1
|
Parmar B, Bhatia D. Small Molecular Approaches for Cellular Reprogramming and Tissue Engineering: Functions as Mediators of the Cell Signaling Pathway. Biochemistry 2024; 63:2542-2556. [PMID: 39312802 DOI: 10.1021/acs.biochem.4c00427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Utilizing induced pluripotent stem cells (iPSCs) in drug screening and cell replacement therapy has emerged as a method with revolutionary applications. With the advent of patient-specific iPSCs and the subsequent development of cells that exhibit disease phenotypes, the focus of medication research will now shift toward the pathology of human diseases. Regular iPSCs can also be utilized to generate cells that assess the negative impacts of medications. These cells provide a much more precise and cost-efficient approach compared to many animal models. In this review, we explore the utilization of small-molecule drugs to enhance the growth of iPSCs and gain insights into the process of reprogramming. We mainly focus on the functions of small molecules in modulating different signaling pathways, thereby modulating cell fate. Understanding the way small molecule drugs interact with iPSC technology has the potential to significantly enhance the understanding of physiological pathways in stem cells and practical applications of iPSC-based therapy and screening systems, revolutionizing the treatment of diseases.
Collapse
Affiliation(s)
- Bhagyesh Parmar
- Department of Biological Sciences and Engineering, Indian Institute of Technology, Palaj, Gandhinagar 382355, India
| | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology, Palaj, Gandhinagar 382355, India
| |
Collapse
|
2
|
Abdalkader R, Kamei KI. An efficient simplified method for the generation of corneal epithelial cells from human pluripotent stem cells. Hum Cell 2022; 35:1016-1029. [PMID: 35553384 DOI: 10.1007/s13577-022-00713-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/27/2022] [Indexed: 01/23/2023]
Abstract
Corneal epithelial cells derived from human pluripotent stem cells (hPSCs) are an important cell source for preclinical models to test ophthalmic drugs. However, current differentiation protocols lack instructions regarding optimal culturing conditions, which hinders the quality of cells and limits scale-up. Here, we introduce a simplified small molecule-based corneal induction method (SSM-CI) to generate corneal epithelial cells from hPSCs. SSM-CI provides the advantage of minimizing cell-culturing time using two defined culturing media containing TGF-β, and Wnt/β-catenin pathway inhibitors, and bFGF growth factor over 25 days. Compared to the conventional human corneal epithelial cell line (HCE-T) and human primary corneal epithelial cells (hPCEpCs), corneal epithelial cells generated by SSM-CI are well differentiated and express relevant maturation markers, including PAX6 and CK12. RNA-seq analysis indicated the faithful differentiation of hPSCs into corneal epithelia, with significant upregulation of corneal progenitor and adult corneal epithelial phenotypes. Furthermore, despite the initial inhibition of TGF-β and Wnt/β-catenin, upregulation of these pathway-related transcripts was observed in the later stages, indicating their necessity in the generation of mature corneal epithelial cells. Moreover, we observed a shift in gene signatures associated with the metabolic characteristics of mature corneal epithelial cells, involving a decrease in glycolysis and an increase in fatty acid oxidation. This was also attributed to the overexpression of metabolic enzymes and transporter-related transcripts responsible for fatty acid metabolism. Thus, SSM-CI provides a comprehensive method for the generation of functional corneal epithelial cells for use in preclinical models.
Collapse
Affiliation(s)
- Rodi Abdalkader
- Ritsumeikan Global Innovation Research Organization (R-GIRO), Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan.
| | - Ken-Ichiro Kamei
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan. .,Wuya College of Innovation, Shenyang Pharmaceutical University, Liaoning, 110016, People's Republic of China. .,Department of Pharmaceutics, Shenyang Pharmaceutical University, Liaoning, 110016, People's Republic of China.
