1
|
Cannabinoids and Chronic Liver Diseases. Int J Mol Sci 2022; 23:ijms23169423. [PMID: 36012687 PMCID: PMC9408890 DOI: 10.3390/ijms23169423] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 11/19/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), alcohol-induced liver disease (ALD), and viral hepatitis are the main causes of morbidity and mortality related to chronic liver diseases (CLDs) worldwide. New therapeutic approaches to prevent or reverse these liver disorders are thus emerging. Although their etiologies differ, these CLDs all have in common a significant dysregulation of liver metabolism that is closely linked to the perturbation of the hepatic endocannabinoid system (eCBS) and inflammatory pathways. Therefore, targeting the hepatic eCBS might have promising therapeutic potential to overcome CLDs. Experimental models of CLDs and observational studies in humans suggest that cannabis and its derivatives may exert hepatoprotective effects against CLDs through diverse pathways. However, these promising therapeutic benefits are not yet fully validated, as the few completed clinical trials on phytocannabinoids, which are thought to hold the most promising therapeutic potential (cannabidiol or tetrahydrocannabivarin), remained inconclusive. Therefore, expanding research on less studied phytocannabinoids and their derivatives, with a focus on their mode of action on liver metabolism, might provide promising advances in the development of new and original therapeutics for the management of CLDs, such as NAFLD, ALD, or even hepatitis C-induced liver disorders.
Collapse
|
2
|
Progress in the treatment of drug-induced liver injury with natural products. Pharmacol Res 2022; 183:106361. [PMID: 35882295 DOI: 10.1016/j.phrs.2022.106361] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 12/13/2022]
Abstract
There are numerous prescription drugs and non-prescription drugs that cause drug-induced liver injury (DILI), which is the main cause of liver disease in humans around the globe. Its mechanism becomes clearer as the disease is studied further. For an instance, when acetaminophen (APAP) is taken in excess, it produces N-acetyl-p-benzoquinone imine (NAPQI) that binds to biomacromolecules in the liver causing liver injury. Treatment of DILI with traditional Chinese medicine (TCM) has shown to be effective. For example, activation of the Nrf2 signaling pathway as well as regulation of glutathione (GSH) synthesis, coupling, and excretion are the mechanisms by which ginsenoside Rg1 (Rg1) treats APAP-induced acute liver injury. Nevertheless, reducing the toxicity of TCM in treating DILI is still a problem to be overcome at present and in the future. Accumulated evidences show that hydrogel-based nanocomposite may be an excellent carrier for TCM. Therefore, we reviewed TCM with potential anti-DILI, focusing on the signaling pathway of these drugs' anti-DILI effect, as well as the possibility and prospect of treating DILI by TCM based on hydrogel materials in the future. In conclusion, this review provides new insights to further explore TCM in the treatment of DILI.
Collapse
|
3
|
Khan RN, Maner-Smith K, A. Owens J, Barbian ME, Jones RM, R. Naudin C. At the heart of microbial conversations: endocannabinoids and the microbiome in cardiometabolic risk. Gut Microbes 2022; 13:1-21. [PMID: 33896380 PMCID: PMC8078674 DOI: 10.1080/19490976.2021.1911572] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cardiometabolic syndrome encompasses intertwined risk factors such as hypertension, dyslipidemia, elevated triglycerides, abdominal obesity, and other maladaptive metabolic and inflammatory aberrations. As the molecular mechanisms linking cardiovascular disease and metabolic disorders are investigated, endocannabinoids have emerged as molecules of interest. The endocannabinoid system (ECS) of biologically active lipids has been implicated in several conditions, including chronic liver disease, osteoporosis, and more recently in cardiovascular diseases. The gut microbiome is a major regulator of inflammatory and metabolic signaling in the host, and if disrupted, has the potential to drive metabolic and cardiovascular diseases. Extensive studies have unraveled the impact of the gut microbiome on host physiology, with recent reports showing that gut microbes exquisitely control the ECS, with significant influences on host metabolic and cardiac health. In this review, we outline how modulation of the gut microbiome affects host metabolism and cardiovascular health via the ECS, and how these findings could be exploited as novel therapeutic targets for various metabolic and cardiac diseases.
