1
|
Merta H, Gov K, Isogai T, Paul B, Sannigrahi A, Radhakrishnan A, Danuser G, Henne WM. Spatial proteomics of ER tubules reveals CLMN, an ER-actin tether at focal adhesions that promotes cell migration. Cell Rep 2025; 44:115502. [PMID: 40184252 DOI: 10.1016/j.celrep.2025.115502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 12/20/2024] [Accepted: 03/11/2025] [Indexed: 04/06/2025] Open
Abstract
The endoplasmic reticulum (ER) is structurally and functionally diverse, yet how its functions are organized within morphological subdomains is incompletely understood. Utilizing TurboID-based proximity labeling and CRISPR knockin technologies, we map the proteomic landscape of the human ER network. Sub-organelle proteomics reveals enrichments of proteins into ER tubules, sheets, and the nuclear envelope. We uncover an ER-enriched actin-binding protein, calmin/CLMN, and define it as an ER-actin tether that localizes to focal adhesions adjacent to ER tubules. Mechanistically, we find that CLMN depletion perturbs adhesion disassembly, actin dynamics, and cell movement. CLMN-depleted cells display decreased polarization of ER-plasma membrane contacts and calcium signaling factor STIM1 and altered calcium signaling near ER-actin interfaces, suggesting that CLMN influences calcium signaling to facilitate F-actin/adhesion dynamics. Collectively, we map the sub-organelle proteome landscape of the ER, identify CLMN as an ER-actin tether, and describe a non-canonical mechanism by which ER tubules engage actin to regulate cell migration.
Collapse
Affiliation(s)
- Holly Merta
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kaitlynn Gov
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tadamoto Isogai
- Lyda Hill Department of Bioinformatics and Cecil H. and Ida Green Center for Systems Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Blessy Paul
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Achinta Sannigrahi
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Arun Radhakrishnan
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gaudenz Danuser
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Lyda Hill Department of Bioinformatics and Cecil H. and Ida Green Center for Systems Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - W Mike Henne
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
2
|
Guiraud A, Couturier N, Christin E, Castellano L, Daura M, Kretz-Remy C, Janin A, Ghasemizadeh A, Del Carmine P, Monteiro L, Rotard L, Sanchez C, Jacquemond V, Burny C, Janczarski S, Durieux AC, Arnould D, Romero NB, Bui MT, Buchman VL, Julien L, Bitoun M, Gache V. SH3KBP1 promotes skeletal myofiber formation and functionality through ER/SR architecture integrity. EMBO Rep 2025; 26:2166-2191. [PMID: 40065183 PMCID: PMC12019163 DOI: 10.1038/s44319-025-00413-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 02/13/2025] [Accepted: 02/18/2025] [Indexed: 04/25/2025] Open
Abstract
Dynamic changes in the arrangement of myonuclei and the organization of the sarcoplasmic reticulum are important determinants of myofiber formation and muscle function. To find factors associated with muscle integrity, we perform an siRNA screen and identify SH3KBP1 as a new factor controlling myoblast fusion, myonuclear positioning, and myotube elongation. We find that the N-terminus of SH3KBP1 binds to dynamin-2 while the C-terminus associates with the endoplasmic reticulum through calnexin, which in turn control myonuclei dynamics and ER integrity, respectively. Additionally, in mature muscle fibers, SH3KBP1 contributes to the formation of triads and modulates the Excitation-Contraction Coupling process efficiency. In Dnm2R465W/+ mice, a model for centronuclear myopathy (CNM), depletion of Sh3kbp1 expression aggravates CNM-related atrophic phenotypes and impaired autophagic flux in mutant skeletal muscle fiber. Altogether, our results identify SH3KBP1 as a new regulator of myofiber integrity and function.
