1
|
Whitfield JF, Rennie K, Chakravarthy B. Alzheimer's Disease and Its Possible Evolutionary Origin: Hypothesis. Cells 2023; 12:1618. [PMID: 37371088 PMCID: PMC10297544 DOI: 10.3390/cells12121618] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/29/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
The enormous, 2-3-million-year evolutionary expansion of hominin neocortices to the current enormity enabled humans to take over the planet. However, there appears to have been a glitch, and it occurred without a compensatory expansion of the entorhinal cortical (EC) gateway to the hippocampal memory-encoding system needed to manage the processing of the increasing volume of neocortical data converging on it. The resulting age-dependent connectopathic glitch was unnoticed by the early short-lived populations. It has now surfaced as Alzheimer's disease (AD) in today's long-lived populations. With advancing age, processing of the converging neocortical data by the neurons of the relatively small lateral entorhinal cortex (LEC) inflicts persistent strain and high energy costs on these cells. This may result in their hyper-release of harmless Aβ1-42 monomers into the interstitial fluid, where they seed the formation of toxic amyloid-β oligomers (AβOs) that initiate AD. At the core of connectopathic AD are the postsynaptic cellular prion protein (PrPC). Electrostatic binding of the negatively charged AβOs to the positively charged N-terminus of PrPC induces hyperphosphorylation of tau that destroys synapses. The spread of these accumulating AβOs from ground zero is supported by Aβ's own production mediated by target cells' Ca2+-sensing receptors (CaSRs). These data suggest that an early administration of a strongly positively charged, AβOs-interacting peptide or protein, plus an inhibitor of CaSR, might be an effective AD-arresting therapeutic combination.
Collapse
Affiliation(s)
- James F. Whitfield
- Human Health Therapeutics, National Research Council, Ottawa, ON K1A 0R6, Canada
| | | | | |
Collapse
|
2
|
Liu WN, Wu KX, Wang XT, Lin LR, Tong ML, Liu LL. LncRNA- ENST00000421645 promotes T cells to secrete IFN-γ by sponging PCM1 in neurosyphilis. Epigenomics 2021; 13:1187-1203. [PMID: 34382410 DOI: 10.2217/epi-2021-0163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Aim: Neurosyphilis patients exhibited significant expression of long noncoding RNA (lncRNA) in peripheral blood T lymphocytes. In this study, we further clarified the role of lncRNA-ENST00000421645 in the pathogenic mechanism of neurosyphilis. Methods: lncRNA-ENST00000421645 was transfected into Jurkat-E6-1 cells, namely lentivirus (Lv)-1645 cells. RNA pull-down assay, flow cytometry, RT-qPCR, ELISA (Neobioscience Technology Co Ltd, Shenzhen, China) and RNA immunoprecipitation chip assay were used to analyze the function of lncRNA-ENST00000421645. Results: The expression of IFN-γ in Lv-1645 cells was significantly increased compared to that in Jurkat-E6-1 cells stimulated by phorbol-12-myristate-13-acetate (PMA). Then, it was suggested that lncRNA-ENST00000421645 interacts with PCM1 protein. Silencing PCM1 significantly increased the level of IFN-γ in Lv-1645 cells stimulated by PMA. Conclusion: This study revealed that lncRNA-ENST00000421645 mediates the production of IFN-γ by sponging PCM1 protein after PMA stimulation.
Collapse
Affiliation(s)
- Wen-Na Liu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medical, Xiamen University, Xiamen, Fujian Province, China.,Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science & Technology of China, Chengdu, China
| | - Kai-Xuan Wu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medical, Xiamen University, Xiamen, Fujian Province, China
| | - Xiao-Tong Wang
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medical, Xiamen University, Xiamen, Fujian Province, China
| | - Li-Rong Lin
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medical, Xiamen University, Xiamen, Fujian Province, China
| | - Man-Li Tong
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medical, Xiamen University, Xiamen, Fujian Province, China
| | - Li-Li Liu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medical, Xiamen University, Xiamen, Fujian Province, China
| |
Collapse
|
3
|
Fernandez-Garcia L, Pacios O, González-Bardanca M, Blasco L, Bleriot I, Ambroa A, López M, Bou G, Tomás M. Viral Related Tools against SARS-CoV-2. Viruses 2020; 12:E1172. [PMID: 33081350 PMCID: PMC7589879 DOI: 10.3390/v12101172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022] Open
Abstract
At the end of 2019, a new disease appeared and spread all over the world, the COVID-19, produced by the coronavirus SARS-CoV-2. As a consequence of this worldwide health crisis, the scientific community began to redirect their knowledge and resources to fight against it. Here we summarize the recent research on viruses employed as therapy and diagnostic of COVID-19: (i) viral-vector vaccines both in clinical trials and pre-clinical phases; (ii) the use of bacteriophages to find antibodies specific to this virus and some studies of how to use the bacteriophages themselves as a treatment against viral diseases; and finally, (iii) the use of CRISPR-Cas technology both to obtain a fast precise diagnose of the patient and also the possible use of this technology as a cure.
