1
|
Erban T, Markovic M, Sopko B. Sublethal acetamiprid exposure induces immunity, suppresses pathways linked to juvenile hormone synthesis in queens and affects cycle-related signaling in emerging bees. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123901. [PMID: 38556147 DOI: 10.1016/j.envpol.2024.123901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/05/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
Acetamiprid is the only neonicotinoid registered in the European Union because the risks of neonicotinoids to honey bees and other pollinators are strictly regulated. Herein, we orally exposed honey bee colonies to sublethal concentrations of acetamiprid (20 μg/L) under isolated conditions. After one month of continuous exposure, the emerging bees and queens were collected and analyzed via high-throughput label-free quantitative proteomics using a data-independent acquisition strategy. Six and 34 significantly differentially expressed proteins (DEPs) were identified in the emerging bees and queens, respectively. Mrjp3 was the only DEP found in both sample types/castes, and its opposite regulation illustrated a differential response. The DEPs in the emerging bees (H/ACA RNP, Rap1GAP, Mrjp3, and JHE) suggested that sublethal exposure to acetamiprid affected cell cycle-related signaling, which may affect the life history of workers in the colony. The DEPs with increased levels in queens, such as Mrjps 1-4 and 6-7, hymenoptaecin, and apidaecin 22, indicated an activated immune response. Additionally, the level of farnesyl pyrophosphate synthase (FPPS), which is essential for the mevalonate pathway and juvenile hormone biosynthesis, was significantly decreased in queens. The impaired utilization of juvenile hormone in queens supported the identification of additional DEPs. Furthermore, the proteome changes suggested the existence of increased neonicotinoid detoxification by UDP-glucuronosyltransferase and increased amino acid metabolism. The results suggest that the continuous exposure of bee colonies to acetamiprid at low doses (nanograms per gram in feed) may pose a threat to the colonies. The different exposure routes and durations for the emerging bees and queens in our experiment must be considered, i.e., the emerging bees were exposed as larvae via feeding royal jelly and beebread provided by workers (nurse bees), whereas the queens were fed royal jelly throughout the experiment. The biological consequences of the proteomic changes resulting from sublethal/chronic exposure require future determination.
Collapse
Affiliation(s)
- Tomas Erban
- Crop Research Institute, Drnovska 507/73, Prague 6-Ruzyne, CZ-161 06, Czechia.
| | - Martin Markovic
- Crop Research Institute, Drnovska 507/73, Prague 6-Ruzyne, CZ-161 06, Czechia
| | - Bruno Sopko
- Crop Research Institute, Drnovska 507/73, Prague 6-Ruzyne, CZ-161 06, Czechia
| |
Collapse
|
2
|
Piou V, Vilarem C, Blanchard S, Strub JM, Bertile F, Bocquet M, Arafah K, Bulet P, Vétillard A. Honey Bee Larval Hemolymph as a Source of Key Nutrients and Proteins Offers a Promising Medium for Varroa destructor Artificial Rearing. Int J Mol Sci 2023; 24:12443. [PMID: 37569818 PMCID: PMC10419257 DOI: 10.3390/ijms241512443] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Varroa destructor, a major ectoparasite of the Western honey bee Apis mellifera, is a widespread pest that damages colonies in the Northern Hemisphere. Throughout their lifecycle, V. destructor females feed on almost every developmental stage of their host, from the last larval instar to the adult. The parasite is thought to feed on hemolymph and fat body, although its exact diet and nutritional requirements are poorly known. Using artificial Parafilm™ dummies, we explored the nutrition of V. destructor females and assessed their survival when fed on hemolymph from bee larvae, pupae, or adults. We compared the results with mites fed on synthetic solutions or filtered larval hemolymph. The results showed that the parasites could survive for several days or weeks on different diets. Bee larval hemolymph yielded the highest survival rates, and filtered larval plasma was sufficient to maintain the mites for 14 days or more. This cell-free solution therefore theoretically contains all the necessary nutrients for mite survival. Because some bee proteins are known to be hijacked without being digested by the parasite, we decided to run a proteomic analysis of larval honey bee plasma to highlight the most common proteins in our samples. A list of 54 proteins was compiled, including several energy metabolism proteins such as Vitellogenin, Hexamerin, or Transferrins. These molecules represent key nutrient candidates that could be crucial for V. destructor survival.
Collapse
Affiliation(s)
- Vincent Piou
- Laboratoire Evolution et Diversité Biologique, UMR5174, CNRS-Université de Toulouse III-IRD—Université Paul Sabatier, 31077 Toulouse, France; (V.P.); (S.B.)
| | - Caroline Vilarem
- Laboratoire Evolution et Diversité Biologique, UMR5174, CNRS-Université de Toulouse III-IRD—Université Paul Sabatier, 31077 Toulouse, France; (V.P.); (S.B.)
- M2i Biocontrol–Entreprise SAS, 46140 Parnac, France
| | - Solène Blanchard
- Laboratoire Evolution et Diversité Biologique, UMR5174, CNRS-Université de Toulouse III-IRD—Université Paul Sabatier, 31077 Toulouse, France; (V.P.); (S.B.)
| | - Jean-Marc Strub
- Laboratoire de Spectrométrie de Masse Bio-Organique, Département des Sciences Analytiques, Institut Pluridisciplinaire Hubert Curien, UMR 7178 (CNRS-UdS), 67037 Strasbourg, France (F.B.)
| | - Fabrice Bertile
- Laboratoire de Spectrométrie de Masse Bio-Organique, Département des Sciences Analytiques, Institut Pluridisciplinaire Hubert Curien, UMR 7178 (CNRS-UdS), 67037 Strasbourg, France (F.B.)
| | | | - Karim Arafah
- Plateforme BioPark d’Archamps, 74160 Archamps, France
| | - Philippe Bulet
- Plateforme BioPark d’Archamps, 74160 Archamps, France
- Institute pour l’Avancée des Biosciences, CR Université Grenoble Alpes, Inserm U1209, CNRS UMR 5309, 38000 Grenoble, France
| | - Angélique Vétillard
- Laboratoire Evolution et Diversité Biologique, UMR5174, CNRS-Université de Toulouse III-IRD—Université Paul Sabatier, 31077 Toulouse, France; (V.P.); (S.B.)
