1
|
Jiang Q, Su X, Liao W, He Z, Wang Y, Jiang R, Dong C, Yang S. Exploring susceptibility and therapeutic targets for kidney stones through proteome-wide Mendelian randomization. Hum Mol Genet 2025; 34:47-63. [PMID: 39530187 DOI: 10.1093/hmg/ddae159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 10/02/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Given the high recurrence rate of kidney stones, surgical lithotripsy and stone removal are not the ultimate treatments for kidney stones. There's an urgent need to explore the genetic mechanisms behind the susceptibility to kidney stones and to identify potential targets for prevention, to reduce the renal damage caused by recurrent stone formation. In this study, we screened 4548 circulating proteins using proteome-wide Mendelian Randomization (MR) to find proteins with a causal relationship to kidney stone risk. Additionally, proteome-wide association study (PWAS) and colocalization analysis were used to validate and prioritize candidate proteins. Moreover, downstream analyses including single-cell analysis, enrichment analysis, protein-protein interaction (PPI), and druggability analysis were conducted on the proteins causally related to kidney stones, to further explore the genetic mechanisms of susceptibility and the potential of proteins as drug targets. Ultimately, 22 target proteins associated with the risk of kidney stones were identified. Six plasma proteins (COLGALT1, CLMP, LECT1, ITIH1, CDHR3, CPLX2) were negatively correlated with kidney stone risk, while the genetic overexpression of 16 target proteins (GJA1, STOM, IRF9, F9, TMPRSS11D, ADH1B, SPINK13, CRYBB2, TNS2, DOCK9, OXSM, MST1, IL2, LMAN2, ITIH3, KLRF1) increased the risk of kidney stones. Based on the PWAS and colocalization analysis results, the 22 target proteins were classified into 3 tiers: IL2, CPLX2, and LMAN2 as tier 1 proteins with the most compelling evidence, MST1, ITIH1, and ITIH3 as tier 2 proteins, and the rest as tier 3 proteins. Enrichment analysis and PPI showed that target proteins mainly affect the occurrence of kidney stones through leukocyte activation and cell junction assembly. Druggability analysis suggested that IL2, MST1, and ITIH1 have potential as drug targets, and potential drugs were evaluated through molecular docking. In summary, this study employed multiple analytical methods to screen plasma proteins related to susceptibility to kidney stones, providing new insights into the genetic mechanisms of kidney stones and potential targets for treatment and prevention.
Collapse
Affiliation(s)
- Qinhong Jiang
- Department of Urology, Renmin Hospital of Wuhan University, No. 099, Zhang zhidong Road, Wuhan, Hubei Province 430060, People's Republic of China
| | - Xiaozhe Su
- Department of Urology, Renmin Hospital of Wuhan University, No. 099, Zhang zhidong Road, Wuhan, Hubei Province 430060, People's Republic of China
| | - Wenbiao Liao
- Department of Urology, Renmin Hospital of Wuhan University, No. 099, Zhang zhidong Road, Wuhan, Hubei Province 430060, People's Republic of China
| | - Ziqi He
- Department of Urology, Renmin Hospital of Wuhan University, No. 099, Zhang zhidong Road, Wuhan, Hubei Province 430060, People's Republic of China
| | - Yunhan Wang
- Department of Urology, Renmin Hospital of Wuhan University, No. 099, Zhang zhidong Road, Wuhan, Hubei Province 430060, People's Republic of China
| | - Rong Jiang
- Department of Urology, Renmin Hospital of Wuhan University, No. 099, Zhang zhidong Road, Wuhan, Hubei Province 430060, People's Republic of China
| | - Caitao Dong
- Department of Urology, Renmin Hospital of Wuhan University, No. 099, Zhang zhidong Road, Wuhan, Hubei Province 430060, People's Republic of China
| | - Sixing Yang
- Department of Urology, Renmin Hospital of Wuhan University, No. 099, Zhang zhidong Road, Wuhan, Hubei Province 430060, People's Republic of China
| |
Collapse
|
2
|
Pazarci P, Özler S, Kaplan HM. Effect of alpha-linolenic acid on aminoglycoside nephrotoxicity and RhoA/Rho-kinase pathway in kidney. PeerJ 2024; 12:e18335. [PMID: 39434789 PMCID: PMC11493068 DOI: 10.7717/peerj.18335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/25/2024] [Indexed: 10/23/2024] Open
Abstract
Aminoglycoside nephrotoxicity stands as a primary contributor to the development of acute intrinsic renal failure. Distinctive characteristic associated with this nephrotoxicity is the occurrence of tubular necrosis, which is why it is commonly referred to as acute tubular necrosis. Studies have demonstrated that inhibiting rhoA/rho-kinase pathway is beneficial for kidney damage induced by diabetes and renal ischemia. Comparable pathological conditions can be observed in aminoglycoside nephrotoxicity, like those found in diabetes and renal ischemia. Gentamicin, an aminoglycoside, is known to activate Rho/Rho-kinase pathway. The primary goal of this study is to explore influence of oxidative stress on this pathway by concurrently administering gentamicin and alpha-linolenic acid (ALA) possessing known antioxidant properties. To achieve this, gentamicin (100 mg kg-1) and ALA (70 mg kg-1) were administered to mice for a period of 9 days, and Rho/Rho-kinase pathway was examined by using ELISA. Administration of gentamicin to mice led to an elevation in RhoA and rho-kinase II levels, along with the activity of rho-kinase in kidneys. However, ALA effectively reversed this heightened response. ALA, known for its antioxidant properties, inhibited activation of Rho/Rho-kinase pathway induced by gentamicin. This finding suggests that gentamicin induces nephrotoxicity through oxidative stress.
Collapse
Affiliation(s)
- Percin Pazarci
- Department of Medical Biology, Cukurova University Faculty of Medicine, Adana, Turkey
| | - Serkan Özler
- Department of Urology, Mustafa Kemal University Faculty of Medicine, Hatay, Turkey
| | - Halil Mahir Kaplan
- Department of Pharmacology, Cukurova University Faculty of Medicine, Adana, Turkey
| |
Collapse
|
3
|
Babaeenezhad E, Dezfoulian O, Moradi Sarabi M, Ahmadvand H. Monoterpene linalool restrains gentamicin-mediated acute kidney injury in rats by subsiding oxidative stress, apoptosis, and the NF-κB/iNOS/TNF-α/IL-1β pathway and regulating TGF-β. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5701-5714. [PMID: 38294506 DOI: 10.1007/s00210-024-02978-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/23/2024] [Indexed: 02/01/2024]
Abstract
The clinical use of gentamicin (GM) is restricted by its nephrotoxic effects. This study aimed for the first time to elucidate the ameliorative effects of the monoterpene linalool (Lin) against GM-mediated acute kidney injury in rats. A total of thirty-two rats were subdivided into four equal groups: control (saline), Lin (100 mg/kg/day), GM (100 mg/kg/day), and GM + Lin (100 and 100 mg/kg/day). Lin and GM were intraperitoneally administered for 12 days. Our results illustrated that Lin ameliorated GM-mediated renal histopathological abnormalities and reduced serum urea and creatinine levels in rats exposed to GM. Lin treatment mitigated oxidative stress in nephrotoxic animals as manifested by reducing serum and renal levels of malondialdehyde and increasing the activities of serum and renal glutathione peroxidase and renal catalase. Moreover, Lin markedly inhibited GM-triggered inflammation by downregulating NF-κB, iNOS, TNF-α, and IL-1β and reducing renal myeloperoxidase activity and nitric oxide levels. Interestingly, Lin repressed GM-induced apoptosis, as reflected by a marked downregulation of Bax and caspase-3 expression, concurrent with the upregulation of Bcl2 expression. Finally, Lin administration led to a significant downregulation of TGF-β expression in nephrotoxic animals. In summary, Lin ameliorated GM-mediated nephrotoxicity in rats, at least through its antioxidant, anti-inflammatory, and anti-apoptotic activities and by modulating TGF-β.
Collapse
Affiliation(s)
- Esmaeel Babaeenezhad
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Omid Dezfoulian
- Department of Pathobiology, School of Veterinary Medicine, Lorestan University, Khorramabad, Iran.
| | - Mostafa Moradi Sarabi
- Razi Herbal Medicines Research Center, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.