Collapse
Affiliation(s)
- Laura Fernandez-Garcia
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), 15006 A Coruña, Spain; (L.F.-G.); (O.P.); (M.G.-B.); (L.B.); (I.B.); (A.A.); (M.L.); (G.B.)
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), 28003 Madrid, Spain
| | - Olga Pacios
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), 15006 A Coruña, Spain; (L.F.-G.); (O.P.); (M.G.-B.); (L.B.); (I.B.); (A.A.); (M.L.); (G.B.)
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), 28003 Madrid, Spain
| | - Mónica González-Bardanca
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), 15006 A Coruña, Spain; (L.F.-G.); (O.P.); (M.G.-B.); (L.B.); (I.B.); (A.A.); (M.L.); (G.B.)
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), 28003 Madrid, Spain
| | - Lucia Blasco
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), 15006 A Coruña, Spain; (L.F.-G.); (O.P.); (M.G.-B.); (L.B.); (I.B.); (A.A.); (M.L.); (G.B.)
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), 28003 Madrid, Spain
| | - Inés Bleriot
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), 15006 A Coruña, Spain; (L.F.-G.); (O.P.); (M.G.-B.); (L.B.); (I.B.); (A.A.); (M.L.); (G.B.)
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), 28003 Madrid, Spain
| | - Antón Ambroa
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), 15006 A Coruña, Spain; (L.F.-G.); (O.P.); (M.G.-B.); (L.B.); (I.B.); (A.A.); (M.L.); (G.B.)
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), 28003 Madrid, Spain
| | - María López
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), 15006 A Coruña, Spain; (L.F.-G.); (O.P.); (M.G.-B.); (L.B.); (I.B.); (A.A.); (M.L.); (G.B.)
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), 28003 Madrid, Spain
| | - German Bou
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), 15006 A Coruña, Spain; (L.F.-G.); (O.P.); (M.G.-B.); (L.B.); (I.B.); (A.A.); (M.L.); (G.B.)
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), 28003 Madrid, Spain
- Spanish Network for the Research in Infectious Diseases (REIPI), 41071 Sevilla, Spain
| | - Maria Tomás
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), 15006 A Coruña, Spain; (L.F.-G.); (O.P.); (M.G.-B.); (L.B.); (I.B.); (A.A.); (M.L.); (G.B.)
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), 28003 Madrid, Spain
- Spanish Network for the Research in Infectious Diseases (REIPI), 41071 Sevilla, Spain
| |
Collapse
|
4
|
Ryan P, Patel B, Makwana V, Jadhav HR, Kiefel M, Davey A, Reekie TA, Rudrawar S, Kassiou M. Peptides, Peptidomimetics, and Carbohydrate-Peptide Conjugates as Amyloidogenic Aggregation Inhibitors for Alzheimer's Disease. ACS Chem Neurosci 2018; 9:1530-1551. [PMID: 29782794 DOI: 10.1021/acschemneuro.8b00185] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder accounting for 60-80% of dementia cases. For many years, AD causality was attributed to amyloid-β (Aβ) aggregated species. Recently, multiple therapies that target Aβ aggregation have failed in clinical trials, since Aβ aggregation is found in AD and healthy patients. Attention has therefore shifted toward the aggregation of the tau protein as a major driver of AD. Numerous inhibitors of tau-based pathology have recently been developed. Diagnosis of AD has shifted from measuring late stage senile plaques to early stage biomarkers, amyloid-β and tau monomers and oligomeric assemblies. Synthetic peptides and some derivative structures are being explored for use as theranostic tools as they possess the capacity both to bind the biomarkers and to inhibit their pathological self-assembly. Several studies have demonstrated that O-linked glycoside addition can significantly alter amyloid aggregation kinetics. Furthermore, natural O-glycosylation of amyloid-forming proteins, including amyloid precursor protein (APP), tau, and α-synuclein, promotes alternative nonamyloidogenic processing pathways. As such, glycopeptides and related peptidomimetics are being investigated within the AD field. Here we review advancements made in the last 5 years, as well as the arrival of sugar-based derivatives.