Collapse
Affiliation(s)
- Ramsha Nabihah Khan
- Division of Gastroenterology and Hepatology, Department of Pediatrics, Children’s Healthcare of Atlanta and Emory University, Atlanta, Georgia, USA
| | - Kristal Maner-Smith
- Emory Integrated Metabolomics and Lipidomics Core, Emory University, Atlanta, Georgia, USA
| | - Joshua A. Owens
- Division of Gastroenterology and Hepatology, Department of Pediatrics, Children’s Healthcare of Atlanta and Emory University, Atlanta, Georgia, USA
| | - Maria Estefania Barbian
- Division of Neonatology, Department of Pediatrics, Children’s Healthcare of Atlanta and Emory University, Atlanta, Georgia, USA
| | - Rheinallt M. Jones
- Division of Gastroenterology and Hepatology, Department of Pediatrics, Children’s Healthcare of Atlanta and Emory University, Atlanta, Georgia, USA
| | - Crystal R. Naudin
- Division of Gastroenterology and Hepatology, Department of Pediatrics, Children’s Healthcare of Atlanta and Emory University, Atlanta, Georgia, USA,CONTACT Crystal R. Naudin Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University School of Medicine, 615 Michael Street, Atlanta, GA30322, United States of America
| |
Collapse
|
4
|
Rivera P, Vargas A, Pastor A, Boronat A, López-Gambero AJ, Sánchez-Marín L, Medina-Vera D, Serrano A, Pavón FJ, de la Torre R, Agirregoitia E, Lucena MI, Rodríguez de Fonseca F, Decara J, Suárez J. Differential hepatoprotective role of the cannabinoid CB 1 and CB 2 receptors in paracetamol-induced liver injury. Br J Pharmacol 2020; 177:3309-3326. [PMID: 32167157 DOI: 10.1111/bph.15051] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 02/19/2020] [Accepted: 03/02/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Protective mechanisms of the endogenous cannabinoid system against drug-induced liver injury (DILI) are actively being investigated regarding the differential regulatory role of the cannabinoid CB1 and CB2 receptors in liver fibrogenesis and inflammation. EXPERIMENTAL APPROACH The 2-arachidonoylglycerol (2-AG)-related signalling receptors and enzymatic machinery, and inflammatory/fibrogenic factors were investigated in the liver of a mouse model of hepatotoxicity induced by acute and repeated overdoses (750 mg·kg-1 ·day-1 ) of paracetamol (acetaminophen), previously treated with selective CB1 (ACEA) and CB2 (JWH015) agonists (10 mg·kg-1 ), or lacking CB1 and CB2 receptors. KEY RESULTS Acute paracetamol increased the expression of CB2 , ABHD6 and COX-2, while repeated paracetamol increased that of CB1 and COX-2 and decreased that of DAGLβ. Both acute paracetamol and repeated paracetamol decreased the liver content of acylglycerols (2-AG, 2-LG and 2-OG). Human liver samples from a patient suffering APAP hepatotoxicity confirmed CB1 and CB2 increments. Acute paracetamol-exposed CB2 KO mice had higher expression of the fibrogenic αSMA and the cytokine IL-6 and lower apoptotic cleaved caspase 3. CB1 deficiency enhanced the repeated APAP-induced increases in αSMA and cleaved caspase 3 and blocked those of CYP2E1, TNF-α, the chemokine CCL2 and the circulating γ-glutamyltransferase (γGT). Although JWH015 reduced the expression of αSMA and TNF-α in acute paracetamol, ACEA increased the expression of cleaved caspase 3 and CCL2 in repeated paracetamol. CONCLUSION AND IMPLICATIONS The differential role of CB1 versus CB2 receptors on inflammatory/fibrogenic factors related to paracetamol-induced hepatotoxicity should be considered for designing alternative therapies against DILI.