- Conservatoire National des Arts et Métiers (CNAM), Unité Métabiot, 22440 Ploufragan, France
| |
Collapse
|
3
|
Murshed M, Salim M, Boyd BJ. Existing and emerging mitigation strategies for the prevention of accidental overdose from oral pharmaceutical products. Eur J Pharm Biopharm 2022; 180:201-211. [DOI: 10.1016/j.ejpb.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 11/15/2022]
|
4
|
Kim BY, Kim YH, Park MJ, Yoon HJ, Lee KY, Kim HK, Lee KS, Jin BR. Dual function of a bumblebee (Bombus ignitus) serine protease inhibitor that acts as a microbicidal peptide and anti-fibrinolytic venom toxin. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 135:104478. [PMID: 35716829 DOI: 10.1016/j.dci.2022.104478] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 05/27/2023]
Abstract
In bee venoms, low-molecular-weight peptides, including serine protease inhibitors (SPIs), exhibit multifunctional activities. Although SPIs in bee venoms are relatively well known, those that function in both the body and secreted venom of bees are not well-characterized. In this study, we identified a bumblebee (Bombus ignitus) SPI (BiSPI) that displays microbicidal and anti-fibrinolytic activities. BiSPI was found to consist of a trypsin inhibitor-like domain containing a P1 site and ten cysteine residues. We observed that the BiSPI gene was ubiquitously transcribed in the body, including the venom glands. In correlation, the BiSPI protein was detected both in the body and secreted venom by using an antibody against a recombinant BiSPI peptide produced in baculovirus-infected insect cells. Recombinant BiSPI exhibited inhibitory activity against trypsin but not chymotrypsin and inhibited microbial serine proteases and plasmin but not elastase or thrombin. Moreover, recombinant BiSPI recognized carbohydrates and bound to fungi and gram-negative and gram-positive bacteria. Consistent with these properties, recombinant BiSPI exhibited microbicidal activities against bacteria and fungi through induction of structural damage by binding to the microbial surfaces. Additionally, recombinant BiSPI inhibited the plasmin-mediated degradation of human fibrin and was thus concluded to exhibit anti-fibrinolytic activity. Moreover, the peptide showed no effect on hemolysis. These findings demonstrate the dual function of BiSPI, which acts as a microbicidal peptide and anti-fibrinolytic venom toxin.
Collapse
Affiliation(s)
- Bo Yeon Kim
- College of Natural Resources and Life Science, Dong-A University, Busan, 49315, Republic of Korea
| | - Yun Hui Kim
- College of Natural Resources and Life Science, Dong-A University, Busan, 49315, Republic of Korea
| | - Min Ji Park
- College of Natural Resources and Life Science, Dong-A University, Busan, 49315, Republic of Korea
| | - Hyung Joo Yoon
- Department of Agricultural Biology, National Academy of Agricultural Science, Wanju, 55365, Republic of Korea
| | - Kyeong Yong Lee
- Department of Agricultural Biology, National Academy of Agricultural Science, Wanju, 55365, Republic of Korea
| | - Hye Kyung Kim
- Department of Industrial Entomology, Korea National College of Agriculture and Fisheries, Jeonju, 54874, Republic of Korea
| | - Kwang Sik Lee
- College of Natural Resources and Life Science, Dong-A University, Busan, 49315, Republic of Korea.
| | - Byung Rae Jin
- College of Natural Resources and Life Science, Dong-A University, Busan, 49315, Republic of Korea.
| |
Collapse
|
5
|
Xue TT, Yang YG, Tang ZS, Duan JA, Song ZX, Hu XH, Yang HD, Xu HB. Evaluation of antioxidant, enzyme inhibition, nitric oxide production inhibitory activities and chemical profiles of the active extracts from the medicinal and edible plant: Althaea officinalis. Food Res Int 2022; 156:111166. [PMID: 35651032 DOI: 10.1016/j.foodres.2022.111166] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 11/04/2022]
Abstract
To develop the medicinal and edible plant resources of Althaea officinalis Linn in Europe and other places, this study concentrated on the bioactive ingredients of its different extracts. The phytochemical compositions of MeOH extracts were evaluated by UPLC-DAD-ESI-Q-TOF-MSn analysis. The in vitro antioxidant properties, enzymes inhibitory effects and nitric oxide (NO) production inhibitory activities of fractions obtained from the aerial parts of Althaea officinalis (APAO) were evaluated. The results identified 76 compounds, including 8 phenolic acids, 17 flavonoids, 6 coumarins, 9 triterpenes and 11 alkaloids. Fr. C-2 of APAO was found to have the highest TPC (175.8 ± 1.5 mg GAE/g) and TFC (466.9 ± 5.0 mg RE/g) with the highest antioxidant capacity in DPPH, ABTS, CUPRAC, FRAP and β-carotene bleaching assays. Fr. A showed noticeable inhibition of α-glucosidase with an IC50 value of 3.8 ± 0.1 μg/mL. However, Fr. B displayed stronger inhibitory activity on 5-lipoxygenase than quercetin, with the IC50 value of 8.4 ± 1.6 μg/mL. In addition, Fr. B also possessed potent inhibitory activities on NO production toward LPS-activated RAW 264.7 Cells with an IC50 value of 15.7 ± 1.6 μg/mL. Our findings suggest that different Althaea officinalis extracts may be considered sources of phenolic and flavonoid compounds with high potential as natural antioxidants, anti-inflammatory agents and blood sugar regulators. In addition, they can also be used in food and nutraceutical products with enhanced bioactivities.
