd), and beta-2-microglobulin (b2m) were evaluated as potential references for qRT-PCR analysis. The genes were examined in the hypothalamus-pituitary-ovary-liver (HPOL) axis throughout turbot ovarian development via using the geNorm, NormFinder and BestKeeper algorithms. Results showed that the most stable reference genes were ef1α, actb, and ctsd in the hypothalamus, pituitary, ovary and liver, respectively. The best-suited gene combinations for normalization were 18s, ef1α, and ctsd in the hypothalamus; actb, ctsd, and 18s in the pituitary; actb, and ctsd in the ovary; gapdh and ctsd in the liver. Moreover, the expression profile of estrogen receptor α (erα) manifested no significant difference normalization to the aforementioned best-suited gene during turbot ovarian development. However, no single gene or pair of genes is suitable as an internal control and account for the amplification differences among the four tissues during ovarian development. In summary, these results provide a basic data for the optimal reference gene selection and obtain highly accurate normalization of qRT-PCR data in HPOL axis-related gene expression analysis during turbot ovarian development.
Collapse
Affiliation(s)
- Yunhong Gao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao, 266071, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Yuntao Gao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao, 266071, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Bin Huang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao, 266071, China
| | - Zhen Meng
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao, 266071, China
| | - Yudong Jia
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao, 266071, China.
| |
Collapse
|
11
|
Transcriptomic and metabolomic adaptation of Nannochloropsis gaditana grown under different light regimes. ALGAL RES 2020. [DOI: 10.1016/j.algal.2019.101735] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
Novel endogenous promoters for genetic engineering of the marine microalga Nannochloropsis gaditana CCMP526. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101708] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
13
|
Suboptimal Temperature Acclimation Affects Kennedy Pathway Gene Expression, Lipidome and Metabolite Profile of Nannochloropsis salina during PUFA Enriched TAG Synthesis. Mar Drugs 2018; 16:md16110425. [PMID: 30388843 PMCID: PMC6266265 DOI: 10.3390/md16110425] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/17/2018] [Accepted: 10/28/2018] [Indexed: 01/01/2023] Open
Abstract
In humans, dietary polyunsaturated fatty acids (PUFAs) are involved in therapeutic processes such as prevention and treatment of cardiovascular diseases, neuropsychiatric disorders, and dementia. We examined the physiology, PUFA accumulation and glycerol lipid biosynthesis in the marine microalga Nannochloropsis salina in response to constant suboptimal temperature (<20 °C). As expected, N. salina exhibited significantly reduced growth rate and photosynthetic activity compared to optimal cultivation temperature. Total fatty acid contents were not significantly elevated at reduced temperatures. Cultures grown at 5 °C had the highest quantity of eicosapentanoic acid (EPA) (C20:5n3) and the lowest growth rate. Additionally, we monitored broadband lipid composition to model the occurrence of metabolic alteration and remodeling for various lipid pools. We focused on triacylglycerol (TAG) with elevated PUFA content. TAGs with EPA at all three acyl positions were higher at a cultivation temperature of 15 °C. Furthermore, monogalactosyldiacylglycerol and digalactosyldiacylglycerol, which are polar lipids associated with chloroplast membranes, decreased with reduced cultivation temperatures. Moreover, gene expression analysis of key genes involved in Kennedy pathway for de novo TAG biosynthesis revealed bimodal variations in transcript level amongst the temperature treatments. Collectively, these results show that Nannochloropsis salina is a promising source of PUFA containing lipids.