- Department of Clinical Biochemistry, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Hassan Ahmadvand
- Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
4
|
Babaeenezhad E, Dezfoulian O, Hadipour Moradi F, Rahimi Monfared S, Fattahi MD, Nasri M, Amini A, Ahmadvand H. Exogenous glutathione protects against gentamicin-induced acute kidney injury by inhibiting NF-κB pathway, oxidative stress, and apoptosis and regulating PCNA. Drug Chem Toxicol 2023; 46:441-450. [PMID: 35266424 DOI: 10.1080/01480545.2022.2049290] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This study was designed, for the first time, to examine the possible nephroprotective effects of exogenous glutathione (EGSH) (100 mg/kg, intraperitoneally) on gentamicin-induced acute kidney injury (GM-induced AKI). EGSH reduced renal histopathological changes, inflammatory cell infiltration, and improved renal dysfunction in rats with AKI. EGSH ameliorated GM-induced renal oxidative stress by promoting the renal activities of catalase, glutathione peroxidase, and superoxide dismutase and diminishing renal malondialdehyde and serum nitric oxide levels. Interestingly, EGSH inhibited intrinsic apoptosis by downregulating Bax and caspase-3 and upregulating Bcl2 in the kidney of rats with AKI. EGSH decreased GM-induced inflammatory response as reflected by a remarkable decrease in the protein expressions of NF-κB-p65, IL-6, TNF-α, and iNOS and a considerable diminish in myeloperoxidase activity. Finally, EGSH markedly declined proliferative cell nuclear antigen (PCNA) protein expression in the animals with AKI. In summary, EGSH alleviated AKI in rats intoxicated with GM, partially by inhibiting oxidative stress, NF-κB pathway, and intrinsic apoptosis and regulating PCNA.
Collapse
Affiliation(s)
- Esmaeel Babaeenezhad
- Department of Clinical Biochemistry, School of Medicine, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Dezfoulian
- Department of Pathobiology, School of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| | - Forouzan Hadipour Moradi
- Razi Herbal Medicines Research Center, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Sobhan Rahimi Monfared
- Razi Herbal Medicines Research Center, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.,Department of Clinical Biochemistry, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mohammad Davood Fattahi
- Department of Clinical Biochemistry, School of Medicine, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Nasri
- Razi Herbal Medicines Research Center, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.,Department of Clinical Biochemistry, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Abdolhakim Amini
- Razi Herbal Medicines Research Center, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.,Department of Clinical Biochemistry, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hassan Ahmadvand
- Razi Herbal Medicines Research Center, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.,Department of Clinical Biochemistry, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
5
|
Hunt BG, Fox LH, Davis JC, Jones A, Lu Z, Waltz SE. An Introduction and Overview of RON Receptor Tyrosine Kinase Signaling. Genes (Basel) 2023; 14:517. [PMID: 36833444 PMCID: PMC9956929 DOI: 10.3390/genes14020517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/07/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
RON is a receptor tyrosine kinase (RTK) of the MET receptor family that is canonically involved in mediating growth and inflammatory signaling. RON is expressed at low levels in a variety of tissues, but its overexpression and activation have been associated with malignancies in multiple tissue types and worse patient outcomes. RON and its ligand HGFL demonstrate cross-talk with other growth receptors and, consequentially, positions RON at the intersection of numerous tumorigenic signaling programs. For this reason, RON is an attractive therapeutic target in cancer research. A better understanding of homeostatic and oncogenic RON activity serves to enhance clinical insights in treating RON-expressing cancers.
Collapse
Affiliation(s)
- Brian G. Hunt
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | - Levi H. Fox
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | - James C. Davis
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | - Angelle Jones
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | - Zhixin Lu
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | - Susan E. Waltz
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
- Research Service, Cincinnati Veterans Affairs Hospital Medical Center, Cincinnati, OH 45220, USA
| |
Collapse
|
6
|
Abdel-Rahman Mohamed A, El-Kholy SS, Dahran N, El Bohy KM, Moustafa GG, Saber TM, Metwally MMM, Gaber RA, Alqahtani LS, Mostafa-Hedeab G, El-Shetry ES. Scrutinizing pathways of Nicotine effect on renal Alpha-7 Nicotinic Acetylcholine receptor and Mitogen-activated protein kinase (MAPK) expression in Ehrlich ascites carcinoma-bearing Mice: role of Chlorella vulgaris. Gene 2022; 837:146697. [PMID: 35764235 DOI: 10.1016/j.gene.2022.146697] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/06/2022] [Accepted: 06/17/2022] [Indexed: 11/04/2022]
Abstract
Nicotine is one of several physiologically stable and active chemicals found in tobacco. The mechanism through which nicotine causes kidney damage is still obscure. As a result, the goal of this research was to investigate how oral nicotine intake can lead to kidney damage. Naturaly occurring superfood green algae are immense supplements help us using extra chemicals during cancer prevalence if the patient is exposed to nicotine. Hence, the mitigating role of Chlorella vulgaris extract (CVE) against nicotine-nephrotoxic impact in Ehrlich ascites carcinoma (EAC)-bearing mice was studied. For this purpose, four groups of Swiss female mice were assigned, nicotine group (NIC) (100 µg/ml/kg), CVE group (100 mg/kg), CVE+Nicotine, and a control group. Renal dysfunction was evaluated by estimating serum biomarkers ofrenal damage. The expression pattern of Nf-KB, MAPK, P53, and α7-nAchR, lipid peroxidation biomarker, and antioxidant enzyme activities were evaluated in kidney tissue. Also, micro-morphometric examination and apoptosis immunohistochemical reactivity of kidney tissue were applied. The obtained results indicated up-regulation of all estimated genes and oxidative stress. Moreover, a significant (P<0.05) increment in the apoptotic marker Caspase-3 and declined BCL-2 proteins were recorded. In serum, a significant (P<0.05) elevation of urea, creatinine, TNF-α, IL-1β, and Kim-1 were evident. Histological investigation reinforced the aforementioned data, revealing structural changes involving the tubules, glomeruli, and interstitium of mice kidneys. CVE may be a strong contender for protecting renal tissue damage since it reduces renal tissue injury and oxidative stress. Cancer patients who regularly use nicotine through direct smoking or second-hand exposure can benefit from CVE usage as a dietary supplement.
Collapse
Affiliation(s)
- Amany Abdel-Rahman Mohamed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt.
| | - Sanad S El-Kholy
- Department of Physiology, Faculty of Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Naief Dahran
- Department of Anatomy, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Khlood M El Bohy
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Gihan G Moustafa
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Taghred M Saber
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Mohamed M M Metwally
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Rasha A Gaber
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Egypt
| | - Leena S Alqahtani
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah 80203, Saudi Arabia
| | - Gomaa Mostafa-Hedeab
- Pharmacology department & Health Research Unit, Medical College, Jouf University, Saudi Arabia
| | - Eman S El-Shetry
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
7
|
Huang L, Fang X, Zhang X, Wu W, Yao H, Fang Q. RON Expression Mediates Lipopolysaccharide-Mediated Dendritic Cell Maturation via March-I. Front Cell Infect Microbiol 2021; 10:606340. [PMID: 33537243 PMCID: PMC7848161 DOI: 10.3389/fcimb.2020.606340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/30/2020] [Indexed: 11/13/2022] Open
Abstract
The macrophage stimulating protein (MSP)-Recepteur d'origine nantais (RON) signaling pathway regulates macrophage function. Here, we verified RON receptor expression in bone marrow-derived dendritic cells (BMDCs) by real time-PCR, Western blot, and flow cytometry. Flow cytometry was used to detect the changes in MHC II and CD86 expression following the inhibition of RON in BMDCs and splenic dendritic cells (DCs). Immunoprecipitation and Western blot were used to detect the level of MHC II and CD86 ubiquitination. An enzyme-linked immunosorbent assay was used to detect cytokine release, and a mixed lymphocyte reaction was performed to evaluate DC maturity. The results show that the inhibition of RON leads to an increase in March-1 transcription, which intensifies the ubiquitination of MHC II and CD86 and ultimately leads to a decreased level of these two molecules. The mixed lymphocyte reaction provided evidence that RON inhibition decreased the ability of DCs to promote the proliferation of T cells. The MSP-RON signaling pathway may play an important role in lipopolysaccharide (LPS)-stimulated DC maturation through March-I and may protect DC differentiation following LPS stimulation.