| |
Collapse
|
3
|
Kuo HH, Gao X, DeKeyser JM, Fetterman KA, Pinheiro EA, Weddle CJ, Fonoudi H, Orman MV, Romero-Tejeda M, Jouni M, Blancard M, Magdy T, Epting CL, George AL, Burridge PW. Negligible-Cost and Weekend-Free Chemically Defined Human iPSC Culture. Stem Cell Reports 2020; 14:256-270. [PMID: 31928950 PMCID: PMC7013200 DOI: 10.1016/j.stemcr.2019.12.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 12/19/2022] Open
Abstract
Human induced pluripotent stem cell (hiPSC) culture has become routine, yet the cost of pluripotent cell media, frequent medium changes, and the reproducibility of differentiation have remained restrictive. Here, we describe the formulation of a hiPSC culture medium (B8) as a result of the exhaustive optimization of medium constituents and concentrations, establishing the necessity and relative contributions of each component to the pluripotent state and cell proliferation. The reagents in B8 represent only 3% of the costs of commercial media, made possible primarily by the in-lab generation of three E. coli-expressed, codon-optimized recombinant proteins: fibroblast growth factor 2, transforming growth factor β3, and neuregulin 1. We demonstrate the derivation and culture of 34 hiPSC lines in B8 as well as the maintenance of pluripotency long term (over 100 passages). This formula also allows a weekend-free feeding schedule without sacrificing capacity for differentiation.
Collapse
Affiliation(s)
- Hui-Hsuan Kuo
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Xiaozhi Gao
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jean-Marc DeKeyser
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - K Ashley Fetterman
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Emily A Pinheiro
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Carly J Weddle
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hananeh Fonoudi
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Michael V Orman
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Marisol Romero-Tejeda
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Mariam Jouni
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Malorie Blancard
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Tarek Magdy
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Conrad L Epting
- Departments of Pediatrics and Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Alfred L George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Paul W Burridge
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
4
|
Han J, Choi HY, Dayem AA, Kim K, Yang G, Won J, Do SH, Kim JH, Jeong KS, Cho SG. Regulation of Adipogenesis Through Differential Modulation of ROS and Kinase Signaling Pathways by 3,4'-Dihydroxyflavone Treatment. J Cell Biochem 2017; 118:1065-1077. [PMID: 27579626 DOI: 10.1002/jcb.25681] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 08/29/2016] [Indexed: 01/12/2023]
Abstract
Studies on adipogenesis may be important for regulating human and/or animal obesity, which causes several complications such as, type II diabetes, hypertension, and cardiovascular disease, thus giving rise to increased economic burden in many countries. Previous reports revealed that various flavonoids have anti-apoptotic, antioxidant, and cell differentiation-regulating activities with a number of physiological benefits, including protection from cardiovascular disease, cancers, and oxidative stress. As we found that the hydroxylation patterns of the flavonoid B ring are known to play a critical role in their function, we screened several flavonoids containing different numbers and positions of OH substitutions in B ring for their modulatory property on adipogenesis. In this study, we revealed the anti-adipogenic activity of the naturally derived flavonoid, 3,4'-dihydroxyflavone (3,4'-DHF) in murine 3T3-L1 pre-adipocytes and equine adipose-derived stromal cells (eADSCs). We found that treatment with 3,4'-dihydroxyflavone (3,4'-DHF) led to decreased expression of adipogenic markers and lipid deposition with differential modulation of ROS and kinase signaling pathways. Regulation of ROS generation through the differential modulation of ROS-regulating gene expression was revealed to have an important role in the suppression of adipogenesis and increase of osteogenesis in eADSCs following 3,4'-DHF treatment. These results suggest that the flavonoid 3,4'-DHF can be used to regulate adipogenesis in ADSCs, which has potential therapeutic application in regenerative medicine or health care for humans and many sport or companion animals. J. Cell. Biochem. 118: 1065-1077, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jihae Han
- Department of Stem Cell and Regenerative Biotechnology, Animal Resources Research Center, Bio-Organ Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Hye Yeon Choi
- Department of Stem Cell and Regenerative Biotechnology, Animal Resources Research Center, Bio-Organ Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Ahmed Abdal Dayem
- Department of Stem Cell and Regenerative Biotechnology, Animal Resources Research Center, Bio-Organ Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Kyeongseok Kim
- Department of Stem Cell and Regenerative Biotechnology, Animal Resources Research Center, Bio-Organ Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Gwangmo Yang
- Department of Stem Cell and Regenerative Biotechnology, Animal Resources Research Center, Bio-Organ Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Jihye Won