Collapse
|
14
|
Lu X, Liu Y, Zhao L, Liu Y, Zhao M. Selection of reliable reference genes for RT-qPCR during methyl jasmonate, salicylic acid and hydrogen peroxide treatments in Ganoderma lucidum. World J Microbiol Biotechnol 2018; 34:92. [DOI: 10.1007/s11274-018-2476-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/07/2018] [Indexed: 12/01/2022]
|
15
|
Liu X, Li T, Wang D, Yang Y, Sun W, Liu J, Sun S. Synergistic Antifungal Effect of Fluconazole Combined with Licofelone against Resistant Candida albicans. Front Microbiol 2017; 8:2101. [PMID: 29163396 PMCID: PMC5681995 DOI: 10.3389/fmicb.2017.02101] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/13/2017] [Indexed: 11/23/2022] Open
Abstract
Candida albicans (C. albicans) is one of the important opportunistic fungal pathogens that is closely associated with disseminated or chronic infections. The objective of this study is to evaluate the synergistic antifungal effect of licofelone, which is dual microsomal prostaglandin E2 synthase/lipoxygenase (mPGES-1/LOX) inhibitor in combination with fluconazole against C. albicans. Here our results showed that licofelone (16 μg/mL) can synergistically work with fluconazole (1 μg/mL) against planktonic cells of fluconazole-resistant C. albicans. The two-drug combination inhibited the C. albicans biofilm formation over 12 h, and reduced the expression of extracellular phospholipase genes, biofilm-specific genes and RAS/cAMP/PKA pathway related genes. In addition, the two-drug combination inhibited the transition from yeast to hyphal growth form, and decreased the secreted aspartyl proteinase activity, while not affecting the drug efflux pumps activity. Galleria mellonella model was also used to confirm the antifungal activity of the drug combination in vivo. This study first indicates that the combination of fluconazole and licofelone has synergistic effect against resistant C. albicans and could be a promising therapeutic strategy for the antifungal treatment.
Collapse
Affiliation(s)
- Xinning Liu
- Department of Clinical Pharmacy, Taishan Medical University, Taian, China.,Department of Microbial and Biochemical Pharmacy, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Tao Li
- Intensive Care Unit, Qianfoshan Hospital Affiliated to Shandong University, Jinan, China
| | - Decai Wang
- Department of Clinical Pharmacy, Taishan Medical University, Taian, China
| | - Yilei Yang
- Department of Pharmacy, Qianfoshan Hospital Affiliated to Shandong University, Jinan, China
| | - Wenwen Sun
- Department of Clinical Pharmacy, Taishan Medical University, Taian, China
| | - Jianqiao Liu
- General Practice, Shandong Provincial Hospital, Jinan, China
| | - Shujuan Sun
- Department of Pharmacy, Qianfoshan Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
16
|
Kwon S, Kang NK, Koh HG, Shin SE, Lee B, Jeong BR, Chang YK. Enhancement of biomass and lipid productivity by overexpression of a bZIP transcription factor in Nannochloropsis salina. Biotechnol Bioeng 2017; 115:331-340. [PMID: 28976541 DOI: 10.1002/bit.26465] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 09/11/2017] [Accepted: 09/29/2017] [Indexed: 11/12/2022]
Abstract
Microalgae are considered as excellent platforms for biomaterial production that can replace conventional fossil fuel-based fuels and chemicals. Genetic engineering of microalgae is prerequisite to maximize production of materials and to reduce costs for the production. Transcription factors (TFs) are emerging as key regulators of metabolic pathways to enhance production of molecules for biofuels and other materials. TFs with the basic leucine zipper (bZIP) domain have been known as stress regulators and are associated with lipid metabolism in plants. We overexpressed a bZIP TF, NsbZIP1, in Nannochloropsis salina, and found that transformants showed enhanced growth with concomitant increase in lipid contents. The improved phenotypes were also notable under stress conditions including N limitation and high salt. To understand the mechanism underlying improved phenotypes, we analyzed expression patterns of predicted target genes involved in lipid metabolism via quantitative RT-PCR, confirming increases transcript levels. NsbZIP1 appeared to be one of type C bZIPs in plants that has been known to regulate lipid metabolism under stress. Taken together, we demonstrated that NsbZIP1 could improve both growth and lipid production, and TF engineering can serve as an excellent genetic engineering tool for production of biofuels and biomaterials in microalgae.