Collapse
MESH Headings
- Animals
- Mice
- Muscle Fibers, Skeletal/metabolism
- Dynamin II/metabolism
- Dynamin II/genetics
- Sarcoplasmic Reticulum/metabolism
- Humans
- Endoplasmic Reticulum/metabolism
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/genetics
- Myopathies, Structural, Congenital/genetics
- Myopathies, Structural, Congenital/metabolism
- Myopathies, Structural, Congenital/pathology
- Muscle, Skeletal/metabolism
- Protein Binding
- Myoblasts/metabolism
Collapse
Affiliation(s)
- Alexandre Guiraud
- CNRS/UCBL1 UMR 5261 - INSERM U1315, U1217, INMG-PGNM, INSERM, CNRS, Claude Bernard University Lyon 1, Lyon, France
| | - Nathalie Couturier
- CNRS/UCBL1 UMR 5261 - INSERM U1315, U1217, INMG-PGNM, INSERM, CNRS, Claude Bernard University Lyon 1, Lyon, France
| | - Emilie Christin
- CNRS/UCBL1 UMR 5261 - INSERM U1315, U1217, INMG-PGNM, INSERM, CNRS, Claude Bernard University Lyon 1, Lyon, France
| | - Léa Castellano
- CNRS/UCBL1 UMR 5261 - INSERM U1315, U1217, INMG-PGNM, INSERM, CNRS, Claude Bernard University Lyon 1, Lyon, France
| | - Marine Daura
- CNRS/UCBL1 UMR 5261 - INSERM U1315, U1217, INMG-PGNM, INSERM, CNRS, Claude Bernard University Lyon 1, Lyon, France
| | - Carole Kretz-Remy
- CNRS/UCBL1 UMR 5261 - INSERM U1315, U1217, INMG-PGNM, INSERM, CNRS, Claude Bernard University Lyon 1, Lyon, France
| | - Alexandre Janin
- CNRS/UCBL1 UMR 5261 - INSERM U1315, U1217, INMG-PGNM, INSERM, CNRS, Claude Bernard University Lyon 1, Lyon, France
| | - Alireza Ghasemizadeh
- CNRS/UCBL1 UMR 5261 - INSERM U1315, U1217, INMG-PGNM, INSERM, CNRS, Claude Bernard University Lyon 1, Lyon, France
| | - Peggy Del Carmine
- CNRS/UCBL1 UMR 5261 - INSERM U1315, U1217, INMG-PGNM, INSERM, CNRS, Claude Bernard University Lyon 1, Lyon, France
| | - Laloe Monteiro
- CNRS/UCBL1 UMR 5261 - INSERM U1315, U1217, INMG-PGNM, INSERM, CNRS, Claude Bernard University Lyon 1, Lyon, France
| | - Ludivine Rotard
- CNRS/UCBL1 UMR 5261 - INSERM U1315, U1217, INMG-PGNM, INSERM, CNRS, Claude Bernard University Lyon 1, Lyon, France
| | - Colline Sanchez
- CNRS/UCBL1 UMR 5261 - INSERM U1315, U1217, INMG-PGNM, INSERM, CNRS, Claude Bernard University Lyon 1, Lyon, France
| | - Vincent Jacquemond
- CNRS/UCBL1 UMR 5261 - INSERM U1315, U1217, INMG-PGNM, INSERM, CNRS, Claude Bernard University Lyon 1, Lyon, France
| | - Claire Burny
- Laboratoire de Biologie et Modélisation de la Cellule, ENS de Lyon, Lyon, CEDEX 07, France
| | - Stéphane Janczarski
- Laboratoire de Biologie et Modélisation de la Cellule, ENS de Lyon, Lyon, CEDEX 07, France
| | - Anne-Cécile Durieux
- Laboratoire Interuniversitaire de Biologie de la Motricité, Université de Lyon, Université Jean Monnet, Saint Etienne, France
| | - David Arnould
- Laboratoire Interuniversitaire de Biologie de la Motricité, Université de Lyon, Université Jean Monnet, Saint Etienne, France
| | - Norma Beatriz Romero
- Unité de Morphologie Neuromusculaire, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France
| | - Mai Thao Bui
- Unité de Morphologie Neuromusculaire, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France
| | - Vladimir L Buchman
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Laura Julien
- Sorbonne Université, INSERM, Institute of Myology, Centre of Research in Myology, F-75013, Paris, France
| | - Marc Bitoun
- Sorbonne Université, INSERM, Institute of Myology, Centre of Research in Myology, F-75013, Paris, France
| | - Vincent Gache
- CNRS/UCBL1 UMR 5261 - INSERM U1315, U1217, INMG-PGNM, INSERM, CNRS, Claude Bernard University Lyon 1, Lyon, France.