Collapse
Affiliation(s)
- Tao-Tao Xue
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang, PR China
| | - Yuan-Gui Yang
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang, PR China
| | - Zhi-Shu Tang
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang, PR China; China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Jin-Ao Duan
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang, PR China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Zhong-Xing Song
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang, PR China
| | - Xiao-Hui Hu
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang, PR China
| | - Hao-Dong Yang
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang, PR China
| | - Hong-Bo Xu
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang, PR China.
| |
Collapse
|
6
|
Kim BY, Lee KS, Lee KY, Yoon HJ, Jin BR. Anti-fibrinolytic activity of a metalloprotease inhibitor from bumblebee (Bombus ignitus) venom. Comp Biochem Physiol C Toxicol Pharmacol 2021; 245:109042. [PMID: 33838314 DOI: 10.1016/j.cbpc.2021.109042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/22/2021] [Accepted: 04/01/2021] [Indexed: 11/20/2022]
Abstract
Bee venom is a mixture of bioactive components that include proteases and protease inhibitors. A metalloprotease inhibitor has been predicted to be a bumblebee-specific toxin in the venom proteome of Bombus terrestris; however, the identification and functional roles of bee venom metalloprotease inhibitors have not been previously determined. In this study, we identified a bumblebee (B. ignitus) venom metalloprotease inhibitor (BiVMPI) that exhibits anti-fibrinolytic activity. BiVMPI contains a trypsin inhibitor-like cysteine-rich domain that exhibits similarity to inducible metalloprotease inhibitor. Using an anti-BiVMPI antibody raised against a recombinant BiVMPI protein produced in baculovirus-infected insect cells, the presence of BiVMPI in the venom gland and secreted venom of B. ignitus worker bees was confirmed. The recombinant BiVMPI protein demonstrated inhibitory activity against a metalloprotease, trypsin, chymotrypsin, protease K, and plasmin, but not subtilisin A, elastase, or thrombin. Additionally, the recombinant BiVMPI bound to plasmin and inhibited the plasmin-mediated degradation of fibrin, demonstrating an anti-fibrinolytic role for BiVMPI as a bee venom metalloprotease inhibitor. Our results provide the first evidence for the identification and anti-fibrinolytic activity of a metalloprotease inhibitor from bee venom.
Collapse
Affiliation(s)
- Bo Yeon Kim
- College of Natural Resources and Life Science, Dong-A University, Busan 49315, Republic of Korea
| | - Kwang Sik Lee
- College of Natural Resources and Life Science, Dong-A University, Busan 49315, Republic of Korea
| | - Kyeong Yong Lee
- Department of Agricultural Biology, National Academy of Agricultural Science, Wanju 55365, Republic of Korea
| | - Hyung Joo Yoon
- Department of Agricultural Biology, National Academy of Agricultural Science, Wanju 55365, Republic of Korea.
| | - Byung Rae Jin
- College of Natural Resources and Life Science, Dong-A University, Busan 49315, Republic of Korea.
| |
Collapse
|
7
|
Shakeel M. Molecular identification, characterization, and expression analysis of a serine protease inhibitor gene from cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae). BRAZ J BIOL 2021; 81:516-525. [PMID: 32876160 DOI: 10.1590/1519-6984.223579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 02/07/2020] [Indexed: 12/13/2022] Open
Abstract
Serine protease inhibitors (serpins), a superfamily of protease inhibitors, are known to be involved in several physiological processes, such as development, metamorphosis, and innate immunity. In our study, a full-length serpin cDNA, designated Haserpin1, was isolated from the cotton bollworm Helicoverpa armigera. The cDNA sequence of Haserpin1 is 1176 nt long, with an open reading frame encoding 391 amino acids; there is one exon and no intron. The predicted molecular weight of Haserpin1 is 43.53 kDa, with an isoelectric point of 4.98. InterProScan was employed for Haserpin1 functional characterization, which revealed that Haserpin1 contains highly conserved signature motifs, including a reactive center loop (RCL) with a hinge region (E341-N350), the serpin signature, (F367-F375) and a predicted P1-P1' cleavage site (L357-S358), which are useful for identifying serpins. Transcripts of Haserpin1 were constitutively expressed in the fat body, suggesting that it is the major site for serpin synthesis. During the developmental stages, a fluctuation in the expression level of Haserpin1 was observed, with low expression detected at the 5th-instar larval stage. In contrast, relatively high expression was detected at the prepupal stage, suggesting that Haserpin1 might play a critical role at the H. armigera wandering stage. Although the detailed function of this serpin (Haserpin1) needs to be elucidated, our study provides a perspective for the functional investigation of serine protease inhibitor genes.