Collapse
Affiliation(s)
- Sohee Kwon
- Department of Chemical and Biomolecular Engineering, Daejeon, Republic of Korea
| | - Nam Kyu Kang
- Department of Chemical and Biomolecular Engineering, Daejeon, Republic of Korea
| | - Hyun Gi Koh
- Department of Chemical and Biomolecular Engineering, Daejeon, Republic of Korea
| | - Sung-Eun Shin
- Department of Chemical and Biomolecular Engineering, Daejeon, Republic of Korea
| | - Bongsoo Lee
- Department of Chemical and Biomolecular Engineering, Daejeon, Republic of Korea
| | - Byeong-Ryool Jeong
- Department of Chemical and Biomolecular Engineering, Daejeon, Republic of Korea
| | - Yong Keun Chang
- Department of Chemical and Biomolecular Engineering, Daejeon, Republic of Korea.,Advanced Biomass R&D Center (ABC), Yuseong-gu, Daejeon, Republic of Korea
| |
Collapse
|
17
|
Shi Y, Lu J, Wang Y, Wang S. Reference gene validation for quantification of gene expression during final oocyte maturation induced by diethylstilbestrol and di-(2-ethylhexyl)-phthalate in common carp. J Environ Sci (China) 2016; 46:47-54. [PMID: 27521935 DOI: 10.1016/j.jes.2015.12.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 09/28/2015] [Accepted: 12/16/2015] [Indexed: 12/17/2022]
Abstract
Final oocyte maturation is the key step to successful spawning and fertilization. Quantitative real-time PCR (qPCR) is the technique of election to quantify the abundance of functional genes in such study. Reference gene is essential for correct interpretation of qPCR data. However, an ideal universal reference gene that is stable under all experimental circumstances has not been described. Researchers should validate their reference genes while performing qPCR analysis. The expression of 6 candidate reference genes: 18s rRNA, 28s rRNA, Cathepsin Z, Elongation factor 1-α, Glyceraldehyde-3-phosphate dehydrogenase and β-actin were investigated during final oocyte maturation induced by different compounds (DES and DEHP) in common carp (Cyprinus carpio). Four softwares (Bestkeeper, geNorm, NormFinder and RefFinder) were used to screen the most stable gene in order to evaluate their expression stability. The results revealed that EF1α was highly stable expressed when final oocyte maturation was induced by DES, while gapdh was the most stable gene when final oocyte maturation was induced by DEHP. Stable expressed reference gene selection is critical for all qPCR analysis to get accurate target gene mRNA expression information.
Collapse
Affiliation(s)
- Yanyan Shi
- Fisheries College, Jimei University, Xiamen 361021, China
| | - Jie Lu
- School of Physics and Mechanical & Electrical Engineering, Xiamen University, Xiamen 361005, China
| | - Yilei Wang
- Fisheries College, Jimei University, Xiamen 361021, China
| | - Shuhong Wang
- Fisheries College, Jimei University, Xiamen 361021, China.
| |
Collapse
|
18
|
Ma XN, Chen TP, Yang B, Liu J, Chen F. Lipid Production from Nannochloropsis. Mar Drugs 2016; 14:md14040061. [PMID: 27023568 PMCID: PMC4849066 DOI: 10.3390/md14040061] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 03/01/2016] [Accepted: 03/11/2016] [Indexed: 12/18/2022] Open
Abstract
Microalgae are sunlight-driven green cell factories for the production of potential bioactive products and biofuels. Nannochloropsis represents a genus of marine microalgae with high photosynthetic efficiency and can convert carbon dioxide to storage lipids mainly in the form of triacylglycerols and to the ω-3 long-chain polyunsaturated fatty acid eicosapentaenoic acid (EPA). Recently, Nannochloropsis has received ever-increasing interests of both research and public communities. This review aims to provide an overview of biology and biotechnological potential of Nannochloropsis, with the emphasis on lipid production. The path forward for the further exploration of Nannochloropsis for lipid production with respect to both challenges and opportunities is also discussed.