| |
Collapse
|
3
|
Kaplan MM, Zeidler M, Knapp A, Hölzl M, Kress M, Fritsch H, Krogsdam A, Flucher BE. Spatial transcriptomics in embryonic mouse diaphragm muscle reveals regional gradients and subdomains of developmental gene expression. iScience 2024; 27:110018. [PMID: 38883818 PMCID: PMC11177202 DOI: 10.1016/j.isci.2024.110018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/22/2024] [Accepted: 05/14/2024] [Indexed: 06/18/2024] Open
Abstract
The murine embryonic diaphragm is a primary model for studying myogenesis and neuro-muscular synaptogenesis, both representing processes regulated by spatially organized genetic programs of myonuclei located in distinct myodomains. However, a spatial gene expression pattern of embryonic mouse diaphragm has not been reported. Here, we provide spatially resolved gene expression data for horizontally sectioned embryonic mouse diaphragms at embryonic days E14.5 and E18.5. These data reveal gene signatures for specific muscle regions with distinct maturity and fiber type composition, as well as for a central neuromuscular junction (NMJ) and a peripheral myotendinous junction (MTJ) compartment. Comparing spatial expression patterns of wild-type mice with those of transgenic mice lacking either the skeletal muscle calcium channel CaV1.1 or β-catenin, reveals curtailed muscle development and dysregulated expression of genes potentially involved in NMJ formation. Altogether, these datasets provide a powerful resource for further studies of muscle development and NMJ formation in the mouse.
Collapse
Affiliation(s)
| | - Maximilian Zeidler
- Institute of Physiology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Annabella Knapp
- Institute of Clinical and Functional Anatomy, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Martina Hölzl
- Deep Sequencing Core and Institute for Bioinformatics Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Michaela Kress
- Institute of Physiology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Helga Fritsch
- Institute of Clinical and Functional Anatomy, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Anne Krogsdam
- Deep Sequencing Core and Institute for Bioinformatics Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Bernhard E Flucher
- Institute of Physiology, Medical University Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
4
|
Moamer A, Hachim IY, Binothman N, Wang N, Lebrun JJ, Ali S. A role for kinesin-1 subunits KIF5B/KLC1 in regulating epithelial mesenchymal plasticity in breast tumorigenesis. EBioMedicine 2019; 45:92-107. [PMID: 31204277 PMCID: PMC6642081 DOI: 10.1016/j.ebiom.2019.06.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 06/03/2019] [Accepted: 06/06/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Epithelial mesenchymal plasticity (EMP) is deemed vital in breast cancer progression, metastasis, stemness and resistance to therapy. Therefore, characterizing molecular mechanisms contributing to EMP are in need enabling the development of more advanced therapeutics against breast cancer. While kinesin superfamily proteins (KIFs) are well known for their role in intracellular cargo movement, our knowledge of their function in breast tumorigenesis is still limited. METHODS Various breast cancer cell lines representing different molecular subtypes were used to determine the role of kinesine-1 subunits KIF5B/KLC1 in regulation of EMP. FINDINGS In breast cancer, we show that kinesin family member 5B (KIF5B) and its partner protein kinesin light chain 1 (KLC1), subunits of kinesin-1, to play differential roles in regulating EMP and tumorigenesis. Indeed, we found KIF5B to be expressed in triple negative (TN)-basal-like/claudin low breast cancer subtype and to be an inducer of epithelial-mesenchymal transition (EMT), stemness, invasiveness, tumor formation and metastatic colonization. Whereas, we found KLC1 to be expressed in epithelial/luminal breast cancer subtypes and to be a suppressor of EMT, invasion, metastasis and stem cell markers expression as well as to be an inducer of epithelial/luminal phenotype. Interestingly, in TN-basal-like/claudin low cells we found a novel nuclear accumulation of KIF5B and its interaction with the EMT transcriptional regulator Snail1 independent of KLC1. In addition, TGF-β mediated pro-invasive activity was found to be dependent on KIF5B expression. In contrast, the epithelial differentiation factor and EMT suppressor prolactin (PRL) was found to repress KIF5B gene expression and KIF5B-Snail1 nuclear accumulation, but enhanced KLC1 gene expression and KIF5B-KLC1 interaction. INTERPRETATION Together, these results highlight a new paradigm for kinesin-1 function in breast tumorigenesis by regulating EMP programing and aggressiveness. FUND: This work was supported by the Canadian Institutes of Health Research (operating grants #233437 and 233438) granted to Suhad Ali.