Collapse
Affiliation(s)
- Lingtong Huang
- Department of Critical Care Units, The First Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, China
| | - Xueling Fang
- Department of Critical Care Units, The First Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, China
| | - Xuan Zhang
- State Key Laboratory for Diagnosis & Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, China.,Department of Infectious Disease, The First Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, China
| | - Weifang Wu
- Department of Critical Care Units, The First Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, China
| | - Hangping Yao
- State Key Laboratory for Diagnosis & Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, China
| | - Qiang Fang
- Department of Critical Care Units, The First Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, China
| |
Collapse
|
8
|
Babaeenezhad E, Hadipour Moradi F, Rahimi Monfared S, Fattahi MD, Nasri M, Amini A, Dezfoulian O, Ahmadvand H. D-Limonene Alleviates Acute Kidney Injury Following Gentamicin Administration in Rats: Role of NF- κB Pathway, Mitochondrial Apoptosis, Oxidative Stress, and PCNA. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6670007. [PMID: 33510839 PMCID: PMC7822690 DOI: 10.1155/2021/6670007] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/27/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022]
Abstract
Clinical application of gentamicin (GM) is well known to be associated with the development of acute kidney injury (AKI). This study was the first to investigate the possible protective effects of D-limonene (D-lim) on AKI following GM administration in rats. 32 rats arranged in four groups (n = 8): (1) the control group received saline intraperitoneally (0.5 ml/day) and orally (0.5 ml/day), (2) the D-lim group received D-lim (100 mg/kg) orally and saline (0.5 ml/day) intraperitoneally, (3) the GM group received GM (100 mg/kg/day) intraperitoneally and saline (0.5 ml/day) orally, and (4) the treated group received intraperitoneal GM (100 mg/kg) and oral D-lim (100 mg/kg). All treatments were performed daily for 12 consecutive days. Results revealed that D-lim ameliorated GM-induced AKI, oxidative stress, mitochondrial apoptosis, and inflammation. D-lim showed nephroprotective effects as reflected by the decrease in serum urea and creatinine and improvement of renal histopathological changes. D-lim alleviated GM-induced oxidative stress by increasing the activities of renal catalase, serum and renal glutathione peroxidase, and renal superoxide dismutase and decreasing renal malondialdehyde and serum nitric oxide levels. Intriguingly, D-lim suppressed mitochondrial apoptosis by considerably downregulating Bax and caspase-3 (Casp-3) mRNA and protein expressions and markedly enhancing Bcl2 mRNA and protein expressions. Furthermore, D-lim significantly decreases GM-induced inflammatory response through downregulation of NF-κB, IL-6, and TNF-α mRNA and/or protein expressions and decrease in renal myeloperoxidase activity. Finally, D-lim remarkably downregulated PCNA protein expression in the treated group compared with the GM group. In brief, this study showed that D-lim alleviated AKI following GM administration in rats, partially through its antioxidant, anti-inflammatory, and antiapoptotic activities as well as downregulation of PCNA expression.
Collapse
Affiliation(s)
- Esmaeel Babaeenezhad
- Department of Clinical Biochemistry, School of Medicine, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Forouzan Hadipour Moradi
- Razi Herbal Medicines Research Center, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Sobhan Rahimi Monfared
- Razi Herbal Medicines Research Center, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mohammad Davood Fattahi
- Department of Clinical Biochemistry, School of Medicine, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Nasri
- Razi Herbal Medicines Research Center, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Abdolhakim Amini
- Razi Herbal Medicines Research Center, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Omid Dezfoulian
- Department of Pathobiology, School of Veterinary Medicine, Lorestan University, P.O. Box 465, Khorramabad, Iran
| | - Hassan Ahmadvand
- Razi Herbal Medicines Research Center, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
9
|
Huang L, Fang X, Shi D, Yao S, Wu W, Fang Q, Yao H. MSP-RON Pathway: Potential Regulator of Inflammation and Innate Immunity. Front Immunol 2020; 11:569082. [PMID: 33117355 PMCID: PMC7577085 DOI: 10.3389/fimmu.2020.569082] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/27/2020] [Indexed: 12/17/2022] Open
Abstract
Macrophage-stimulating protein (MSP), a soluble protein mainly synthesized by the liver, is the only known ligand for recepteur d'origine nantais (RON), which is a member of the MET proto-oncogene family. Recent studies show that the MSP-RON signaling pathway not only was important in tumor behavior but also participates in the occurrence or development of many immune system diseases. Activation of RON in macrophages results in the inhibition of nitric oxide synthesis as well as lipopolysaccharide (LPS)-induced inflammatory response. MSP-RON is also associated with chronic inflammatory responses, especially chronic liver inflammation, and might serve as a novel regulator of inflammation, which may affect the metabolism in the body. Another study provided evidence of the relationship between MSP-RON and autoimmune diseases, suggesting a potential role for MSP-RON in the development of drugs for autoimmune diseases. Moreover, MSP-RON plays an important role in maintaining the stability of the tissue microenvironment and contributes to immune escape in the tumor immune microenvironment. Here, we summarize the role of MSP-RON in immunity, based on recent findings, and lay the foundation for further research.
Collapse
Affiliation(s)
- Lingtong Huang
- Department of Critical Care Units, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xueling Fang
- Department of Critical Care Units, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Danrong Shi
- State Key Laboratory for Diagnosis & Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuhao Yao
- Department of Stormotologry, Wenzhou Medical University Renji College, Wenzhou, China
| | - Weifang Wu
- Department of Critical Care Units, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiang Fang
- Department of Critical Care Units, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hangping Yao
- State Key Laboratory for Diagnosis & Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
10
|
Qu S, Dai C, Hao Z, Tang Q, Wang H, Wang J, Zhao H. Chlorogenic acid prevents vancomycin-induced nephrotoxicity without compromising vancomycin antibacterial properties. Phytother Res 2020; 34:3189-3199. [PMID: 32648634 DOI: 10.1002/ptr.6765] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/21/2020] [Accepted: 05/16/2020] [Indexed: 12/18/2022]
Abstract
Vancomycin (VCM) is an effective chemotherapeutic agent commonly used against gram-positive microorganisms but has serious nephrotoxic side effects that limit its effectiveness. New therapeutics and strategies are urgently needed to combat VCM associated nephrotoxicity. In this study, we determined the protective effect of chlorogenic acid (CA) in a rat model of VCM-induced nephrotoxicity. VCM administration led to markedly elevated blood urea nitrogen and serum creatinine levels that could be prevented with CA co-administration. VCM-mediated oxidative stress was also significantly attenuated by CA as reflected by decreased malondialdehyde and nitric oxide in VCM-treated kidneys. CA administration also prevented the VCM-mediated decrease in the renal antioxidative enzyme activities of glutathione reductase, glutathione peroxidase, and catalase and led to increased levels of reduced glutathione that had been depleted by VCM. Moreover, CA administration clearly inhibited VCM-induced expression of nuclear factor-kappa B, inducible nitric oxide synthase and the downstream pro-inflammatory mediators tumor necrosis factor-α and interleukins 1β and 6. Apoptotic markers were also markedly down-regulated with CA. Overall, CA treatment mitigated VCM-induced oxidative and nitrosative stresses and countered the apoptotic and inflammatory effects of VCM. Notably, CA did not affect the antibacterial activity of VCM in vitro.
Collapse
Affiliation(s)
- Shaoqi Qu
- College of Veterinary Medicine, China Agricultural University, Beijing, China.,Agricultural Bio-pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China
| | - Cunchun Dai
- Agricultural Bio-pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China
| | - Zhihui Hao
- College of Veterinary Medicine, China Agricultural University, Beijing, China.,Agricultural Bio-pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China
| | - Qihe Tang
- Agricultural Bio-pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China
| | - Haixia Wang
- Agricultural Bio-pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China
| | - Jinquan Wang
- College of Animal Medicine, Xinjiang Agricultural University, Wulumuqi, China
| | - Hongqiong Zhao
- College of Animal Medicine, Xinjiang Agricultural University, Wulumuqi, China
| |
Collapse
|
11
|
Qin T, Wu L, Hua Q, Song Z, Pan Y, Liu T. Prediction of the mechanisms of action of Shenkang in chronic kidney disease: A network pharmacology study and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2020; 246:112128. [PMID: 31386888 DOI: 10.1016/j.jep.2019.112128] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 05/29/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine provides a unique curative treatment of complex chronic diseases, including chronic kidney disease (CKD), which is not effectively treated with the current therapies. The pharmacological mechanisms of Shenkang (SK), a herbal medicine containing rhubarb (Rheum palmatum L. or R. tanguticum Maxim. ex Balf.), red sage (Salvia miltiorrhiza Bunge), safflower (Carthamus tinctorius L.), and astragalus (Astragalus mongholicus Bunge), widely used to treat CKD in China, are still unclear. AIM OF THE STUDY In this study, the comprehensive approach used for elucidating the pharmacological mechanisms of SK included the identification of the effective constituents, target prediction and network analysis, by investigating the interacting pathways between these molecules in the context of CKD. These results were validated by performing an in vivo study and by comparison with literature reviews. MATERIALS AND METHODS This approach involved the following main steps: first, we constructed a molecular database for SK and screened for active molecules by conducting drug-likeness and drug half-life evaluations; second, we used a weighted ensemble similarity drug-targeting model to accurately identify the direct drug targets of the bioactive constituents; third, we constructed compound-target, target-pathway, and target-disease networks using the Cytoscape 3.2 software and determined the distribution of the targets in tissues and organs according to the BioGPS database. Finally, the resulting drug-target mechanisms were compared with those proposed by previous research on SK and validated in a mouse model of CKD. RESULTS By using Network analysis, 88 potential bioactive compounds in the four component herbs of SK and 85 CKD-related targets were identified, including pathways that involve the nuclear factor-κB, mitogen-activated protein kinase, transient receptor potential, and vascular endothelial growth factor, which were categorized as inflammation, proliferation, migration, and permeability modules. The results also included different tissues (kidneys, liver, lungs, and heart) and different disease types (urogenital, metabolic, endocrine, cardiovascular, and immune diseases as well as pathological processes) closely related to CKD. These findings agreed with those reported in the literature. However, our findings with the network pharmacology prediction did not account for all the effects reported for SK found in the literature, such as regulation of the hemodynamics, inhibition of oxidative stress and apoptosis, and the involvement of the transforming growth factor-β/SMAD3, sirtuin/forkhead box protein O (SIRT/FOXO) and B-cell lymphoma-2-associated X protein pathways. The in vivo validation experiment revealed that SK ameliorated CKD through antifibrosis and anti-inflammatory effects, by downregulating the levels of vascular cell adhesion protein 1, vitamin D receptor, cyclooxygenase-2, and matrix metalloproteinase 9 proteins in the unilateral ureteral obstruction mouse model. This was consistent with the predicted target and pathway networks. CONCLUSIONS SK exerted a curative effect on CKD and CKD-related diseases by targeting different organs, regulating inflammation and proliferation processes, and inhibiting abnormal extracellular matrix accumulation. Thus, pharmacological network analysis with in vivo validation explained the potential effects and mechanisms of SK in the treatment of CKD. However, these findings need to be further confirmed with clinical studies.