Collapse
Affiliation(s)
- Xiao-Nian Ma
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China.
| | - Tian-Peng Chen
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China.
| | - Bo Yang
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China.
| | - Jin Liu
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China.
| | - Feng Chen
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
19
|
Poliner E, Panchy N, Newton L, Wu G, Lapinsky A, Bullard B, Zienkiewicz A, Benning C, Shiu SH, Farré EM. Transcriptional coordination of physiological responses in Nannochloropsis oceanica CCMP1779 under light/dark cycles. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015. [PMID: 26216534 DOI: 10.1111/tpj.12944] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Nannochloropsis oceanica CCMP1779 is a marine unicellular stramenopile and an emerging reference species for basic research on oleogenic microalgae with biotechnological relevance. We investigated its physiology and transcriptome under light/dark cycles. We observed oscillations in lipid content and a predominance of cell division in the first half of the dark phase. Globally, more than 60% of the genes cycled in N. oceanica CCMP1779, with gene expression peaking at different times of the day. Interestingly, the phase of expression of genes involved in certain biological processes was conserved across photosynthetic lineages. Furthermore, in agreement with our physiological studies we found the processes of lipid metabolism and cell division enriched in cycling genes. For example, there was tight coordination of genes involved in the lower part of glycolysis, fatty acid synthesis and lipid production at dawn preceding lipid accumulation during the day. Our results suggest that diel lipid storage plays a key role for N. oceanica CCMP1779 growth under natural conditions making this alga a promising model to gain a basic mechanistic understanding of triacylglycerol production in photosynthetic cells. Our data will help the formulation of new hypotheses on the role of cyclic gene expression in cell growth and metabolism in Nannochloropsis.
Collapse
Affiliation(s)
- Eric Poliner
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Nicholas Panchy
- Genetics Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Linsey Newton
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Guangxi Wu
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Andrew Lapinsky
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Blair Bullard
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Agnieszka Zienkiewicz
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Christoph Benning
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Shin-Han Shiu
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Eva M Farré
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
20
|
Xu Z, Xu J, Ji A, Zhu Y, Zhang X, Hu Y, Song J, Chen S. Genome-wide selection of superior reference genes for expression studies in Ganoderma lucidum. Gene 2015; 574:352-8. [PMID: 26277249 DOI: 10.1016/j.gene.2015.08.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/29/2015] [Accepted: 08/11/2015] [Indexed: 11/30/2022]
Abstract
Quantitative real-time polymerase chain reaction (qRT-PCR) is widely used for the accurate analysis of gene expression. However, high homology among gene families might result in unsuitability of reference genes, which leads to the inaccuracy of qRT-PCR analysis. The release of the Ganoderma lucidum genome has triggered numerous studies to be done on the homology among gene families with the purpose of selecting reliable reference genes. Based on the G. lucdum genome and transcriptome database, 38 candidate reference genes including 28 novel genes were systematically selected and evaluated for qRT-PCR normalization. The result indicated that commonly used polyubiquitin (PUB), beta-actin (BAT), and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) were unsuitable reference genes because of the high sequence similarity and low primer specificity. According to the evaluation of RefFinder, cyclophilin 5 (CYP5) was ranked as the most stable reference gene for 27 tested samples under all experimental conditions and eighteen mycelial samples. Based on sequence analysis and expression analysis, our study suggested that gene characteristic, primer specificity of high homologous genes, allele-specificity expression of candidate genes and under-evaluation of reference genes influenced the accuracy and sensitivity of qRT-PCR analysis. This investigation not only revealed potential factors influencing the unsuitability of reference genes but also selected the superior reference genes from more candidate genes and testing samples than those used in the previous study. Furthermore, our study established a model for reference gene analysis by using the genomic sequence.