Collapse
Affiliation(s)
- Alaa Moamer
- Department of Medicine, Cancer Research Program, Centre for Translational Biology, McGill University Health Centre, McGill University, Canada.
| | - Ibrahim Y Hachim
- Department of Medicine, Cancer Research Program, Centre for Translational Biology, McGill University Health Centre, McGill University, Canada.
| | - Najat Binothman
- Department of Medicine, Cancer Research Program, Centre for Translational Biology, McGill University Health Centre, McGill University, Canada.
| | - Ni Wang
- Department of Medicine, Cancer Research Program, Centre for Translational Biology, McGill University Health Centre, McGill University, Canada.
| | - Jean-Jacques Lebrun
- Department of Medicine, Cancer Research Program, Centre for Translational Biology, McGill University Health Centre, McGill University, Canada.
| | - Suhad Ali
- Department of Medicine, Cancer Research Program, Centre for Translational Biology, McGill University Health Centre, McGill University, Canada.
| |
Collapse
|
6
|
Wilson MH, Holzbaur ELF. Nesprins anchor kinesin-1 motors to the nucleus to drive nuclear distribution in muscle cells. Development 2015; 142:218-28. [PMID: 25516977 DOI: 10.1242/dev.114769] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During skeletal muscle development, nuclei move dynamically through myotubes in a microtubule-dependent manner, driven by the microtubule motor protein kinesin-1. Loss of kinesin-1 leads to improperly positioned nuclei in culture and in vivo. Two models have been proposed to explain how kinesin-1 functions to move nuclei in myotubes. In the cargo model, kinesin-1 acts directly from the surface of the nucleus, whereas in an alternative model, kinesin-1 moves nuclei indirectly by sliding anti-parallel microtubules. Here, we test the hypothesis that an ensemble of Kif5B motors acts from the nuclear envelope to distribute nuclei throughout the length of syncytial myotubes. First, using an inducible dimerization system, we show that controlled recruitment of truncated, constitutively active kinesin-1 motors to the nuclear envelope is sufficient to prevent the nuclear aggregation resulting from depletion of endogenous kinesin-1. Second, we identify a conserved kinesin light chain (KLC)-binding motif in the nuclear envelope proteins nesprin-1 and nesprin-2, and show that recruitment of the motor complex to the nucleus via this LEWD motif is essential for nuclear distribution. Together, our findings demonstrate that the nucleus is a kinesin-1 cargo in myotubes and that nesprins function as nuclear cargo adaptors. The importance of achieving and maintaining proper nuclear position is not restricted to muscle fibers, suggesting that the nesprin-dependent recruitment of kinesin-1 to the nuclear envelope through the interaction of a conserved LEWD motif with kinesin light chain might be a general mechanism for cell-type-specific nuclear positioning during development.
Collapse
Affiliation(s)
- Meredith H Wilson
- Department of Physiology and the Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erika L F Holzbaur
- Department of Physiology and the Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|