Collapse
Affiliation(s)
- Muhammad Shakeel
- South China Agricultural University, College of Agriculture, Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, Guangzhou, China
| |
Collapse
|
8
|
S. mansoni SmKI-1 Kunitz-domain: Leucine point mutation at P1 site generates enhanced neutrophil elastase inhibitory activity. PLoS Negl Trop Dis 2021; 15:e0009007. [PMID: 33465126 PMCID: PMC7846107 DOI: 10.1371/journal.pntd.0009007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 01/29/2021] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
The Schistosoma mansoni SmKI-1 protein is composed of two domains: a Kunitz-type serine protease inhibitor motif (KD) and a C-terminus domain with no similarity outside the genera. Our previous work has demonstrated that KD plays an essential role in neutrophil elastase (NE) binding blockage, in neutrophil influx and as a potential anti-inflammatory molecule. In order to enhance NE blocking capacity, we analyzed the KD sequence from a structure-function point of view and designed specific point mutations in order to enhance NE affinity. We substituted the P1 site residue at the reactive site for a leucine (termed RL-KD), given its central role for KD's inhibition to NE. We have also substituted a glutamic acid that strongly interacts with the P1 residue for an alanine, to help KD to be buried on NE S1 site (termed EA-KD). KD and the mutant proteins were evaluated in silico by molecular docking to human NE, expressed in Escherichia coli and tested towards its NE inhibitory activity. Both mutated proteins presented enhanced NE inhibitory activity in vitro and RL-KD presented the best performance. We further tested RL-KD in vivo in an experimental model of monosodium urate (MSU)-induced acute arthritis. RL-KD showed reduced numbers of total cells and neutrophils in the mouse knee cavity when compared to KD. Nevertheless, both RL-KD and KD reduced mice hypernociception in a similar fashion. In summary, our results demonstrated that both mutated proteins showed enhanced NE inhibitory activity in vitro. However, RL-KD had a prominent effect in diminishing inflammatory parameters in vivo.
Collapse
|
9
|
Ahmad S, Saleem M, Riaz N, Lee YS, Diri R, Noor A, Almasri D, Bagalagel A, Elsebai MF. The Natural Polypeptides as Significant Elastase Inhibitors. Front Pharmacol 2020; 11:688. [PMID: 32581778 PMCID: PMC7291377 DOI: 10.3389/fphar.2020.00688] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/27/2020] [Indexed: 12/11/2022] Open
Abstract
Human neutrophil elastase (HNE) is a major cause of the destruction of tissues in cases of several different chronic andinflammatory diseases. Overexpression of the elastase enzyme plays a significant role in the pathogenesis of various diseases including chronic obstructive pulmonary disease (COPD), acute respiratory distress syndrome, rheumatoid arthritis, the rare disease cyclic hematopoiesis (or cyclic neutropenia), infections, sepsis, cystic fibrosis, myocardial ischemia/reperfusion injury and asthma, inflammation, and atherosclerosis. Human neutrophil elastase is secreted by human neutrophils due to different stimuli. Medicine-based inhibition of the over-activation of neutrophils or production and activity of elastase have been suggested to mend inflammatory diseases. Although the development of new elastase inhibitors is an essential strategy for treating the different inflammatory diseases, it has been a challenge to specifically target the activity of elastase because of its overlapping functions with those of other serine proteases. This review article highlights the reported natural polypeptides as potential inhibitors of elastase enzyme. The mechanism of action, structural features, and activity of the polypeptides have also been correlated wherever they were available.
Collapse
Affiliation(s)
- Shabir Ahmad
- Department of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.,Department of Chemistry, Post-Graduate College, Bahawalpur, Pakistan
| | - Muhammad Saleem
- Department of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Naheed Riaz
- Department of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Yong Sup Lee
- Department of Life and Nanopharmaceutical Sciences & Medicinal Chemistry Laboratory, Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, South Korea
| | - Reem Diri
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmad Noor
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Diena Almasri
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alaa Bagalagel
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahmoud Fahmi Elsebai
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia.,Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
10
|
Synthetic modulator of chymotrypsin activity based on p-tert-butylthiacalix[4]arene. MENDELEEV COMMUNICATIONS 2019. [DOI: 10.1016/j.mencom.2019.09.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Park HG, Lee KS, Kim BY, Yoon HJ, Choi YS, Lee KY, Wan H, Li J, Jin BR. Honeybee (Apis cerana) vitellogenin acts as an antimicrobial and antioxidant agent in the body and venom. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 85:51-60. [PMID: 29621531 DOI: 10.1016/j.dci.2018.04.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/30/2018] [Accepted: 04/01/2018] [Indexed: 05/25/2023]
Abstract
Honeybee (Apis mellifera) egg-yolk protein vitellogenin (Vg) plays roles in immunity, antioxidation, and life span beyond reproduction, but it also acts as an allergen Api m 12 in venom. Here we established antimicrobial and antioxidant roles of honeybee Vg in the body and venom. Using the cDNA encoding Vg identified from Asiatic honeybee (A. cerana) workers, recombinant A. cerana Vg (AcVg) protein of approximately 180 kDa was produced in baculovirus-infected insect cells. In A. cerana worker bees, AcVg was expressed in the fat body and venom gland and was present in the secreted venom. AcVg induced structural damage in microbial cell walls via binding to microbial surfaces and exhibited antimicrobial activity against bacteria and fungi. AcVg protected mammalian and insect cells against oxidative damage through direct shielding of cell membranes. Interestingly, AcVg exhibited DNA protection activity against reactive oxygen species (ROS). Furthermore, the transcript level of AcVg was upregulated in the fat body, but not in the venom gland, of worker bees with antimicrobial peptides and antioxidant enzymes in response to microbial infection and oxidative stress. Our data indicate that AcVg is involved in innate immunity upon infection and in a defense system against ROS, supporting a crucial role of honeybee Vg as an antimicrobial and antioxidant agent in the body and venom.