Collapse
Affiliation(s)
- Zhichao Xu
- The National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Jiang Xu
- Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Science, Beijing 100700, China.
| | - Aijia Ji
- The National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Yingjie Zhu
- Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Science, Beijing 100700, China.
| | - Xin Zhang
- The National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Yuanlei Hu
- School of Life Sciences, Peking University, Beijing 100871, China.
| | - Jingyuan Song
- The National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Chongqing Institute of Medicinal Plant Cultivation, Chongqing 408435, China.
| | - Shilin Chen
- The National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Science, Beijing 100700, China.
| |
Collapse
|
21
|
Lee MA, Guo R, Ebenezer V, Ki JS. Evaluation and selection of reference genes for ecotoxicogenomic study of the green alga Closterium ehrenbergii using quantitative real-time PCR. ECOTOXICOLOGY (LONDON, ENGLAND) 2015; 24:863-872. [PMID: 25724346 DOI: 10.1007/s10646-015-1430-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/12/2015] [Indexed: 06/04/2023]
Abstract
The green alga Closterium ehrenbergii occurs in fresh water environments and has been suggested as a model for ecotoxicological assessment. Quantitative real-time PCR (qRT-PCR), with its high sensitivity and specificity, is a preferred method for reliable quantification of gene expression levels. qRT-PCR requires reference genes to normalize the transcription level of the target gene, and selection of appropriate references is crucial. Here, we evaluated nine housekeeping genes, that is, 18S rRNA, ACT, TUA, TUB, eIF, H4, UBQ, rps4, and GAPDH, using 34 RNA samples of C. ehrenbergii cultured in various environments (e.g. exposure to heat shock, UV, metals, and non-metallic chemicals). Each housekeeping gene tested displayed different ranges of C T values for each experimental condition. The gene stability was determined using the descriptive statistic software geNorm, which showed that ACT, H4, and TUA were the most suitable reference genes for all the conditions tested. In addition, at least three genes were required for proper normalization. With these references, we assessed the expression level of the heat shock protein 70 (HSP70) gene in C. ehrenbergii cells exposed to thermal and toxic contaminant stress and found that it was significantly up-regulated by these stressors. This study provides potential reference genes for gene expression studies on C. ehrenbergii with qRT-PCR.
Collapse
Affiliation(s)
- Min-Ah Lee
- Department of Life Science, Sangmyung University, Seoul, 110-743, South Korea
| | | | | | | |
Collapse
|
22
|
Sun L, Shang F, Duan CQ, Yan GL. Reduction of fatty acid flux at low temperature led to enhancement of β-carotene biosynthesis in recombinant Saccharomyces cerevisiae. KOREAN J CHEM ENG 2015. [DOI: 10.1007/s11814-014-0318-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
23
|
Kang NK, Jeon S, Kwon S, Koh HG, Shin SE, Lee B, Choi GG, Yang JW, Jeong BR, Chang YK. Effects of overexpression of a bHLH transcription factor on biomass and lipid production in Nannochloropsis salina. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:200. [PMID: 26628914 PMCID: PMC4666162 DOI: 10.1186/s13068-015-0386-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/16/2015] [Indexed: 05/02/2023]
Abstract
BACKGROUND Microalgae are considered promising alternative energy sources because they consume CO2 and accumulate large amounts of lipids that can be used as biofuel. Nannochloropsis is a particularly promising microalga due to its high growth rate and lipid content, and the availability of genomic information. Transcription factors (TFs) are global regulators of biological pathways by up- or down-regulation of related genes. Among these, basic helix-loop-helix (bHLH) TFs regulate growth, development, and stress responses in plants and animals, and have been identified in microalgae. We identified two bHLH TFs in the genome of N. salina CCMP1776, NsbHLH1, and NsbHLH2, and characterized functions of NsbHLH2 that may be involved in growth and nutrient uptake. RESULTS We obtained NsbHLH2 overexpressing transformants of N. salina CCMP1776 by particle bombardment and confirmed that these were stable transformants. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting using antibodies against the FLAG tag that was attached at the end of the coding sequence confirmed the expression of the NsbHLH2 protein under various culture conditions. The qRT-PCR results also indicated that the endogenous and transgenic expression of NsbHLH2 was reduced under stressed conditions. Overexpression of NsbHLH2 led to increased growth rate in the early growth period, and concomitantly higher nutrient uptake, than wild type (WT). These enhanced growth and nutrient uptake resulted in increased productivities of biomass and FAME. For example, one of the transformants, NsbHLH2 3-6, showed increased biomass productivity by 36 % under the normal condition, and FAME productivity by 33 % under nitrogen limitation condition. Conclusively, the improved growth in the transformants can be associated with the enhanced nutrient uptake. We are currently assessing their potential for scale-up cultivation with positive outcomes. CONCLUSION Overexpression of NsbHLH2 led to enhanced growth rate and nutrient uptake during the early growth phase, and increased biomass and FAME productivity, especially in the later period under normal and stressed conditions. Based on these results, we postulate that NsbHLH2 can be employed for the industrial production of biodiesel from N. salina.