Collapse
Affiliation(s)
- Patricia Rivera
- Department of Endocrinology, Fundación Investigación Biomédica del Hospital Infantil Universitario Niño Jesús, Instituto de Investigación Biomédica la Princesa, Madrid, Spain.,UGC Salud Mental, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
| | - Antonio Vargas
- UGC Salud Mental, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
| | - Antoni Pastor
- Farmacología Integrada y Neurociencia de Sistemas, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Anna Boronat
- Farmacología Integrada y Neurociencia de Sistemas, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Antonio Jesús López-Gambero
- UGC Salud Mental, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
| | - Laura Sánchez-Marín
- UGC Salud Mental, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
| | - Dina Medina-Vera
- UGC Salud Mental, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
| | - Antonia Serrano
- UGC Salud Mental, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
| | - Francisco Javier Pavón
- UGC Salud Mental, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain.,UGC Corazón, Hospital Universitario Virgen de la Victoria, IBIMA, Universidad de Málaga, Málaga, Spain
| | - Rafael de la Torre
- Farmacología Integrada y Neurociencia de Sistemas, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Ekaitz Agirregoitia
- Department of Physiology, Faculty of Medicine and Nursing, UPV/EHU, Leioa, Spain
| | - María Isabel Lucena
- Servicio de Farmacología Clínica, Hospital Universitario Virgen de la Victoria, IBIMA, Universidad de Málaga, Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- UGC Salud Mental, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
| | - Juan Decara
- UGC Salud Mental, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
| | - Juan Suárez
- UGC Salud Mental, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
| |
Collapse
|
5
|
Roles of the Hepatic Endocannabinoid and Apelin Systems in the Pathogenesis of Liver Fibrosis. Cells 2019; 8:cells8111311. [PMID: 31653030 PMCID: PMC6912778 DOI: 10.3390/cells8111311] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/17/2019] [Accepted: 10/23/2019] [Indexed: 12/11/2022] Open
Abstract
Hepatic fibrosis is the consequence of an unresolved wound healing process in response to chronic liver injury and involves multiple cell types and molecular mechanisms. The hepatic endocannabinoid and apelin systems are two signalling pathways with a substantial role in the liver fibrosis pathophysiology-both are upregulated in patients with advanced liver disease. Endogenous cannabinoids are lipid-signalling molecules derived from arachidonic acid involved in the pathogenesis of cardiovascular dysfunction, portal hypertension, liver fibrosis, and other processes associated with hepatic disease through their interactions with the CB1 and CB2 receptors. Apelin is a peptide that participates in cardiovascular and renal functions, inflammation, angiogenesis, and hepatic fibrosis through its interaction with the APJ receptor. The endocannabinoid and apelin systems are two of the multiple cell-signalling pathways involved in the transformation of quiescent hepatic stellate cells into myofibroblast like cells, the main matrix-producing cells in liver fibrosis. The mechanisms underlying the control of hepatic stellate cell activity are coincident despite the marked dissimilarities between the endocannabinoid and apelin signalling pathways. This review discusses the current understanding of the molecular and cellular mechanisms by which the hepatic endocannabinoid and apelin systems play a significant role in the pathophysiology of liver fibrosis.