Collapse
Affiliation(s)
- Hee Geun Park
- College of Natural Resources and Life Science, Dong-A University, Busan, 604-714, Republic of Korea
| | - Kwang Sik Lee
- College of Natural Resources and Life Science, Dong-A University, Busan, 604-714, Republic of Korea
| | - Bo Yeon Kim
- College of Natural Resources and Life Science, Dong-A University, Busan, 604-714, Republic of Korea
| | - Hyung Joo Yoon
- Department of Agricultural Biology, National Academy of Agricultural Science, Wanju, 55365, Republic of Korea
| | - Yong Soo Choi
- Department of Agricultural Biology, National Academy of Agricultural Science, Wanju, 55365, Republic of Korea
| | - Kyeong Yong Lee
- Department of Agricultural Biology, National Academy of Agricultural Science, Wanju, 55365, Republic of Korea
| | - Hu Wan
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Jianhong Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Byung Rae Jin
- College of Natural Resources and Life Science, Dong-A University, Busan, 604-714, Republic of Korea.
| |
Collapse
|
12
|
Yang J, Lee KS, Kim BY, Choi YS, Yoon HJ, Jia J, Jin BR. Anti-fibrinolytic and anti-microbial activities of a serine protease inhibitor from honeybee (Apis cerana) venom. Comp Biochem Physiol C Toxicol Pharmacol 2017; 201:11-18. [PMID: 28917645 DOI: 10.1016/j.cbpc.2017.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/29/2017] [Accepted: 09/09/2017] [Indexed: 01/14/2023]
Abstract
Bee venom contains a variety of peptide constituents, including low-molecular-weight protease inhibitors. While the putative low-molecular-weight serine protease inhibitor Api m 6 containing a trypsin inhibitor-like cysteine-rich domain was identified from honeybee (Apis mellifera) venom, no anti-fibrinolytic or anti-microbial roles for this inhibitor have been elucidated. In this study, we identified an Asiatic honeybee (A. cerana) venom serine protease inhibitor (AcVSPI) that was shown to act as a microbial serine protease inhibitor and plasmin inhibitor. AcVSPI was found to consist of a trypsin inhibitor-like domain that displays ten cysteine residues. Interestingly, the AcVSPI peptide sequence exhibited high similarity to the putative low-molecular-weight serine protease inhibitor Api m 6, which suggests that AcVSPI is an allergen Api m 6-like peptide. Recombinant AcVSPI was expressed in baculovirus-infected insect cells, and it demonstrated inhibitory activity against trypsin, but not chymotrypsin. Additionally, AcVSPI has inhibitory effects against plasmin and microbial serine proteases; however, it does not have any detectable inhibitory effects on thrombin or elastase. Consistent with these inhibitory effects, AcVSPI inhibited the plasmin-mediated degradation of fibrin to fibrin degradation products. AcVSPI also bound to bacterial and fungal surfaces and exhibited anti-microbial activity against fungi as well as gram-positive and gram-negative bacteria. These findings demonstrate the anti-fibrinolytic and anti-microbial roles of AcVSPI as a serine protease inhibitor.
Collapse
Affiliation(s)
- Jie Yang
- College of Natural Resources and Life Science, Dong-A University, Busan 604-714, Republic of Korea; Joint Laboratory Between Dong-A University and Shenyang Pharmaceutical University, Shenyang Pharmaceutical University, Shenyang, China
| | - Kwang Sik Lee
- College of Natural Resources and Life Science, Dong-A University, Busan 604-714, Republic of Korea
| | - Bo Yeon Kim
- College of Natural Resources and Life Science, Dong-A University, Busan 604-714, Republic of Korea
| | - Yong Soo Choi
- Department of Agricultural Biology, National Academy of Agricultural Science, Wanju 55365, Republic of Korea
| | - Hyung Joo Yoon
- Department of Agricultural Biology, National Academy of Agricultural Science, Wanju 55365, Republic of Korea
| | - Jingming Jia
- Joint Laboratory Between Dong-A University and Shenyang Pharmaceutical University, Shenyang Pharmaceutical University, Shenyang, China
| | - Byung Rae Jin
- College of Natural Resources and Life Science, Dong-A University, Busan 604-714, Republic of Korea; Joint Laboratory Between Dong-A University and Shenyang Pharmaceutical University, Shenyang Pharmaceutical University, Shenyang, China.
| |
Collapse
|
13
|
Lee KS, Kim BY, Yoon HJ, Choi YS, Jin BR. Secapin, a bee venom peptide, exhibits anti-fibrinolytic, anti-elastolytic, and anti-microbial activities. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 63:27-35. [PMID: 27208884 DOI: 10.1016/j.dci.2016.05.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 05/15/2016] [Accepted: 05/16/2016] [Indexed: 05/27/2023]
Abstract
Bee venom contains a variety of peptide constituents that have various biological, toxicological, and pharmacological actions. However, the biological actions of secapin, a venom peptide in bee venom, remain largely unknown. Here, we provide the evidence that Asiatic honeybee (Apis cerana) secapin (AcSecapin-1) exhibits anti-fibrinolytic, anti-elastolytic, and anti-microbial activities. The recombinant mature AcSecapin-1 peptide was expressed in baculovirus-infected insect cells. AcSecapin-1 functions as a serine protease inhibitor-like peptide that has inhibitory effects against plasmin, elastases, microbial serine proteases, trypsin, and chymotrypsin. Consistent with these functions, AcSecapin-1 inhibited the plasmin-mediated degradation of fibrin to fibrin degradation products, thus indicating the role of AcSecapin-1 as an anti-fibrinolytic agent. AcSecapin-1 also inhibited both human neutrophil and porcine pancreatic elastases. Furthermore, AcSecapin-1 bound to bacterial and fungal surfaces and exhibited anti-microbial activity against fungi and gram-positive and gram-negative bacteria. Taken together, our data demonstrated that the bee venom peptide secapin has multifunctional roles as an anti-fibrinolytic agent during fibrinolysis and an anti-microbial agent in the innate immune response.