Collapse
Affiliation(s)
- Nam Kyu Kang
- />Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701 Republic of Korea
| | - Seungjib Jeon
- />Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701 Republic of Korea
| | - Sohee Kwon
- />Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701 Republic of Korea
| | - Hyun Gi Koh
- />Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701 Republic of Korea
| | - Sung-Eun Shin
- />Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701 Republic of Korea
| | - Bongsoo Lee
- />Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701 Republic of Korea
| | - Gang-Guk Choi
- />Advanced Biomass R&D Center, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701 Republic of Korea
| | - Ji-Won Yang
- />Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701 Republic of Korea
| | - Byeong-ryool Jeong
- />Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701 Republic of Korea
| | - Yong Keun Chang
- />Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701 Republic of Korea
- />Advanced Biomass R&D Center, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701 Republic of Korea
| |
Collapse
|
24
|
Niu J, Zhu B, Cai J, Li P, Wang L, Dai H, Qiu L, Yu H, Ha D, Zhao H, Zhang Z, Lin S. Selection of reference genes for gene expression studies in Siberian Apricot (Prunus sibirica L.) Germplasm using quantitative real-time PCR. PLoS One 2014; 9:e103900. [PMID: 25105495 PMCID: PMC4126684 DOI: 10.1371/journal.pone.0103900] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Accepted: 07/03/2014] [Indexed: 01/09/2023] Open
Abstract
Quantitative real time reverse transcription polymerase chain reaction has been applied in a vast range of studies of gene expression analysis. However, real-time PCR data must be normalized with one or more reference genes. In this study, eleven putative consistently expressed genes (ACT, TUA, TUB, CYP, DNAj, ELFA, F-box27, RPL12, GAPDH, UBC and UBQ) in nine Siberian Apricot Germplasms (including much variability) were evaluated for their potential as references for the normalization of gene expression by NormFinder and geNorm programs. From our studies, ACT, UBC, CYP, UBQ and RPL12 as suitable for normalization were identified by geNorm, while UBC and CYP as the best pair by NormFinder. Moreover, UBC was selected as the most stably expressed gene by both algorithms in different Siberian Apricot seed samples. We also detected that a set of three genes (ACT, CYP and UBC) by geNorm as control for normalization could lead to accurate results. Furthermore, the expression levels of oleosin gene were analyzed to validate the suitability of the selected reference genes. These obtained experimental results could make an important contribution to normalize real-time PCR data for gene expression analysis in Siberian Apricot Germplasm.