Collapse
|
6
|
Shmarakov IO, Jiang H, Liu J, Fernandez EJ, Blaner WS. Hepatic stellate cell activation: A source for bioactive lipids. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:629-642. [PMID: 30735856 DOI: 10.1016/j.bbalip.2019.02.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 01/30/2019] [Accepted: 02/03/2019] [Indexed: 02/06/2023]
Abstract
Hepatic stellate cells (HSCs) are non-parenchymal liver cells that characteristically contain multiple retinoid (vitamin A)-containing lipid droplets. In this study, we addressed the metabolic fate of non-retinoid lipids originating from lipid droplet loss during HSCs activation. UPLC/MS/MS and qRT-PCR were used to monitor the lipid composition and mRNA expression of selected genes regulating lipid metabolism in freshly isolated, overnight-, 3- and 7-day cultures or primary mouse HSCs. A preferential accumulation of specific C20-C24 fatty acid species, especially arachidonic (C20:4) and docosahexaenoic acids (C22:6), was revealed in culture-activated HSCs along with an upregulation of transcription of fatty acid desaturases (Scd1, Scd2) and elongases (Elovl5, Elovl6). This was accompanied with an enrichment of activated HSCs with 36:4 and 38:4 phosphatidylcholine species containing polyunsaturated fatty acids and associated accumulation of selective lipid mediators, including endocannabinoids and related N-acylethanolamides, as well as ceramides. An increase in 2-arachidonoylglycerol and N-arachydonoylethanolamide concentrations was observed along with an upregulation of Daglα mRNA expression in HSCs during culture activation. N-palmitoylethanolamide was identified as the most abundant endocannabinoid-like species in activated HSCs. An increase in total ceramide levels and enrichment with N-palmitoyl (C16:0), N-tetracosenoyl (C24:1), N-tetracosanoyl (C24:0) and N-docosanoyl (C22:0) ceramides was detected in activated HSC cultures and was preceded by increased mRNA expression of ceramide synthesizing enzymes (CerS2, CerS5 and Smpd1). Our data suggest an active redistribution of non-retinoid lipids in HSCs underlying the formation of low abundance, highly bioactive lipid species that may affect signaling during HSC activation, as well as extracellularly within the liver.
Collapse
Affiliation(s)
- Igor O Shmarakov
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, 630 West 168(th) Street, New York, NY 10032, USA.
| | - Hongfeng Jiang
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, 630 West 168(th) Street, New York, NY 10032, USA
| | - Jing Liu
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, 630 West 168(th) Street, New York, NY 10032, USA
| | - Elias J Fernandez
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN 37916, USA
| | - William S Blaner
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, 630 West 168(th) Street, New York, NY 10032, USA
| |
Collapse
|
7
|
Impellizzeri D, Siracusa R, Cordaro M, Crupi R, Peritore AF, Gugliandolo E, D'Amico R, Petrosino S, Evangelista M, Di Paola R, Cuzzocrea S. N-Palmitoylethanolamine-oxazoline (PEA-OXA): A new therapeutic strategy to reduce neuroinflammation, oxidative stress associated to vascular dementia in an experimental model of repeated bilateral common carotid arteries occlusion. Neurobiol Dis 2019; 125:77-91. [PMID: 30660740 DOI: 10.1016/j.nbd.2019.01.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/12/2018] [Accepted: 01/15/2019] [Indexed: 10/27/2022] Open
Abstract
AIM Recent studies revealed that pharmacological modulation of NAE-hydrolyzing acid amidase (NAAA) can be achieved with PEA oxazoline (PEA-OXA). Hence, the aim of the present work was to thoroughly evaluate the anti-inflammatory and neuroprotective effects of PEA-OXA in an experimental model of vascular dementia (VaD) induced by bilateral carotid arteries occlusion. At 24 h after VaD induction, animals were orally administered with 10 mg/kg of PEA-OXA daily for 15 days. RESULTS Brain tissues were handled for histological, immunohistochemical, western blot, and immunofluorescence analysis. PEA-OXA treatment evidently reduced the histological alterations and neuronal death induced by VaD and additionally improved behavioral deficits. Further, PEA-OXA decreased GFAP and Iba-1, markers of astrocytes, and microglia activation, as well as increased MAP-2, a marker of neuron development. Moreover, PEA-OXA reduced oxidative stress, modulated Nrf2-mediated antioxidant response, and inhibited the apoptotic process. INNOVATION Some drugs may demonstrate their healing potential by regulating neuroinflammation, rather than by their habitually attributed actions only. Palmitoylethanolamide (PEA) is a prototype ALIAmide, well-known for its analgesic, anti-inflammatory, and neuroprotective properties. The inhibition of PEA degradation by targeting NAAA, its catabolic enzyme, is a different approach for treating neuroinflammation. This research offers new insight into the mechanism of PEA-OXA-induced neuroprotection. CONCLUSION Thus, the modulation of intracellular NAAA by PEA-OXA could offer a novel means of controlling neuroinflammatory conditions associated with VaD.