Collapse
Affiliation(s)
- Kwang Sik Lee
- College of Natural Resources and Life Science, Dong-A University, Busan 604-714, Republic of Korea
| | - Bo Yeon Kim
- College of Natural Resources and Life Science, Dong-A University, Busan 604-714, Republic of Korea
| | - Hyung Joo Yoon
- Department of Agricultural Biology, National Academy of Agricultural Science, Wanju 55365, Republic of Korea
| | - Yong Soo Choi
- Department of Agricultural Biology, National Academy of Agricultural Science, Wanju 55365, Republic of Korea
| | - Byung Rae Jin
- College of Natural Resources and Life Science, Dong-A University, Busan 604-714, Republic of Korea.
| |
Collapse
|
14
|
A serine protease inhibitor from Musca domestica larva exhibits inhibitory activity against elastase and chymotrypsin. Biotechnol Lett 2016; 38:1147-53. [PMID: 27040971 DOI: 10.1007/s10529-016-2089-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 03/23/2016] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Insect-derived serine protease inhibitors (serpins) exhibit multiple inhibitory activities, but so far, no functional roles for serpins of Musca domestica have been identified. Here, the functional features of M. domestica serine protease inhibitor (MDSPI16) were characterized. RESULTS Hundred forty seven differentially expressed genes including the MDSPI16 gene were screened by constructing the subtractive cDNA library. The 1154-bp full-length MDSPI16 gene was cloned, and the recombinant MDSPI16 serpin protein was expressed as a 42.6 kDa protein in an Escherichia coli expression system. The recombinant MDSPI16 protein was purified using Ni-NTA affinity chromatography, and the inhibitory activity of MDSPI16 was assessed. MDSPI16 did not inhibit trypsin, papain, or proteinase K but strongly inhibited elastase (Ki = 2.8 nM) and chymotrypsin (Ki = 28 nM). The inhibitory activity of MDSPI16 remained stable over from 37 to 100 °C and from pH 2 to 12. CONCLUSIONS The MDSPI16 exhibited inhibitory activity against elastase and chymotrypsin and the inhibitory activity remained stable.
Collapse
|
15
|
Wang YW, Tan JM, Du CW, Luan N, Yan XW, Lai R, Lu QM. A Novel Trypsin Inhibitor-Like Cysteine-Rich Peptide from the Frog Lepidobatrachus laevis Containing Proteinase-Inhibiting Activity. NATURAL PRODUCTS AND BIOPROSPECTING 2015; 5:209-214. [PMID: 26329591 PMCID: PMC4567993 DOI: 10.1007/s13659-015-0069-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 08/25/2015] [Indexed: 06/05/2023]
Abstract
Various bio-active substances in amphibian skins play important roles in survival of the amphibians. Many protease inhibitor peptides have been identified from amphibian skins, which are supposed to negatively modulate the activity of proteases to avoid premature degradation or release of skin peptides, or to inhibit extracellular proteases produced by invading bacteria. However, there is no information on the proteinase inhibitors from the frog Lepidobatrachus laevis which is unique in South America. In this work, a cDNA encoding a novel trypsin inhibitor-like (TIL) cysteine-rich peptide was identified from the skin cDNA library of L. laevis. The 240-bp coding region encodes an 80-amino acid residue precursor protein containing 10 half-cysteines. By sequence comparison and signal peptide prediction, the precursor was predicted to release a 55-amino acid mature peptide with amino acid sequence, IRCPKDKIYKFCGSPCPPSCKDLTPNCIAVCKKGCFCRDGTVDNNHGKCVKKENC. The mature peptide was named LL-TIL. LL-TIL shares significant domain similarity with the peptides from the TIL supper family. Antimicrobial and trypsin-inhibitory abilities of recombinant LL-TIL were tested. Recombinant LL-TIL showed no antimicrobial activity, while it had trypsin-inhibiting activity with a Ki of 16.5178 μM. These results suggested there was TIL peptide with proteinase-inhibiting activity in the skin of frog L. laevis. To the best of our knowledge, this is the first report of TIL peptide from frog skin.
Collapse
Affiliation(s)
- Yu-Wei Wang
- Life Sciences College of Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Ji-Min Tan
- Life Sciences College of Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Can-Wei Du
- Life Sciences College of Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Ning Luan
- Life Sciences College of Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xiu-Wen Yan
- Life Sciences College of Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Ren Lai
- Life Sciences College of Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, 650223, Yunnan, China
| | - Qiu-Min Lu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, 650223, Yunnan, China.
| |
Collapse
|
16
|
Kim BY, Jin BR. Apolipophorin III from honeybees (Apis cerana) exhibits antibacterial activity. Comp Biochem Physiol B Biochem Mol Biol 2015; 182:6-13. [DOI: 10.1016/j.cbpb.2014.11.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 11/28/2014] [Accepted: 11/29/2014] [Indexed: 12/15/2022]
|
17
|
Park HG, Kyung SS, Lee KS, Kim BY, Choi YS, Yoon HJ, Kwon HW, Je YH, Jin BR. Dual function of a bee (Apis cerana) inhibitor cysteine knot peptide that acts as an antifungal peptide and insecticidal venom toxin. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 47:247-53. [PMID: 25106915 DOI: 10.1016/j.dci.2014.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 07/31/2014] [Accepted: 08/01/2014] [Indexed: 05/27/2023]
Abstract
Inhibitor cysteine knot (ICK) peptides exhibit ion channel blocking, insecticidal, and antimicrobial activities, but currently, no functional roles for bee-derived ICK peptides have been identified. In this study, a bee (Apis cerana) ICK peptide (AcICK) that acts as an antifungal peptide and as an insecticidal venom toxin was identified. AcICK contains an ICK fold that is expressed in the epidermis, fat body, or venom gland and is present as a 6.6-kDa peptide in bee venom. Recombinant AcICK peptide (expressed in baculovirus-infected insect cells) bound directly to Beauveria bassiana and Fusarium graminearum, but not to Escherichia coli or Bacillus thuringiensis. Consistent with these findings, AcICK showed antifungal activity, indicating that AcICK acts as an antifungal peptide. Furthermore, AcICK expression is induced in the fat body and epidermis after injection with B. bassiana. These results provide insight into the role of AcICK during the innate immune response following fungal infection. Additionally, we show that AcICK has insecticidal activity. Our results demonstrate a functional role for AcICK in bees: AcICK acts as an antifungal peptide in innate immune reactions in the body and as an insecticidal toxin in venom. The finding that the AcICK peptide functions with different mechanisms of action in the body and in venom highlights the two-pronged strategy that is possible with the bee ICK peptide.