Collapse
Affiliation(s)
- Tianyu Qin
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Lili Wu
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Qian Hua
- Academy of Basic Medicine Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Zilin Song
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yajing Pan
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Tonghua Liu
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
12
|
Abstract
The molecular mechanisms in acute tubular injury (ATI) are complex and enigmatic. Moreover, we currently lack validated tissue injury markers that can be integrated into the kidney biopsy analysis to guide nephrologists in their patient's management of AKI. Although recognizing the ATI lesion by light microscopy is fairly straightforward, the staging of tubular lesions in the context of clinical time course and etiologic mechanism currently is not adapted to the renal pathology practice. To the clinician, the exact time point when an ischemic or toxic injury has occurred often is not known and cannot be discerned from the review of the biopsy sample. Moreover, the assessment of the different types of organized necrosis as the underlying cell death mechanism, which can be targeted using specific inhibitors, has not yet reached clinical practice. The renal pathology laboratory is uniquely qualified to assess the time course and etiology of ATI using established analytic techniques, such as immunohistochemistry and electron microscopy. Recent advances in the understanding of pathophysiological mechanisms of ATI and the important role that certain types of tubular cell organelles play in different stages of the ATI lesions may allow differentiation of early versus late ATI. Furthermore, the determination of respective cell injury pathways may help to differentiate ischemic versus toxic etiology in a reliable fashion. In the future, such a kidney biopsy-based classification system of ATI could guide the nephrologist's management of patients in regard to treatment modality and drug choice.
Collapse
Affiliation(s)
- Gilbert W Moeckel
- Renal Pathology and Electron Microscopy Laboratory, Department of Pathology, Yale School of Medicine, New Haven, CT.
| |
Collapse
|
13
|
Izol V, Ardo IA, Tansu Z, Doran F, Eren Erdo& K, Mahir Kapl H, ingirik E, Ertu P, Pazarci P. Hypericum perforatum Extract Against Oxidative Stress, Apoptosis and Oedema in Kidney Induced by Gentamicin. INT J PHARMACOL 2018. [DOI: 10.3923/ijp.2019.66.73] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Abd-Elhamid TH, Elgamal DA, Ali SS, Ali FEM, Hassanein EHM, El-Shoura EAM, Hemeida RAM. Reno-protective effects of ursodeoxycholic acid against gentamicin-induced nephrotoxicity through modulation of NF-κB, eNOS and caspase-3 expressions. Cell Tissue Res 2018; 374:367-387. [PMID: 30078101 DOI: 10.1007/s00441-018-2886-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 07/04/2018] [Indexed: 12/13/2022]
Abstract
Gentamicin (GNT) is a potent aminoglycoside antibiotic widely used to treat life-threatening bacterial infections. We aim to investigate the potential protective effect of ursodeoxycholic acid (UDCA) against GNT-induced nephrotoxicity. In this study, 24 male Wistar rats were used and randomly divided into four groups of six animals each. Control group received 0.5% carboxymethyl cellulose orally for 15 days, GNT group received GNT 100 mg/kg/day i.p. for 8 days, UDCA group received UDCA orally for 15 consecutive days at a dose of 60 mg/kg/day suspended in 0.5% carboxymethyl cellulose and UDCA-pretreated group received UDCA orally for 7 days then co-administered with GNT i.p. for 8 days at the same fore-mentioned doses. Serum levels of kidney function parameters (urea, creatinine, uric acid and albumin) were measured. Renal tissues were used to evaluate oxidative stress markers; malonaldehyde (MDA), reduced glutathione (GSH) and the anti-oxidant enzyme superoxide dismutase (SOD) activities and nuclear factor kappa light-chain enhancer of activated B cells (NF-κB) and kidney injury molecule-1 (KIM-1) mRNA levels. Immunohistochemical expression of endothelial nitric oxide synthase (eNOS) and caspase-3 and histological and ultrastructural examination were performed. Treatment with GNT increased the serum levels of renal function parameters and renal MDA, NF-κB and KIM-1 mRNA levels, while it decreased GSH and SOD activities. Marked immunohistochemical expression of caspase-3 was observed after GNT administration while it decreased eNOS expression. Histological and ultrastructural alterations were also evident in renal corpuscles and tubules. In contrast, pretreatment with UDCA reversed changes caused by GNT administration. These results suggest that UDCA ameliorates GNT-induced kidney injury via inhibition of oxidative stress, inflammation and apoptosis.
Collapse
Affiliation(s)
- Tarek Hamdy Abd-Elhamid
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | - Dalia A Elgamal
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Safaa S Ali
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Fares E M Ali
- Department of Pharmacology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Ehab A M El-Shoura
- Department of Pharmacology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Ramadan A M Hemeida
- Department of Pharmacology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| |
Collapse
|
15
|
Zhang X, Guo K, Xia F, Zhao X, Huang Z, Niu J. FGF23 C-tail improves diabetic nephropathy by attenuating renal fibrosis and inflammation. BMC Biotechnol 2018; 18:33. [PMID: 29843712 PMCID: PMC5975516 DOI: 10.1186/s12896-018-0449-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 05/18/2018] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND High level of serum fibroblast growth factor 23 (FGF23) is implicated in the development and progression of diabetic nephropathy (DN), making it a crucial factor in the pathogenesis of DN. FGF23 is also tightly correlated with inflammation in the progression of DN. The aim of this study was to explore whether the C-terminal of FGF23 (FGF23C-tail), an antagonist that can block the FGF23 signaling pathway by competing with intact FGF23, could exhibit a therapeutic effect on DN. RESULTS Biochemical data and histological examination showed that FGF23 C-tail administration ameliorated the functional and morphological abnormalities of db/db mice with DN without changing the levels of circulating FGF23 and phosphate. Evaluation of morphology and fibrosis by Masson's trichrome staining and IHC staining of fibronectin, PCR, and western blot analysis showed that FGF23C-tail prevents diabetes-induced fibrosis in db/db mice. Importantly, FGF23C-tail decreased the levels of inflammatory cytokines in serum and renal tissues. CONCLUSION FGF23C-tail may improve diabetic nephropathy by decreasing inflammation and fibrosis in db/db mice, suggesting that blocking of FGF23 action remains an important therapeutic target for the prevention or attenuation of the progression of DN.