Collapse
Affiliation(s)
- Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Marika Cordaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Rosalia Crupi
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Enrico Gugliandolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Ramona D'Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Stefania Petrosino
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078, Pozzuoli, Napoli, Italy; Epitech Group SpA, Via Einaudi 13, 35030, Saccolongo, Padova, Italy
| | - Maurizio Evangelista
- Institute of Anaesthesiology and Reanimation, Catholic University of the Sacred Heart, Rome, Italy
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy; Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine,Saint Louis, USA.
| |
Collapse
|
8
|
2-Pentadecyl-2-Oxazoline Reduces Neuroinflammatory Environment in the MPTP Model of Parkinson Disease. Mol Neurobiol 2018; 55:9251-9266. [PMID: 29656363 DOI: 10.1007/s12035-018-1064-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/03/2018] [Indexed: 12/12/2022]
Abstract
Current pharmacological management of Parkinson disease (PD) does not provide for disease modification, but addresses only symptomatic features. Here, we explore a new approach to neuroprotection based on the use of 2-pentadecyl-2-oxazoline (PEA-OXA), the oxazoline derivative of the fatty acid amide signaling molecule palmitoylethanolamide (PEA), in an experimental model of PD. Daily oral treatment with PEA-OXA (10 mg/kg) significantly reduced behavioral impairments and neuronal cell degeneration of the dopaminergic tract induced by four intraperitoneal injections of the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on 8-week-old male C57 mice. Moreover, PEA-OXA treatment prevented dopamine depletion, increased tyrosine hydroxylase and dopamine transporter activities, and decreased α-synuclein aggregation in neurons. PEA-OXA treatment also diminished nuclear factor-κB traslocation, cyclooxygenase-2, and inducible nitric oxide synthase expression and through upregulation of the nuclear factor E2-related factor 2 pathway, induced activation of Mn-superoxide dismutase and heme oxygenase-1. Further, PEA-OXA modulated microglia and astrocyte activation and preserved microtubule-associated protein-2 alterations. In conclusion, pharmacological activation of nuclear factor E2-related factor 2 pathways with PEA-OXA may be effective in the future therapy of PD.
Collapse
|
9
|
McIntosh AL, Martin GG, Huang H, Landrock D, Kier AB, Schroeder F. Δ 9-Tetrahydrocannabinol induces endocannabinoid accumulation in mouse hepatocytes: antagonism by Fabp1 gene ablation. J Lipid Res 2018; 59:646-657. [PMID: 29414765 PMCID: PMC5880504 DOI: 10.1194/jlr.m082644] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/03/2018] [Indexed: 01/06/2023] Open
Abstract
Phytocannabinoids, such as Δ9-tetrahydrocannabinol (THC), bind and activate cannabinoid (CB) receptors, thereby "piggy-backing" on the same pathway's endogenous endocannabinoids (ECs). The recent discovery that liver fatty acid binding protein-1 (FABP1) is the major cytosolic "chaperone" protein with high affinity for both Δ9-THC and ECs suggests that Δ9-THC may alter hepatic EC levels. Therefore, the impact of Δ9-THC or EC treatment on the levels of endogenous ECs, such as N-arachidonoylethanolamide (AEA) and 2-arachidonoylglycerol (2-AG), was examined in cultured primary mouse hepatocytes from WT and Fabp1 gene-ablated (LKO) mice. Δ9-THC alone or 2-AG alone significantly increased AEA and especially 2-AG levels in WT hepatocytes. LKO alone markedly increased AEA and 2-AG levels. However, LKO blocked/diminished the ability of Δ9-THC to further increase both AEA and 2-AG. In contrast, LKO potentiated the ability of exogenous 2-AG to increase the hepatocyte level of AEA and 2-AG. These and other data suggest that Δ9-THC increases hepatocyte EC levels, at least in part, by upregulating endogenous AEA and 2-AG levels. This may arise from Δ9-THC competing with AEA and 2-AG binding to FABP1, thereby decreasing targeting of bound AEA and 2-AG to the degradative enzymes, fatty acid amide hydrolase and monoacylglyceride lipase, to decrease hydrolysis within hepatocytes.