Collapse
Affiliation(s)
- Hee Geun Park
- College of Natural Resources and Life Science, Dong-A University, Busan 604-714, Republic of Korea
| | - Seung Su Kyung
- College of Natural Resources and Life Science, Dong-A University, Busan 604-714, Republic of Korea
| | - Kwang Sik Lee
- College of Natural Resources and Life Science, Dong-A University, Busan 604-714, Republic of Korea
| | - Bo Yeon Kim
- College of Natural Resources and Life Science, Dong-A University, Busan 604-714, Republic of Korea
| | - Yong Soo Choi
- Department of Agricultural Biology, National Academy of Agricultural Science, Suwon, Republic of Korea
| | - Hyung Joo Yoon
- Department of Agricultural Biology, National Academy of Agricultural Science, Suwon, Republic of Korea
| | - Hyung Wook Kwon
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Yeon Ho Je
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Byung Rae Jin
- College of Natural Resources and Life Science, Dong-A University, Busan 604-714, Republic of Korea.
| |
Collapse
|
18
|
Zeng XC, Liu Y, Shi W, Zhang L, Luo X, Nie Y, Yang Y. Genome-wide search and comparative genomic analysis of the trypsin inhibitor-like cysteine-rich domain-containing peptides. Peptides 2014; 53:106-14. [PMID: 23973966 DOI: 10.1016/j.peptides.2013.08.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/13/2013] [Accepted: 08/13/2013] [Indexed: 11/24/2022]
Abstract
It was shown that peptides containing trypsin inhibitor-like cysteine-rich (TIL) domain are able to inhibit proteinase activities, and thus play important roles in various biological processes, such as immune response and anticoagulation. However, only a limited number of the TIL peptides have been identified and characterized so far; and little has been known about the evolutionary relationships of the genes encoding the TIL peptides. BmKAPi is a TIL domain-containing peptide that was identified from Mesobuthus martensii Karsch. Here, we conducted genome-wide searches for new peptides that are homologous to BmKAPi or possess a cysteine pattern similar to that of BmKAPi. As a result, we identified a total of 80 different TIL peptides from 34 species of arthropods. We found that these peptides can be classified into seven evolutionarily distinct groups. Furthermore, we cloned the genomic sequence of BmKAPi; the genomic sequences of the majority of other TIL peptides were also identified from the GenBank database using bioinformatical approaches. Through phylogenetic and comparative genomic analysis, we found 26 cases of intron gain events occurred in the genes of the TIL peptides; however, no instances of intron loss were observed. Moreover, we found that alternative splicing contributes to the diversification of the TIL peptides. It is interesting to see that four genes of the TIL domain-containing peptides overlap in a DNA region located on the chromosome LG B15 of Bombus terretris. These data suggest that the evolution of the TIL peptide genes are dynamic, which was dominated by intron gain.
Collapse
Affiliation(s)
- Xian-Chun Zeng
- State Key Laboratory of Biogeology and Environmental Geology & Department of Biological Science and Technology, School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, People's Republic of China.