Collapse
Affiliation(s)
- Philip Ryan
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast 4222, Australia
| | - Bhautikkumar Patel
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast 4222, Australia
| | - Vivek Makwana
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast 4222, Australia
| | - Hemant R. Jadhav
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani-333031, Rajasthan, India
| | - Milton Kiefel
- Institute for Glycomics, Griffith University, Gold Coast 4222, Australia
| | - Andrew Davey
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast 4222, Australia
- Menzies Health Institute Queensland, Griffith University, Gold Coast 4222, Australia
- Quality Use of Medicines Network, Griffith University, Gold Coast 4222, Australia
| | | | - Santosh Rudrawar
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast 4222, Australia
- Menzies Health Institute Queensland, Griffith University, Gold Coast 4222, Australia
- Quality Use of Medicines Network, Griffith University, Gold Coast 4222, Australia
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| | - Michael Kassiou
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
5
|
Chakravarthy B, Ito S, Atkinson T, Gaudet C, Ménard M, Brown L, Whitfield J. Evidence that a synthetic amyloid-ß oligomer-binding peptide (ABP) targets amyloid-ß deposits in transgenic mouse brain and human Alzheimer’s disease brain. Biochem Biophys Res Commun 2014; 445:656-60. [DOI: 10.1016/j.bbrc.2014.02.064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 02/17/2014] [Indexed: 11/17/2022]
|
6
|
Chakravarthy B, Ménard M, Brown L, Hewitt M, Atkinson T, Whitfield J. A synthetic peptide corresponding to a region of the human pericentriolar material 1 (PCM-1) protein binds β-amyloid (Aβ1-42
) oligomers. J Neurochem 2013; 126:415-24. [DOI: 10.1111/jnc.12208] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 01/28/2013] [Accepted: 01/31/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Balu Chakravarthy
- Human Health Therapeutics; National Research Council of Canada; Ottawa Ontario Canada
| | - Michel Ménard
- Human Health Therapeutics; National Research Council of Canada; Ottawa Ontario Canada
| | - Leslie Brown
- Human Health Therapeutics; National Research Council of Canada; Ottawa Ontario Canada
| | - Melissa Hewitt
- Human Health Therapeutics; National Research Council of Canada; Ottawa Ontario Canada
| | - Trevor Atkinson
- Human Health Therapeutics; National Research Council of Canada; Ottawa Ontario Canada
| | - James Whitfield
- Human Health Therapeutics; National Research Council of Canada; Ottawa Ontario Canada
| |
Collapse
|
7
|
Bazan J, Całkosiński I, Gamian A. Phage display--a powerful technique for immunotherapy: 1. Introduction and potential of therapeutic applications. Hum Vaccin Immunother 2012; 8:1817-28. [PMID: 22906939 DOI: 10.4161/hv.21703] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
One of the most effective molecular diversity techniques is phage display. This technology is based on a direct linkage between phage phenotype and its encapsulated genotype, which leads to presentation of molecule libraries on the phage surface. Phage display is utilized in studying protein-ligand interactions, receptor binding sites and in improving or modifying the affinity of proteins for their binding partners. Generating monoclonal antibodies and improving their affinity, cloning antibodies from unstable hybridoma cells and identifying epitopes, mimotopes and functional or accessible sites from antigens are also important advantages of this technology. Techniques originating from phage display have been applied to transfusion medicine, neurological disorders, mapping vascular addresses and tissue homing of peptides. Phages have been applicable to immunization therapies, which may lead to development of new tools used for treating autoimmune and cancer diseases. This review describes the phage display technology and presents the recent advancements in therapeutic applications of phage display.
Collapse
Affiliation(s)
- Justyna Bazan
- Department of Medical Biochemistry; Wroclaw Medical University; Wroclaw, Poland.
| | | | | |
Collapse
|
8
|
Bazan J, Całkosiński I, Gamian A. Phage display--a powerful technique for immunotherapy: 2. Vaccine delivery. Hum Vaccin Immunother 2012; 8:1829-35. [PMID: 22906938 DOI: 10.4161/hv.21704] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Phage display is a powerful technique in medical and health biotechnology. This technology has led to formation of antibody libraries and has provided techniques for fast and efficient search of these libraries. The phage display technique has been used in studying the protein-protein or protein-ligand interactions, constructing of the antibody and antibody fragments and improving the affinity of proteins to receptors. Recently phage display has been widely used to study immunization process, develop novel vaccines and investigate allergen-antibody interactions. This technology can provide new tools for protection against viral, fungal and bacterial infections. It may become a valuable tool in cancer therapies, abuse and allergies treatment. This review presents the recent advancements in diagnostic and therapeutic applications of phage display. In particular the applicability of this technology to study the immunization process, construction of new vaccines and development of safer and more efficient delivery strategies has been described.
Collapse
Affiliation(s)
- Justyna Bazan
- Department of Medical Biochemistry; Wroclaw Medical University; Wroclaw, Poland
| | | | | |
Collapse
|