Collapse
Affiliation(s)
- Avery L McIntosh
- Departments of Physiology and Pharmacology Texas A&M University, College Station, TX 77843
| | - Gregory G Martin
- Departments of Physiology and Pharmacology Texas A&M University, College Station, TX 77843
| | - Huan Huang
- Departments of Physiology and Pharmacology Texas A&M University, College Station, TX 77843
| | - Danilo Landrock
- Departments of Pathobiology, Texas A&M University, College Station, TX 77843
| | - Ann B Kier
- Departments of Pathobiology, Texas A&M University, College Station, TX 77843
| | - Friedhelm Schroeder
- Departments of Physiology and Pharmacology Texas A&M University, College Station, TX 77843.
| |
Collapse
|
10
|
Rivera P, Pastor A, Arrabal S, Decara J, Vargas A, Sánchez-Marín L, Pavón FJ, Serrano A, Bautista D, Boronat A, de la Torre R, Baixeras E, Lucena MI, de Fonseca FR, Suárez J. Acetaminophen-Induced Liver Injury Alters the Acyl Ethanolamine-Based Anti-Inflammatory Signaling System in Liver. Front Pharmacol 2017; 8:705. [PMID: 29056914 PMCID: PMC5635604 DOI: 10.3389/fphar.2017.00705] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 09/21/2017] [Indexed: 12/11/2022] Open
Abstract
Protective mechanisms against drug-induced liver injury are actively being searched to identify new therapeutic targets. Among them, the anti-inflammatory N-acyl ethanolamide (NAE)-peroxisome proliferators activated receptor alpha (PPARα) system has gained much interest after the identification of its protective role in steatohepatitis and liver fibrosis. An overdose of paracetamol (APAP), a commonly used analgesic/antipyretic drug, causes hepatotoxicity, and it is being used as a liver model. In the present study, we have analyzed the impact of APAP on the liver NAE-PPARα system. A dose-response (0.5-5-10-20 mM) and time-course (2-6-24 h) study in human HepG2 cells showed a biphasic response, with a decreased PPARα expression after 6-h APAP incubation followed by a generalized increase of NAE-PPARα system-related components (PPARα, NAPE-PLD, and FAAH), including the NAEs oleoyl ethanolamide (OEA) and docosahexaenoyl ethanolamide, after a 24-h exposure to APAP. These results were partially confirmed in a time-course study of mice exposed to an acute dose of APAP (750 mg/kg). The gene expression levels of Pparα and Faah were decreased after 6 h of treatment and, after 24 h, the gene expression levels of Nape-pld and Faah, as well as the liver levels of OEA and palmitoyl ethanolamide, were increased. Repeated APAP administration (750 mg/kg/day) up to 4 days also decreased the expression levels of PPARα and FAAH, and increased the liver levels of NAEs. A resting period of 15 days completely restored these impairments. Liver immunohistochemistry in a well-characterized human case of APAP hepatotoxicity confirmed PPARα and FAAH decrements. Histopathological and hepatic damage (Cyp2e1, Caspase3, αSma, Tnfα, and Mcp1)-related alterations observed after repeated APAP administration were aggravated in the liver of Pparα-deficient mice. Our results demonstrate that the anti-inflammatory NAE-PPARα signaling system is implicated in liver toxicity after exposure to APAP overdose, and may contribute to its recovery through a long-term time-dependent response.