Collapse
Affiliation(s)
- Xiaomin Zhang
- Department of Biopharmacy, School of Pharmacy, Wenzhou Medical University, Chashan Town, Wenzhou, 325035, China
| | - Kaiwen Guo
- Department of Biopharmacy, School of Pharmacy, Wenzhou Medical University, Chashan Town, Wenzhou, 325035, China
| | - Feng Xia
- Department of Biopharmacy, School of Pharmacy, Wenzhou Medical University, Chashan Town, Wenzhou, 325035, China
| | - Xinyu Zhao
- Department of Biopharmacy, School of Pharmacy, Wenzhou Medical University, Chashan Town, Wenzhou, 325035, China
| | - Zhifeng Huang
- Department of Biopharmacy, School of Pharmacy, Wenzhou Medical University, Chashan Town, Wenzhou, 325035, China.
| | - Jianlou Niu
- Department of Biopharmacy, School of Pharmacy, Wenzhou Medical University, Chashan Town, Wenzhou, 325035, China.
| |
Collapse
|
16
|
Zhao H, He Y, Li S, Sun X, Wang Y, Shao Y, Hou Z, Xing M. Subchronic arsenism-induced oxidative stress and inflammation contribute to apoptosis through mitochondrial and death receptor dependent pathways in chicken immune organs. Oncotarget 2018; 8:40327-40344. [PMID: 28454103 PMCID: PMC5522337 DOI: 10.18632/oncotarget.16960] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 03/29/2017] [Indexed: 12/28/2022] Open
Abstract
In many organ dysfunctions, arsenic and its compounds are well known to induce apoptosis by the mitochondria and death receptor apoptotic pathways in liver and airway. However, it is less reported that which signaling pathways contribute to excessive apoptosis of chicken immune organs, a major target of toxic metals biotransformation, which suffer from subchronic arsenism. In this study, we investigated whether the mitochondria or death receptor apoptotic pathways activated in the immune organs (spleen, thymus and bursa of Fabricius) of one-day-old male Hy-line chickens exposed to arsenic trioxide (As2O3), which were fed on diets supplemented with 0, 0.625, 1.25 and 2.5 mg/kg BW of As2O3 for 30, 60 and 90 days. We found that (1) Oxidative damage and inflammatory response were confirmed in the immune organs of chickens fed on As2O3 diet. (2) Subchronic arsenism induced typical apoptotic changes in ultrastructure. (3) TdT-mediated dUTP Nick-End Labeling (TUNEL) showed that the number of apoptotic cells significantly increased under subchronic arsenism. (4) As2O3-induced apoptosis of immune organs involved in mitochondrial pathway (decrease of B-cell lymphoma-2 (Bcl-2) and increase of protein 53 (p53), Bcl-2 Associated X Protein (Bax), caspase-9, caspase-3) and death receptor pathway (increase of factor associated suicide (Fas) and caspase-8). In conclusion, this work is the first to demonstrate that the activation of mitochondria and death receptor apoptosis pathways can lead to excessive apoptosis in immune organs of chickens, which suffer from subchronic arsenism, meanwhile, oxidative stress as well as subsequent inflammatory is a crucial driver of apoptosis.
Collapse
Affiliation(s)
- Hongjing Zhao
- Department of Physiology, College of Wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Ying He
- Department of Physiology, College of Wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Siwen Li
- Department of Physiology, College of Wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Xiao Sun
- Department of Physiology, College of Wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Yu Wang
- Department of Physiology, College of Wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Yizhi Shao
- Department of Physiology, College of Wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Zhijun Hou
- Department of Physiology, College of Wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Mingwei Xing
- Department of Physiology, College of Wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| |
Collapse
|
17
|
The effects of HAP and macrophage cells to the expression of inflammatory factors and apoptosis in HK-2 cells of vitro co-cultured system. Urolithiasis 2017; 46:429-443. [PMID: 29236151 PMCID: PMC6153874 DOI: 10.1007/s00240-017-1032-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 11/11/2017] [Indexed: 01/26/2023]
Abstract
This study developed an in vitro system by co-culturing HK-2 cells with different concentration of hydroxyapatite (HAP) and/or macrophage cells to simulate the internal environment of urolithiasis as far as possible, investigating the regulatory effects of macrophage cells on HAP-induced expression of relative inflammatory factors of HK-2 cells. The control group (H group) was only comprised of HK-2 cells. Experimental groups included co-culturing HK-2 cells and macrophage cells (H + M group), co-culturing HK-2 cells and HAP (H + A group), co-culturing macrophage cells and HAP (M + A group), and co-culturing HK-2 cells and macrophage cells with HAP (H + M + A group). In the H + A, M + A, and H + M + A group, we set the concentration of HAP as 5 μg/cm2 (A1) and 10 μg/cm2 (A2). After co-culturing for 2, 4, and 6 h, we detected the expression of CCL-2 in the liquid by ELISA. We tested the expression of LDH and ROS to evaluate the damage of HK-2 cells. We assessed the apoptosis of HK-2 cells using DAPI staining assay, flow cytometry, and the rate of BAX/BCL-2. Western Blotting detected OPN, Fetuin-A, BAX, and BCL-2 of HK-2 cells. The expression of CCL-2 in the medium of H + A1 and H + A2 group increased significantly compared with the control (P < 0.05); CCL-2 of M + A1 and M + A2 group was higher than the H + A1 and H + A2 group (P < 0.05). The expression of CCL-2 in H + M + A1 and H + M + A2 group was also higher than M + A1 and M + A2 group (P < 0.05). Compared with control, the expression of OPN, LDH release, the ratio of BAX/BCL-2, and the generation of ROS in HK-2 cells increased in a dose- and time-dependent manner. Compared with the control, the expression of Fetuin-A decreased in various degrees at different incubation periods. Especially when co-culturing for 6 h, Fetuin-A decreased most seriously in the H + M + A1 group. (1) The HAP can induce the HK-2 cells oxidative stress and inflammatory damage and apoptosis, when adding the macrophages to co-culture, macrophage cells can aggravate the damage and apoptosis of the HK-2 cells. (2) After the stimulation of HAP, the expression of OPN in HK-2 cells increased in a time- and dose-dependent manner; macrophage cells can aggravate the increase of OPN in HK-2 cells. (3) In the HAP and HK-2 cells co-cultured system, the low-level Fetuin-A of HK-2 cells may be related to the excessive consumption of Fetuin-A in the process of HAP-induced renal tubular epithelial cell excessive oxidative stress, inflammatory injury, and cell apoptosis. When adding macrophage cells to co-culture, Fetuin-A decreased even more seriously, it reminds us that macrophage cells can slightly regulate the expression of Fetuin-A in the HK-2 cells.
Collapse
|
18
|
Cheow ESH, Cheng WC, Yap T, Dutta B, Lee CN, Kleijn DPVD, Sorokin V, Sze SK. Myocardial Injury Is Distinguished from Stable Angina by a Set of Candidate Plasma Biomarkers Identified Using iTRAQ/MRM-Based Approach. J Proteome Res 2017; 17:499-515. [DOI: 10.1021/acs.jproteome.7b00651] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Esther Sok Hwee Cheow
- School
of Biological Sciences, Nanyang Technological University, 60 Nanyang
Drive, Singapore 637551, Singapore
| | - Woo Chin Cheng
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore & Cardiovascular Research Institute, Singapore 119228, Singapore
| | - Terence Yap
- School
of Biological Sciences, Nanyang Technological University, 60 Nanyang
Drive, Singapore 637551, Singapore
| | - Bamaprasad Dutta
- School
of Biological Sciences, Nanyang Technological University, 60 Nanyang
Drive, Singapore 637551, Singapore
| | - Chuen Neng Lee
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore & Cardiovascular Research Institute, Singapore 119228, Singapore
- Department of Cardiac, Thoracic & Vascular Surgery, National University Heart Centre, Singapore 119074, Singapore
- Department
of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Dominique P. V. de Kleijn
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore & Cardiovascular Research Institute, Singapore 119228, Singapore
- Department of Vascular Surgery, University Medical Center Utrecht, The Netherlands & Interuniversity Cardiovascular Institute of The Netherlands, Utrecht 3508 GA, The Netherlands
| | - Vitaly Sorokin
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore & Cardiovascular Research Institute, Singapore 119228, Singapore
- Department of Cardiac, Thoracic & Vascular Surgery, National University Heart Centre, Singapore 119074, Singapore
| | - Siu Kwan Sze
- School
of Biological Sciences, Nanyang Technological University, 60 Nanyang
Drive, Singapore 637551, Singapore
| |
Collapse
|
19
|
Bayomy NA, Elbakary RH, Ibrahim MAA, Abdelaziz EZ. Effect of Lycopene and Rosmarinic Acid on Gentamicin Induced Renal Cortical Oxidative Stress, Apoptosis, and Autophagy in Adult Male Albino Rat. Anat Rec (Hoboken) 2017; 300:1137-1149. [PMID: 27884046 DOI: 10.1002/ar.23525] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 05/15/2016] [Accepted: 08/01/2016] [Indexed: 12/16/2023]
Abstract