- Department of Stem Cell and Regenerative Biotechnology, Animal Resources Research Center, Bio-Organ Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Sun Hee Do
- Department of Veterinary Clinical Pathology, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Animal Resources Research Center, Bio-Organ Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Kyu-Shik Jeong
- College of Veterinary Medicine, Kyungpook National University, Daegu, 702-701, Republic of Korea
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, Animal Resources Research Center, Bio-Organ Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| |
Collapse
|
5
|
Kuznetsova A, Yu Y, Hollister-Lock J, Opare-Addo L, Rozzo A, Sadagurski M, Norquay L, Reed JE, El Khattabi I, Bonner-Weir S, Weir GC, Sharma A, White MF. Trimeprazine increases IRS2 in human islets and promotes pancreatic β cell growth and function in mice. JCI Insight 2016; 1. [PMID: 27152363 PMCID: PMC4854304 DOI: 10.1172/jci.insight.80749] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The capacity of pancreatic β cells to maintain glucose homeostasis during chronic physiologic and immunologic stress is important for cellular and metabolic homeostasis. Insulin receptor substrate 2 (IRS2) is a regulated adapter protein that links the insulin and IGF1 receptors to downstream signaling cascades. Since strategies to maintain or increase IRS2 expression can promote β cell growth, function, and survival, we conducted a screen to find small molecules that can increase IRS2 mRNA in isolated human pancreatic islets. We identified 77 compounds, including 15 that contained a tricyclic core. To establish the efficacy of our approach, one of the tricyclic compounds, trimeprazine tartrate, was investigated in isolated human islets and in mouse models. Trimeprazine is a first-generation antihistamine that acts as a partial agonist against the histamine H1 receptor (H1R) and other GPCRs, some of which are expressed on human islets. Trimeprazine promoted CREB phosphorylation and increased the concentration of IRS2 in islets. IRS2 was required for trimeprazine to increase nuclear Pdx1, islet mass, β cell replication and function, and glucose tolerance in mice. Moreover, trimeprazine synergized with anti-CD3 Abs to reduce the progression of diabetes in NOD mice. Finally, it increased the function of human islet transplants in streptozotocin-induced (STZ-induced) diabetic mice. Thus, trimeprazine, its analogs, or possibly other compounds that increase IRS2 in islets and β cells without adverse systemic effects might provide mechanism-based strategies to prevent the progression of diabetes.
Collapse
Affiliation(s)
- Alexandra Kuznetsova
- Division of Endocrinology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yue Yu
- Division of Endocrinology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jennifer Hollister-Lock
- Section of Islet Cell and Regenerative Biology, Department of Medicine, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Lynn Opare-Addo
- Division of Endocrinology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Aldo Rozzo
- Division of Endocrinology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Marianna Sadagurski
- Division of Endocrinology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lisa Norquay
- Division of Endocrinology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jessica E Reed
- Housey Pharmaceutical Research Laboratories, Southfield, Michigan, USA
| | - Ilham El Khattabi
- Section of Islet Cell and Regenerative Biology, Department of Medicine, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Susan Bonner-Weir
- Section of Islet Cell and Regenerative Biology, Department of Medicine, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Gordon C Weir
- Section of Islet Cell and Regenerative Biology, Department of Medicine, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Arun Sharma
- Section of Islet Cell and Regenerative Biology, Department of Medicine, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Morris F White
- Division of Endocrinology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Geng Y, Zhao Y, Schuster LC, Feng B, Lynn DA, Austin KM, Stoklosa JD, Morrison JD. A Chemical Biology Study of Human Pluripotent Stem Cells Unveils HSPA8 as a Key Regulator of Pluripotency. Stem Cell Reports 2015; 5:1143-1154. [PMID: 26549849 PMCID: PMC4682066 DOI: 10.1016/j.stemcr.2015.09.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 09/28/2015] [Accepted: 09/29/2015] [Indexed: 01/06/2023] Open
Abstract
Chemical biology methods such as high-throughput screening (HTS) and affinity-based target identification can be used to probe biological systems on a biomacromolecule level, providing valuable insights into the molecular mechanisms of those systems. Here, by establishing a human embryonal carcinoma cell-based HTS platform, we screened 171,077 small molecules for regulators of pluripotency and identified a small molecule, Displurigen, that potently disrupts hESC pluripotency by targeting heat shock 70-kDa protein 8 (HSPA8), the constitutively expressed member of the 70-kDa heat shock protein family, as elucidated using affinity-based target identification techniques and confirmed by loss-of-function and gain-of-function assays. We demonstrated that HSPA8 maintains pluripotency by binding to the master pluripotency regulator OCT4 and facilitating its DNA-binding activity.