| | - Yichen Liu
- State Key Laboratory of Biogeology and Environmental Geology & Department of Biological Science and Technology, School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, People's Republic of China
| | - Wanxia Shi
- State Key Laboratory of Biogeology and Environmental Geology & Department of Biological Science and Technology, School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, People's Republic of China
| | - Lei Zhang
- State Key Laboratory of Biogeology and Environmental Geology & Department of Biological Science and Technology, School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, People's Republic of China
| | - Xuesong Luo
- State Key Laboratory of Biogeology and Environmental Geology & Department of Biological Science and Technology, School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, People's Republic of China
| | - Yao Nie
- State Key Laboratory of Biogeology and Environmental Geology & Department of Biological Science and Technology, School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, People's Republic of China
| | - Ye Yang
- State Key Laboratory of Biogeology and Environmental Geology & Department of Biological Science and Technology, School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, People's Republic of China
| |
Collapse
|
19
|
A bumblebee (Bombus ignitus) venom serine protease inhibitor that acts as a microbial serine protease inhibitor. Comp Biochem Physiol B Biochem Mol Biol 2014; 167:59-64. [DOI: 10.1016/j.cbpb.2013.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/14/2013] [Accepted: 10/14/2013] [Indexed: 12/13/2022]
|
20
|
Kim BY, Lee KS, Zou FM, Wan H, Choi YS, Yoon HJ, Kwon HW, Je YH, Jin BR. Antimicrobial activity of a honeybee (Apis cerana) venom Kazal-type serine protease inhibitor. Toxicon 2013; 76:110-7. [PMID: 24076031 DOI: 10.1016/j.toxicon.2013.09.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 09/13/2013] [Accepted: 09/18/2013] [Indexed: 10/26/2022]
Abstract
Insect-derived Kazal-type serine protease inhibitors exhibit thrombin, elastase, plasmin, proteinase K, or subtilisin A inhibition activity, but so far, no functional roles for bee-derived Kazal-type serine protease inhibitors have been identified. In this study, a bee (Apis cerana) venom Kazal-type serine protease inhibitor (AcKTSPI) that acts as a microbial serine protease inhibitor was identified. AcKTSPI contained a single Kazal domain that displayed six conserved cysteine residues and a P1 threonine residue. AcKTSPI was expressed in the venom gland and was present as a 10-kDa peptide in bee venom. Recombinant AcKTSPI Kazal domain (AcKTSPI-Kd) expressed in baculovirus-infected insect cells demonstrated inhibitory activity against subtilisin A (Ki 67.03 nM) and proteinase K (Ki 91.53 nM), but not against α-chymotrypsin or trypsin, which implies a role for AcKTSPI as a microbial serine protease inhibitor. However, AcKTSPI-Kd exhibited no detectable inhibitory effects on factor Xa, thrombin, tissue plasminogen activator, or elastase. Additionally, AcKTSPI-Kd bound directly to Bacillus subtilis, Bacillus thuringiensis, Beauveria bassiana, and Fusarium graminearum but not to Escherichia coli. Consistent with these findings, AcKTSPI-Kd showed antibacterial activity against Gram-positive bacteria and antifungal activity against both plant-pathogenic and entomopathogenic fungi. These findings constitute molecular evidence that AcKTSPI acts as an inhibitor of microbial serine proteases. This paper provides a novel view of the antimicrobial functions of a bee venom Kazal-type serine protease inhibitor.
Collapse
Affiliation(s)
- Bo Yeon Kim
- College of Natural Resources and Life Science, Dong-A University, Busan 604-714, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Protease inhibitors from marine venomous animals and their counterparts in terrestrial venomous animals. Mar Drugs 2013; 11:2069-112. [PMID: 23771044 PMCID: PMC3721222 DOI: 10.3390/md11062069] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 05/28/2013] [Accepted: 05/30/2013] [Indexed: 01/04/2023] Open
Abstract
The Kunitz-type protease inhibitors are the best-characterized family of serine protease inhibitors, probably due to their abundance in several organisms. These inhibitors consist of a chain of ~60 amino acid residues stabilized by three disulfide bridges, and was first observed in the bovine pancreatic trypsin inhibitor (BPTI)-like protease inhibitors, which strongly inhibit trypsin and chymotrypsin. In this review we present the protease inhibitors (PIs) described to date from marine venomous animals, such as from sea anemone extracts and Conus venom, as well as their counterparts in terrestrial venomous animals, such as snakes, scorpions, spiders, Anurans, and Hymenopterans. More emphasis was given to the Kunitz-type inhibitors, once they are found in all these organisms. Their biological sources, specificity against different proteases, and other molecular blanks (being also K+ channel blockers) are presented, followed by their molecular diversity. Whereas sea anemone, snakes and other venomous animals present mainly Kunitz-type inhibitors, PIs from Anurans present the major variety in structure length and number of Cys residues, with at least six distinguishable classes. A representative alignment of PIs from these venomous animals shows that, despite eventual differences in Cys assignment, the key-residues for the protease inhibitory activity in all of them occupy similar positions in primary sequence. The key-residues for the K+ channel blocking activity was also compared.
Collapse
|
22
|
Wan H, Lee KS, Kim BY, Yuan M, Zhan S, You H, Li J, Jin BR. A spider (Araneus ventricosus) chymotrypsin inhibitor that acts as an elastase inhibitor and a microbial serine protease inhibitor. Comp Biochem Physiol B Biochem Mol Biol 2013; 165:36-41. [PMID: 23499942 DOI: 10.1016/j.cbpb.2013.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/05/2013] [Accepted: 03/05/2013] [Indexed: 10/27/2022]
Abstract
Spider-derived Kunitz-type serine protease inhibitors have been shown to exhibit plasmin and elastase inhibition activity and potassium channel blocking activity, but thus far, no additional roles for spider-derived chymotrypsin inhibitors have been elucidated. In this study, a spider (Araneus ventricosus) chymotrypsin inhibitor (AvCI) that acts as an elastase inhibitor and a microbial serine protease inhibitor was identified. AvCI is a 70-amino acid mature peptide that displays eight conserved cysteine residues and a P1 lysine residue. Recombinant AvCI expressed in baculovirus-infected insect cells demonstrated inhibitory activity against chymotrypsin (Ki 49.85 nM), but not trypsin, which defines a role for AvCI as a spider-derived chymotrypsin inhibitor. AvCI also exhibited inhibitory activity against microbial serine proteases such as subtilisin A (Ki 20.51 nM) and proteinase K (Ki 65.42 nM). Furthermore, AvCI exhibited no detectable inhibitory effects on factor Xa, thrombin, tissue plasminogen activator, or plasmin; however, AvCI strongly inhibited human neutrophil elastase (Ki 8.74 nM) and porcine pancreatic elastase (Ki 11.32 nM), indicating that AvCI acts as an anti-elastolytic factor. These findings constitute molecular evidence that AvCI acts as an inhibitor against chymotrypsin, microbial serine proteases, and elastases. This paper provides a novel view of the functions of a spider-derived chymotrypsin inhibitor.
Collapse
Affiliation(s)
- Hu Wan
- Department of Plant Protection, Huazhong Agricultural University, Wuhan, PR China
| | | | | | | | | | | | | | | |
Collapse
|