Gentamicin nephrotoxicity accounts for 10%-15% of all cases of acute renal failure. Several natural antioxidants were found to be effective against drug-induced toxicity. The possible protective effects of lycopene (Lyc) and rosmarinic acid (RA) alone or combined on gentamicin (Gen) induced renal cortical oxidative stress, apoptosis, and autophagy were evaluated. Sixty-three rats were randomly divided into seven groups named: control, group II received RA 50 mg/kg/day, group III received Lyc 4 mg/kg/day, group IV received Gen 100 mg/kg/day, group V (RA + Gen), group VI (Lyc + Gen), and group VII (RA + Lyc + Gen). At the end of the experiment, kidney functions were estimated then the kidneys were sampled for histopathological, immunohistochemistry, and biochemical studies. Administration of rosmarinic acid and lycopene decreased elevated serum creatinine, blood urea nitrogen, renal malondialdehyde and immunoexpression of the proapoptotic protein (Bax), autophagic marker protein (LC3/B), and inducible nitric oxide synthase (iNOS) induced by gentamicin. They increased reduced glutathione, glutathione peroxidase, superoxide dismutase, and immunoexpression of the antiapoptotic protein (Bcl2). They also improved the histopathological changes induced by gentamicin. The combination therapy of rosmarinic acid and lycopene shows better protective effects than the corresponding monotherapy. Anat Rec, 300:1137-1149, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Naglaa A Bayomy
- Histology department Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Reda H Elbakary
- Histology department Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Marwa A A Ibrahim
- Histology department Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Eman Z Abdelaziz
- Pharmacology department Faculty of Medicine, Suez Canal University, Ismalia, Egypt
| |
Collapse
|
20
|
Chashmi NA, Emadi S, Khastar H. Protective effects of hydroxytyrosol on gentamicin induced nephrotoxicity in mice. Biochem Biophys Res Commun 2017; 482:1427-1429. [DOI: 10.1016/j.bbrc.2016.12.052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 12/08/2016] [Indexed: 12/11/2022]
|
21
|
Neutrophil gelatinase-associated lipocalin production negatively correlates with HK-2 cell impairment: Evaluation of NGAL as a marker of toxicity in HK-2 cells. Toxicol In Vitro 2016; 39:52-57. [PMID: 27888128 DOI: 10.1016/j.tiv.2016.11.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/19/2016] [Accepted: 11/21/2016] [Indexed: 02/07/2023]
Abstract
Neutrophil gelatinase-associated lipocalin is an extracellular protein produced mostly in kidney. Recently, it has become a promising biomarker of renal damage in vivo. On the other hand, the validation of NGAL as a biomarker for nephrotoxicity estimation in vitro has not been characterized in detail yet. Since the HK-2 cells are frequently used human kidney cell line, we aimed to characterize the production of NGAL in these cells and to evaluate NGAL as a possible marker of cell impairment. We used heavy metals (mercury, cadmium), peroxide, drugs (acetaminophen, gentamicin) and cisplatin to mimic nephrotoxicity. HK-2 cells were incubated with selected compounds for 1-24h and cell viability was measured together with extracellular NGAL production. We proved that HK-2 cells possess a capacity to produce NGAL in amount of 2pg/ml/h. We found a change in cell viability after 24h incubation with all tested toxic compounds. The largest decrease of the viability was detected in mercury, acetaminophen, cisplatin and gentamicin. Unexpectedly, we found also a significant decrease in NGAL production in HK-2 cells treated with these toxins for 24h: to 11±5%, 54±5%, 57±6% and 76±9% respectively, compared with controls (=100%). Our results were followed with qPCR analysis when we found no significant increase in LCN2 gene expression after 24h incubation. We conclude that extracellular NGAL production negatively correlates with HK-2 cell impairment.
Collapse
|
22
|
Cernaro V, Sfacteria A, Rifici C, Macrì F, Maricchiolo G, Lacquaniti A, Ricciardi CA, Buemi A, Costantino G, Santoro D, Buemi M. Renoprotective effect of erythropoietin in zebrafish after administration of gentamicin: an immunohistochemical study for β-catenin and c-kit expression. J Nephrol 2016; 30:385-391. [PMID: 27679401 DOI: 10.1007/s40620-016-0353-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 09/11/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND Gentamicin is an aminoglycoside antibiotic widely used in the treatment of infections caused by Gram-negative bacteria. The main limitation to its therapeutic effectiveness is the potential nephrotoxicity. Erythropoietin has a tissue protective effect widely demonstrated in the kidney. The aim of the present study was to evaluate the renoprotective effects of erythropoietin in a model of zebrafish (Danio rerio) after administration of gentamicin. METHODS Sixty adult zebrafish were subdivided into three groups: group A was treated with gentamicin; group B received gentamicin and, 24 h later, epoetin alpha; group C received drug diluent only. In order to analyze the renoprotective activity of erythropoietin, the expression of c-kit and β-catenin was evaluated by immunohistochemistry. RESULTS Generally, the zebrafish renal tubule regenerates 15 days after an injury. Conversely, 7 days after gentamicin administration, animals treated with erythropoietin (group B) showed a better renal injury repair as documented by: increased expression of β-catenin, less degenerated tubules, greater number of centers of regeneration, positivity for c-kit only in immature-looking tubules and lymphohematopoietic cells. CONCLUSION The expression of c-kit and β-catenin suggests that erythropoietin may exert a role in regeneration reducing the extent of tubular damage from the outset after gentamicin administration.
Collapse
Affiliation(s)
- Valeria Cernaro
- Chair of Nephrology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria n. 1, 98124, Messina, Italy.
| | | | - Claudia Rifici
- Department of Veterinary Science, University of Messina, 98100, Messina, Italy
| | - Francesco Macrì
- Department of Veterinary Science, University of Messina, 98100, Messina, Italy
| | - Giulia Maricchiolo
- IAMC (Institute for Coastal Marine Environment), CNR, U.O.S. Messina, Spianata S. Raineri, 86, 98122, Messina, Italy
| | - Antonio Lacquaniti
- Chair of Nephrology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria n. 1, 98124, Messina, Italy
| | - Carlo Alberto Ricciardi
- Chair of Nephrology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria n. 1, 98124, Messina, Italy
| | - Antoine Buemi
- Chair of Nephrology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria n. 1, 98124, Messina, Italy
| | - Giuseppe Costantino
- Chair of Nephrology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria n. 1, 98124, Messina, Italy
| | - Domenico Santoro
- Chair of Nephrology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria n. 1, 98124, Messina, Italy
| | - Michele Buemi
- Chair of Nephrology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria n. 1, 98124, Messina, Italy
| |
Collapse
|
23
|
Kaplan H, Izol V, Aridogan I, Olgan E, Yegani A, Pazarci P, Singirik E. Protective Effect of Hypericum perforatum Extract on Gentamicin Induced Nephrotoxicity in Mice. INT J PHARMACOL 2016. [DOI: 10.3923/ijp.2016.663.668] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
24
|
Kaplan H, Izol V, Ardogan I, Olgan E, Yegani A, Pazarc P, Singirik E. Protective Effect of Alpha-linolenic Acid on Gentamicin Induced Nephrotoxicity in Mice. INT J PHARMACOL 2016. [DOI: 10.3923/ijp.2016.562.566] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
Nicotine-Induced Apoptosis in Human Renal Proximal Tubular Epithelial Cells. PLoS One 2016; 11:e0152591. [PMID: 27028622 PMCID: PMC4814027 DOI: 10.1371/journal.pone.0152591] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 03/16/2016] [Indexed: 01/26/2023] Open
Abstract
Background Nicotine is, to a large extent, responsible for smoking-mediated renal dysfunction. This study investigated nicotine’s effects on renal tubular epithelial cell apoptosis in vitro and it explored the mechanisms underlying its effects. Methods Human proximal tubular epithelial (HK-2) cells were treated with nicotine. Cell viability was examined by using the WST-1 assay. Intracellular levels of reactive oxygen species (ROS) and the expression of mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) proteins were determined. The messenger ribonucleic acid and the protein expression associated with the nicotine acetylcholine receptors (nAChRs) in HK-2 cells was examined, and apoptosis was detected using flow cytometry, cell cycle analysis, and immunoblot analysis. Results The HK-2 cells were endowed with nAChRs. Nicotine treatment reduced cell viability dose dependently, increased ROS levels, and increased extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 MAPK expression. Nicotine increased NF-κB activation, which was attenuated by N-acetyl-L-cysteine, and ERK and JNK inhibitors, but was not affected by a p38 MAPK inhibitor. Nicotine increased the Bax/Bcl-2 ratio, which was attenuated by N-acetyl-L-cysteine, the NF-κB inhibitor, Bay 11–7082, and hexamethonium, a non-specific nAChR blocker. Flow cytometry revealed nicotine-induced G2/M phase arrest. While nicotine treatment increased the expression of phosphorylated cdc2 and histone H3, a marker of G2/M phase arrest, hexamethonium and Bay 11–7082 pretreatment reduced their expression. Conclusions Nicotine caused apoptosis in HK-2 cells by inducing ROS generation that activated the NF-κB signaling pathway via the MAPK pathway and it arrested the cell cycle at the G2/M phase. Nicotine-induced apoptosis in HK-2 cells involves the nAChRs.