Collapse
Affiliation(s)
- Yijie Geng
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Yongfeng Zhao
- Stem Cell Center, Department of Bioengineering, University of California, Riverside, Riverside, CA 92521, USA
| | - Lisa Corinna Schuster
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Bradley Feng
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Dana A Lynn
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Katherine M Austin
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jason Daniel Stoklosa
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Joseph D Morrison
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
7
|
Production of human pluripotent stem cell therapeutics under defined xeno-free conditions: progress and challenges. Stem Cell Rev Rep 2015; 11:96-109. [PMID: 25077810 DOI: 10.1007/s12015-014-9544-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recent advances on human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) have brought us closer to the realization of their clinical potential. Nonetheless, tissue engineering and regenerative medicine applications will require the generation of hPSC products well beyond the laboratory scale. This also mandates the production of hPSC therapeutics in fully-defined, xeno-free systems and in a reproducible manner. Toward this goal, we summarize current developments in defined media free of animal-derived components for hPSC culture. Bioinspired and synthetic extracellular matrices for the attachment, growth and differentiation of hPSCs are also reviewed. Given that most progress in xeno-free medium and substrate development has been demonstrated in two-dimensional rather than three dimensional culture systems, translation from the former to the latter poses unique difficulties. These challenges are discussed in the context of cultivation platforms of hPSCs as aggregates, on microcarriers or after encapsulation in biocompatible scaffolds.
Collapse
|
8
|
Han D, Kim HJ, Choi HY, Kim B, Yang G, Han J, Dayem AA, Lee HR, Kim JH, Lee KM, Jeong KS, Do SH, Cho SG. 3,2/-Dihydroxyflavone-Treated Pluripotent Stem Cells Show Enhanced Proliferation, Pluripotency Marker Expression, and Neuroprotective Properties. Cell Transplant 2015; 24:1511-32. [DOI: 10.3727/096368914x683511] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Efficient maintenance of the undifferentiated status of embryonic stem cells (ESCs) may be important for preparation of high-quality cell sources that can be successfully used for stem cell research and therapy. Here we tried to identify a compound that can enhance the quality of pluripotent stem cells. Treatment of ESCs and induced pluripotent stem cells (iPSCs) with 3,2′-dihydroxyflavone (3,2′-DHF) led to increases in cell growth, colony formation, and cell proliferation. Treatment with 3,2′-DHF resulted in high expression of pluripotency markers (OCT4, SOX2, and NANOG) and significant activation (STAT3 and AKT) or suppression (GSK3β and ERK) of self-renewal-related kinases. 3,2′-DHF-treated high-quality pluripotent stem cells also showed enhanced differentiation potential. In particular, treatment of iPSCs with 3,2′-DHF led to elevated expression of ectodermal differentiation markers and improved differentiation into fully matured neurons. Next, we investigated the in vivo effect of 3,2′-DHF-pretreated iPSCs (3,2′-DHF iPSCs) in a peripheral nerve injury model and found that transplantation of 3,2′-DHF iPSCs resulted in more efficient axonal regeneration and functional recovery than in controls. Upon histopathological and gene expression analyses, we found that transplantation of 3,2′-DHF iPSCs stimulated expression of cytokines, such as TNF-α, in the early phase of injury and successfully reduced convalescence time of the injured peripheral nerve, showing an effective neuroprotective property. Taken together, our data suggest that 3,2′-DHF can be used for more efficient maintenance of pluripotent stem cells as well as for further applications in stem cell research and therapy.
Collapse
Affiliation(s)
- Dawoon Han
- Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-Gu, Seoul, Republic of Korea
| | - Han Jun Kim
- Department of Veterinary Clinical Pathology, College of Veterinary Medicine, Konkuk University, Gwangjin-Gu, Seoul, Republic of Korea
| | - Hye Yeon Choi
- Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-Gu, Seoul, Republic of Korea
| | - Bongwoo Kim
- Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-Gu, Seoul, Republic of Korea
| | - Gwangmo Yang
- Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-Gu, Seoul, Republic of Korea
| | - Jihae Han
- Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-Gu, Seoul, Republic of Korea
| | - Ahmed Abdal Dayem
- Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-Gu, Seoul, Republic of Korea
| | - Hye-Rim Lee
- Department of Veterinary Clinical Pathology, College of Veterinary Medicine, Konkuk University, Gwangjin-Gu, Seoul, Republic of Korea
| | - Jin Hoi Kim
- Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-Gu, Seoul, Republic of Korea
| | - Kyung-Mi Lee