Collapse
Affiliation(s)
- Jun Niu
- College of Biological Sciences and Biotechnology, College of Nature Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
| | - Baoqing Zhu
- College of Biological Sciences and Biotechnology, College of Nature Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
| | - Jian Cai
- College of Biological Sciences and Biotechnology, College of Nature Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
| | - Peixue Li
- Jigongshan National Nature Reserve, Xingyang, China
| | - Libing Wang
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Huitang Dai
- Jigongshan National Nature Reserve, Xingyang, China
| | - Lin Qiu
- Jigongshan National Nature Reserve, Xingyang, China
| | - Haiyan Yu
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Denglong Ha
- Jigongshan National Nature Reserve, Xingyang, China
| | - Haiyan Zhao
- Jigongshan National Nature Reserve, Xingyang, China
| | - Zhixiang Zhang
- College of Biological Sciences and Biotechnology, College of Nature Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
| | - Shanzhi Lin
- College of Biological Sciences and Biotechnology, College of Nature Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- * E-mail:
| |
Collapse
|
25
|
Liang P, Guo Y, Zhou X, Gao X. Expression profiling in Bemisia tabaci under insecticide treatment: indicating the necessity for custom reference gene selection. PLoS One 2014; 9:e87514. [PMID: 24498122 PMCID: PMC3909111 DOI: 10.1371/journal.pone.0087514] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 12/22/2013] [Indexed: 11/18/2022] Open
Abstract
Finding a suitable reference gene is the key for qRT-PCR analysis. However, none of the reference gene discovered thus far can be utilized universally under various biotic and abiotic experimental conditions. In this study, we further examine the stability of candidate reference genes under a single abiotic factor, insecticide treatment. After being exposed to eight commercially available insecticides, which belong to five different classes, the expression profiles of eight housekeeping genes in the sweetpotato whitefly, Bemisia tabaci, one of the most invasive and destructive pests in the world, were investigated using qRT-PCR analysis. In summary, elongation factor 1α (EF1α), α-tubulin (TUB1α) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were identified as the most stable reference genes under the insecticide treatment. The initial assessment of candidate reference genes was further validated with the expression of two target genes, a P450 (Cyp6cm1) and a glutathione S-transferase (GST). However, ranking of reference genes varied substantially among intra- and inter-classes of insecticides. These combined data strongly suggested the necessity of conducting custom reference gene selection designed for each and every experimental condition, even when examining the same abiotic or biotic factor.
Collapse
Affiliation(s)
- Pei Liang
- Department of Entomology, China Agricultural University, Beijing, P. R. China
| | - Yajie Guo
- Department of Entomology, China Agricultural University, Beijing, P. R. China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail: (XZ); (XG)
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing, P. R. China
- * E-mail: (XZ); (XG)
| |
Collapse
|
26
|
Kianianmomeni A, Hallmann A. Validation of reference genes for quantitative gene expression studies in Volvox carteri using real-time RT-PCR. Mol Biol Rep 2013; 40:6691-9. [PMID: 24057254 DOI: 10.1007/s11033-013-2784-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 09/14/2013] [Indexed: 10/26/2022]
Abstract
Quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) is a sensitive technique for analysis of gene expression under a wide diversity of biological conditions. However, the identification of suitable reference genes is a critical factor for analysis of gene expression data. To determine potential reference genes for normalization of qRT-PCR data in the green alga Volvox carteri, the transcript levels of ten candidate reference genes were measured by qRT-PCR in three experimental sample pools containing different developmental stages, cell types and stress treatments. The expression stability of the candidate reference genes was then calculated using the algorithms geNorm, NormFinder and BestKeeper. The genes for 18S ribosomal RNA (18S) and eukaryotic translation elongation factor 1α2 (eef1) turned out to have the most stable expression levels among the samples both from different developmental stages and different stress treatments. The genes for the ribosomal protein L23 (rpl23) and the TATA-box binding protein (tbpA) showed equivalent transcript levels in the comparison of different cell types, and therefore, can be used as reference genes for cell-type specific gene expression analysis. Our results indicate that more than one reference gene is required for accurate normalization of qRT-PCRs in V. carteri. The reference genes in our study show a much better performance than the housekeeping genes used as a reference in previous studies.
Collapse
Affiliation(s)
- Arash Kianianmomeni
- Department of Cellular and Developmental Biology of Plants, University of Bielefeld, Universitätsstr. 25, 33615, Bielefeld, Germany,
| | | |
Collapse
|
27
|
Identification and Evaluation of Reference Genes for qRT-PCR Normalization in Ganoderma lucidum. Curr Microbiol 2013; 68:120-6. [DOI: 10.1007/s00284-013-0442-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 07/10/2013] [Indexed: 12/23/2022]
|