Collapse
|
26
|
6-gingerol ameliorates gentamicin induced renal cortex oxidative stress and apoptosis in adult male albino rats. Tissue Cell 2016; 48:208-16. [PMID: 27036327 DOI: 10.1016/j.tice.2016.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 03/13/2016] [Accepted: 03/14/2016] [Indexed: 11/21/2022]
Abstract
Ginger or Zingiber officinale which is used in traditional medicine has been found to possess antioxidant effect that can control the generation of free radicals. Free radicals are the causes of renal cell degeneration that leads to renal failure in case of gentamicin induced toxicity. This study was done to evaluate the possible protective effects of 6-gingerol as natural antioxidant on gentamicin-induced renal cortical oxidative stress and apoptosis in adult male albino rats. Forty adult male albino rats were used in this study and were randomly divided into four groups, control group; 6-gingerol treated group; gentamicin treated group and protected group (given simultaneous 6-gingerol and gentamicin). At the end of the study, blood samples were drawn for biochemical study. Kidney sections were processed for histological, and immunohistochemical examination for caspase-3 to detect apoptosis and anti heat shock protein 47 (HSP47) to detect oxidative damage. Gentamicin treated rats revealed a highly significant increase in renal function tests, tubular dilatation with marked vacuolar degeneration and desquamation of cells, interstitial hemorrhage and cellular infiltration. Immunohistochemically, gentamicin treated rats showed a strong positive immunoreaction for caspase-3 and anti heat shock protein 47 (HSP47). Protected rats showed more or less normal biochemical, histological, and immunohistochemical pictures. In conclusion, co-administration of 6-gingerol during gentamicin 'therapy' has a significant reno-protective effect in a rat model of gentamicin-induced renal damage. It is recommended that administration of ginger with gentamicin might be beneficial in men who receive gentamicin to treat infections.
Collapse
|
27
|
Ding Y, Yang H, Xiang W, He X, Liao W, Yi Z. CD200R1 agonist attenuates LPS-induced inflammatory response in human renal proximal tubular epithelial cells by regulating TLR4-MyD88-TAK1-mediated NF-κB and MAPK pathway. Biochem Biophys Res Commun 2015; 460:287-94. [PMID: 25791482 DOI: 10.1016/j.bbrc.2015.03.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 03/06/2015] [Indexed: 01/13/2023]
Abstract
Previous studies have revealed the anti-inflammatory effect of CD200Fc, an agonist of CD200R1 in autoimmune disease. However, little is known about its anti-inflammatory effects in kidney diseases. The aim of this study is to assess the function of CD200Fc in regulating lipopolysaccharide (LPS)-induced inflammatory response in human renal proximal tubular epithelial cells (hRPTECs) and the possible mechanisms. LPS reduced the CD200R1 expression in hRPTECs, and this effect was attenuated by CD200Fc in a dose-dependent manner. In addition, CD200Fc inhibited LPS-induced expressions of TLR4 and its adapter molecule (MyD88 and phosphorylation of TAK1), and abolished its interactions with MyD88 or TAK1 in hRPTECs cells. CD200Fc also attenuated LPS-induced phosphorylation of IκB, NF-κB-P65 translocation to nucleus, and increased phosphorylation of ERK1/2, p38 and JNK in hRPTECs. Moreover, CD200Fc suppressed the LPS-induced release of pro-inflammatory mediators in hRPTECs, including IL-1β, IL-6, IL-8, MCP-1, VCAM-1, ICAM-1, TNF-α, INF-α and INF-γ. Our results suggested that CD200Fc could inhibit the TLR4-mediated inflammatory response in LPS-induced hRPTECs, thus might be beneficial for the treatment of renal disease, such as lupus nephritis.
Collapse
Affiliation(s)
- Yan Ding
- Department of Dermatology, Maternal and Child Health Care Hospital of Hainan Province, Haikou 570206, China; Department of Cardiology, Hainan General Hospital, Haikou 570102, China
| | - Huilan Yang
- Department of Dermatology, General Hospital of Guangzhou Military Command of PLA, Southern Medical University, Guangzhou 510010, China.
| | - Wei Xiang
- Department of Dermatology, Maternal and Child Health Care Hospital of Hainan Province, Haikou 570206, China.
| | - Xiaojie He
- Department of Nephropathy, Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha 410000, China
| | - Wang Liao
- Department of Cardiology, Hainan General Hospital, Haikou 570102, China
| | - Zhuwen Yi
- Department of Nephropathy, Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha 410000, China
| |
Collapse
|
28
|
Kandemir FM, Ozkaraca M, Yildirim BA, Hanedan B, Kirbas A, Kilic K, Aktas E, Benzer F. Rutin attenuates gentamicin-induced renal damage by reducing oxidative stress, inflammation, apoptosis, and autophagy in rats. Ren Fail 2015; 37:518-25. [PMID: 25613739 DOI: 10.3109/0886022x.2015.1006100] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Gentamicin is commonly used against gram-negative microorganisms. Its therapeutic use is mainly limited by nephrotoxicity. This study was aimed at evaluating the effect of rutin on oxidative stress, inflammation, apoptosis, and autophagy in gentamicin-induced nephrotoxicity in rats. The rats were treated with saline intraperitoneally (group I), 150 mg/kg of rutin orally (group II), 80 mg/kg of gentamicin intraperitoneally for 8 d (group III), or 150 mg/kg of rutin plus 80 mg/kg of gentamicin (group IV). The serum urea, creatinine, kidney malondialdehyde (MDA), and reduced glutathione (GSH) levels and superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activity and protein concentration were measured, and renal histopathology analysis and immunohistochemical staining were performed. Rutin pretreatment attenuated nephrotoxicity induced by gentamicin by reducing the urea, creatinine, and MDA levels and increasing the SOD, CAT, and GPx activity, and the GSH levels. The rutin also inhibited inducible nitric oxide synthase (iNOS), cleaved caspase-3 and light chain 3B (LC3B), as evidenced by immunohistochemical staining. The present study demonstrates that rutin exhibits antioxidant, anti-inflammatory, anti-apoptotic, and anti-autophagic effects and that it attenuates gentamicin-induced nephrotoxicity in rats.
Collapse
Affiliation(s)
- Fatih Mehmet Kandemir
- Department of Biochemistry, Faculty of Veterinary Medicine, Ataturk University , Yakutiye, Erzurum , Turkey
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Cho M, Lee DJ, Kim JK, You S. Molecular characterization and immunomodulatory activity of sulfated fucans from Agarum cribrosum. Carbohydr Polym 2014; 113:507-14. [PMID: 25256513 DOI: 10.1016/j.carbpol.2014.07.055] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/07/2014] [Accepted: 07/23/2014] [Indexed: 12/15/2022]
Abstract
The sulfated-fucans, known as fucoidans, were isolated from Agarum cribrosum and fractionated using ion-exchange chromatography to determine their molecular characteristics and in vitro immunomodulatory activity. The crude and fractionated fucoidans (F1 and F2) consisted mostly of carbohydrates (52.4-56.0%), sulfates (12.7-23.0%) and uronic acid (14.1-21.8%), with a small amount of proteins (3.9-9.3%), and included various levels of fucose (44.0-46.7%), mannose (18.9-26.8%), galactose (16.8-33.0%), xylose (10.7-17.0%) and glucose (3.5-9.5%). The crude and fractionated fucans contained one or two subfractions with average molecular weights (Mw) ranging from 110.1 × 10(3) to 2420 × 10(3)g/mol. The fractionated fucoidan, especially the F1 fraction, strongly stimulated murine macrophages (Raw 264.7 cells), producing a considerable amount of nitric oxide (NO) and inducing expression of inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2) and interleukin-10 (IL-10) transcripts by activation of nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) pathways. The maximally immunoenhancing F1 fraction was mainly composed of (1 → 3)-linked fucose, (1 → 2)-linked mannose and (1 → 4)-linked glucuronic acid with sulfates at C-2 or both the C-2 and C-4 positions in (1 → 2,3)- and (1 → 2,3,4)-linked fucose residues.