- Global Research Laboratory, Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyu-Shik Jeong
- College of Veterinary Medicine, Kyungpook National University, Daegu City, Republic of Korea
| | - Sun Hee Do
- Department of Veterinary Clinical Pathology, College of Veterinary Medicine, Konkuk University, Gwangjin-Gu, Seoul, Republic of Korea
| | - Ssang-Goo Cho
- Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-Gu, Seoul, Republic of Korea
| |
Collapse
|
9
|
Liu C, Sun Y, Arnold J, Lu B, Guo S. Synergistic contribution of SMAD signaling blockade and high localized cell density in the differentiation of neuroectoderm from H9 cells. Biochem Biophys Res Commun 2014; 452:895-900. [PMID: 25218470 PMCID: PMC4193974 DOI: 10.1016/j.bbrc.2014.08.137] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 08/25/2014] [Indexed: 02/08/2023]
Abstract
Directed neural differentiation of human embryonic stem cells (ESCs) enables researchers to generate diverse neuronal populations for human neural development study and cell replacement therapy. To realize this potential, it is critical to precisely understand the role of various endogenous and exogenous factors involved in neural differentiation. Cell density, one of the endogenous factors, is involved in the differentiation of human ESCs. Seeding cell density can result in variable terminal cell densities or localized cell densities (LCDs), giving rise to various outcomes of differentiation. Thus, understanding how LCD determines the differentiation potential of human ESCs is important. The aim of this study is to highlight the role of LCD in the differentiation of H9 human ESCs into neuroectoderm (NE), the primordium of the nervous system. We found the initially seeded cells form derived cells with variable LCDs and subsequently affect the NE differentiation. Using a newly established method for the quantitative examination of LCD, we demonstrated that in the presence of induction medium supplemented with or without SMAD signaling blockers, high LCD promotes the differentiation of NE. Moreover, SMAD signaling blockade promotes the differentiation of NE but not non-NE germ layers, which is dependent on high LCDs. Taken together, this study highlights the need to develop innovative strategies or techniques based on LCDs for generating neural progenies from human ESCs.
Collapse
Affiliation(s)
- Chao Liu
- Department of Histology and Embryology, Institute of Stem Cell and Tissue Engineering, Anhui Medical University, Hefei, Anhui 230032, China; Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, CA 94143, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Yaping Sun
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, CA 94143, USA
| | - Joshua Arnold
- Stem Cell Core, Gladstone Institute of Cardiovascular Disease, University of California San Francisco, San Francisco, CA 94158, USA
| | - Bingwei Lu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Su Guo
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, CA 94143, USA.
| |
Collapse
|
10
|
Chiou SH, Jang SF, Mou CY. Mesoporous silica nanoparticles: a potential platform for generation of induced pluripotent stem cells? Nanomedicine (Lond) 2014; 9:377-80. [DOI: 10.2217/nnm.14.9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Shih-Hwa Chiou
- Institute of Pharmacology, National Yang-Ming University, Taipei 112, Taiwan
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 112, Taiwan
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Shih-Fan Jang
- Institute of Pharmacology, National Yang-Ming University, Taipei 112, Taiwan
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Chung-Yuan Mou
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
11
|
Miyazaki T, Nakatsuji N, Suemori H. Optimization of slow cooling cryopreservation for human pluripotent stem cells. Genesis 2013; 52:49-55. [DOI: 10.1002/dvg.22725] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 10/25/2013] [Accepted: 11/08/2013] [Indexed: 12/18/2022]
Affiliation(s)
- Takamichi Miyazaki
- Department of Embryonic Stem Cell Research; Institute for Frontier Medical Sciences; Kyoto University; 53 Kawahara-cho, Shogoin, Sakyo-ku Kyoto 606-8507 Japan
| | - Norio Nakatsuji
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS); Kyoto University; Ushinomiya-cho, Yoshida, Sakyo-ku Kyoto 606-8501 Japan
- Department of Development and Differentiation; Institution for Frontier Medical Sciences; Kyoto University; 53 Kawahara-cho, Shogoin, Sakyo-ku Kyoto 606-8507 Japan
| | - Hirofumi Suemori
- Department of Embryonic Stem Cell Research; Institute for Frontier Medical Sciences; Kyoto University; 53 Kawahara-cho, Shogoin, Sakyo-ku Kyoto 606-8507 Japan
| |
Collapse
|
12
|
De Sousa PA. Biologically equivalent substitutive technology: what is needed to manufacture pluripotent stem cells for next-generation platforms for discovery and therapy. Regen Med 2013; 8:519-21. [DOI: 10.2217/rme.13.50] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Paul A De Sousa
- Centre for Regenerative Medicine, University of Edinburgh, Chancellor’s Building, 49 Little France Cr, EH16 4SB, UK
| |
Collapse
|