Collapse
Affiliation(s)
- MyoungLae Cho
- East Sea Research Institute, Korea Institute of Ocean Science and Technology, Uljin 767-813, Gyeongbuk, Republic of Korea
| | - Dong-Jin Lee
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung 210-702, Gangwon, Republic of Korea
| | - Jin-Kyung Kim
- Department of Biomedical Science, Catholic University of Daegu, Gyeongsan 712-702, Gyeongbuk, Republic of Korea
| | - SangGuan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung 210-702, Gangwon, Republic of Korea.
| |
Collapse
|
30
|
Li J, Chanda D, Shiri-Sverdlov R, Neumann D. MSP: an emerging player in metabolic syndrome. Cytokine Growth Factor Rev 2014; 26:75-82. [PMID: 25466635 DOI: 10.1016/j.cytogfr.2014.10.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 10/22/2014] [Indexed: 12/15/2022]
Abstract
MSP (Macrophage Stimulating Protein; also known as Hepatocyte Growth Factor-like protein (HGFL) and MST1) is a secreted protein and the ligand for transmembrane receptor tyrosine kinase Recepteur d'Origine Nantais (RON; also known as MST1R). Since its discovery, MSP has been demonstrated to play a key role in regulating inflammation in the peripheral tissues of multiple disease models. Recent evidences also point toward a beneficial role of MSP in the regulation of hepatic lipid and glucose metabolism, thereby implicating MSP as a crucial regulator in maintaining metabolic homeostasis while simultaneously suppressing inflammatory processes. In this review, we discuss the recent advances that demonstrate the significance of MSP in metabolic syndrome and build a strong case supporting its therapeutic potential.
Collapse
Affiliation(s)
- Jieyi Li
- Department of Molecular Genetics, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Dipanjan Chanda
- Department of Molecular Genetics, CARIM School for Cardiovascular Diseases, Maastricht University, 6200 MD Maastricht, The Netherlands.
| | - Ronit Shiri-Sverdlov
- Department of Molecular Genetics, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Dietbert Neumann
- Department of Molecular Genetics, CARIM School for Cardiovascular Diseases, Maastricht University, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
31
|
Shin HS, Yu M, Kim M, Choi HS, Kang DH. Renoprotective effect of red ginseng in gentamicin-induced acute kidney injury. J Transl Med 2014; 94:1147-60. [PMID: 25111692 DOI: 10.1038/labinvest.2014.101] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 05/26/2014] [Accepted: 06/13/2014] [Indexed: 12/21/2022] Open
Abstract
Aminoglycoside-induced nephrotoxicity is one of the prevalent causes of acute kidney injury (AKI). Oxidative stress-mediated apoptosis of renal tubular cells is known to be a major mechanism of renal injury. Red ginseng extract (RGE) has been reported to possess antioxidant and immune-modulatory activities. We investigated the effect of RGE on gentamicin (GM)-induced apoptosis and oxidative stress in cultured renal tubular cells and animal model of GM-induced AKI. GM induced the generation of reactive oxygen species (ROS) with an increase in NADPH oxidase (NOX) activity and mitochondrial oxidation in NRK-52E cells that were ameliorated with RGE. GM-induced apoptosis of NRK-52E cells, which was associated with an increased expression of mitochondrial Bax, cytosolic cytochrome c, and cleaved caspase-9 and -3, along with a decrease in bcl-2 expression, was also blocked by RGE. In an animal model of GM-induced AKI, RGE treatment significantly attenuated renal dysfunction, cell apoptosis, and tubular damage. RGE ameliorated ROS production in rats with GM-induced AKI, as demonstrated by an increase in the reduced form of glutathione in renal cortex and a decrease in urinary excretion of 8-hydroxy-2'-deoxyguanosine. Our results suggest that RGE protects the kidney from GM-induced AKI via the mechanism of modulation of oxidative stress.
Collapse
Affiliation(s)
- Hyun-Soo Shin
- Division of Nephrology, Department of Internal Medicine, Ewha Womans University School of Medicine, Ewha Medical Research Center, Seoul, Korea
| | - Mina Yu
- Division of Nephrology, Department of Internal Medicine, Ewha Womans University School of Medicine, Ewha Medical Research Center, Seoul, Korea
| | - Mijin Kim
- Division of Nephrology, Department of Internal Medicine, Ewha Womans University School of Medicine, Ewha Medical Research Center, Seoul, Korea
| | - Hack Sun Choi
- Division of Nephrology, Department of Internal Medicine, Ewha Womans University School of Medicine, Ewha Medical Research Center, Seoul, Korea
| | - Duk-Hee Kang
- Division of Nephrology, Department of Internal Medicine, Ewha Womans University School of Medicine, Ewha Medical Research Center, Seoul, Korea
| |
Collapse
|
32
|
Suh SH, Lee KE, Park JW, Kim IJ, Kim O, Kim CS, Choi JS, Bae EH, Ma SK, Lee JU, Kim SW. Antiapoptotic Effect of Paricalcitol in Gentamicin-induced Kidney Injury. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2013; 17:435-40. [PMID: 24227945 PMCID: PMC3823957 DOI: 10.4196/kjpp.2013.17.5.435] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 09/15/2013] [Accepted: 09/17/2013] [Indexed: 01/26/2023]
Abstract
While the anti-apoptotic effect of paricalcitol has been demonstrated in various animal models, it is not yet clear whether paricalcitol attenuates the apoptosis in gentamicin (GM)-induced kidney injury. We investigated the effect of paricalcitol on apoptotic pathways in rat kidneys damaged by GM. Rats were randomly divided into three groups: 1) Control group (n=8), where only vehicle was delivered, 2) GM group (n=10), where rats were treated with GM (150 mg/kg/day) for 7 days, 3) PARI group (n=10), where rats were co-treated with paricalcitol (0.2 µg/kg/day) and GM for 7 days. Paricalcitol attenuated renal dysfunction by GM administration in biochemical profiles. In terminal deoxynucleotidyl transferase dUTP nick end labeling staining, increased apoptosis was observed in GM group, which was reversed by paricalcitol co-treatment. Immunoblotting using protein samples from rat cortex/outer stripe of outer medulla showed increased Bax/Bcl-2 ratio and cleaved form of caspase-3 in GM group, both of which were reversed by paricalcitol. The phosphorylated Jun-N-terminal kinase (JNK) expression was increase in GM, which was counteracted by paricalcitol. The protein expression of p-Akt and nitro-tyrosine was also enhanced in GM-treated rats compared with control rats, which was reversed by paricalcitol co-treatment. Paricalcitol protects GM-induced renal injury by antiapoptotic mechanisms, including inhibition of intrinsic apoptosis pathway and JNK.
Collapse
Affiliation(s)
- Sang Heon Suh
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501-757, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Lee KE, Kim EY, Kim CS, Choi JS, Bae EH, Ma SK, Park JS, Jung YD, Kim SH, Lee JU, Kim SW. Macrophage-stimulating protein attenuates hydrogen peroxide-induced apoptosis in human renal HK-2 cells. Eur J Pharmacol 2013; 715:304-11. [PMID: 23726950 DOI: 10.1016/j.ejphar.2013.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 04/30/2013] [Accepted: 05/11/2013] [Indexed: 01/12/2023]
Abstract
Macrophage-stimulating protein (MSP) and its receptor, recepteur d'origine nantais (RON), play an important role in cell proliferation and migration. We have investigated the role of MSP in hydrogen peroxide (H2O2)-induced renal tubular apoptosis. Human renal proximal tubular (HK-2) cells were incubated with H2O2 for 24h in the presence of different concentrations of MSP, and cell viability was measured by MTT assay. The protein expression of Bax, Bcl-2, caspase-3, mitogen-activated protein kinases (MAPKs), phosphatidylinositol-3-kinase (PI3K)/Akt, and nuclear factor-kappa B (NF-κB) was determined by semiquantitative immunoblotting. Apoptosis was assessed by flow cytometry analysis after HK-2 cells were stained with fluorescein isothiocyanate-conjugated annexin V protein and propidium iodide. H2O2 treatment decreased cell viability in HK-2 cells; this was counteracted by MSP pretreatment. H2O2 treatment induced an increased ratio of Bax/Bcl-2, cleaved caspase-3, and the number of condensed nuclei, which was also counteracted by MSP. Flow cytometry analysis showed H2O2-induced apoptosis, and its prevention by MSP treatment. Increased protein expression of phospho-p38 MAPK was attenuated by MSP, while phospho-extracellular signal-regulated kinase and c-Jun-N-terminal kinase were not affected. H2O2 induced NF-κB activation and IκB-α degradation, but the increased nuclear NF-κB activation was counteracted by MSP or by a p38 MAPK inhibitor. H2O2 treatment decreased expression of phospho-PI3K and phospho-Akt, which was reversed by MSP pretreatment. These findings suggest that MSP attenuates H2O2-induced apoptosis in HK-2 cells by modulating the p38 and NF-κB, as well as PI3K/Akt, signaling pathways.
Collapse
Affiliation(s)
- Ko Eun Lee
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|