Collapse
Affiliation(s)
- Patricia Rivera
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain.,Department of Endocrinology, Fundación Investigación Biomédica del Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Antoni Pastor
- Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain.,CIBER Fisiopatología Obesidad y Nutrición, Instituto Salud Carlos III, Madrid, Spain
| | - Sergio Arrabal
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Juan Decara
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Antonio Vargas
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Laura Sánchez-Marín
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Francisco J Pavón
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Antonia Serrano
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Dolores Bautista
- Unidad de Gestión Clínica de Anatomía Patológica, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Anna Boronat
- Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain
| | - Rafael de la Torre
- Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain.,CIBER Fisiopatología Obesidad y Nutrición, Instituto Salud Carlos III, Madrid, Spain
| | - Elena Baixeras
- Departamento de Especialidades Quirúrgicas, Bioquímica e Inmunología, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Málaga, Spain
| | - M Isabel Lucena
- Servicio de Farmacología Clínica, Unidad de Gestión Clínica de Aparato Digestivo, Instituto de Investigación Biomédica de Málaga, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto Salud Carlos III, Madrid, Spain
| | - Fernando R de Fonseca
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Juan Suárez
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain.,Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
11
|
Poursharifi P, Madiraju SRM, Prentki M. Monoacylglycerol signalling and ABHD6 in health and disease. Diabetes Obes Metab 2017; 19 Suppl 1:76-89. [PMID: 28880480 DOI: 10.1111/dom.13008] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 04/24/2017] [Accepted: 05/11/2017] [Indexed: 12/14/2022]
Abstract
Lipid metabolism dysregulation underlies chronic pathologies such as obesity, diabetes and cancer. Besides their role in structure and energy storage, lipids are also important signalling molecules regulating multiple biological functions. Thus, understanding the precise lipid metabolism enzymatic steps that are altered in some pathological conditions is helpful for designing better treatment strategies. Several monoacylglycerol (MAG) species are only recently being recognized as signalling lipid molecules in different tissues. Recent studies indicated the importance of the ubiquitously expressed serine hydrolase α/β-hydrolase domain 6 (ABHD6), which is a MAG hydrolase, in regulating signalling competent MAG in both central and peripheral tissues. The central and peripheral function of the endocannabinoid 2-arachidonoylglycerol, which is a 2-MAG, and its breakdown by both ABHD6 and classical MAG lipase has been well documented. ABHD6 and its substrate MAG appear to be involved in the regulation of various physiological and pathological processes including insulin secretion, adipose browning, food intake, neurotransmission, autoimmune disorders, neurological and metabolic diseases as well as cancer. Diverse cellular targets such as mammalian unc13-1 (Munc13-1), PPARs, GPR119 and CB1/2 receptors, for MAG-mediated signalling processes have been proposed in different cell types. The purpose of this review is to provide a comprehensive summary of the current state of knowledge regarding ABHD6/MAG signalling and its possible therapeutic implications.
Collapse
Affiliation(s)
- Pegah Poursharifi
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, CRCHUM, Montreal, Canada
| | - Sri Ramachandra Murthy Madiraju
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, CRCHUM, Montreal, Canada
| | - Marc Prentki
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, CRCHUM, Montreal, Canada
| |
Collapse
|
12
|
Impellizzeri D, Cordaro M, Bruschetta G, Siracusa R, Crupi R, Esposito E, Cuzzocrea S. N-Palmitoylethanolamine-Oxazoline as a New Therapeutic Strategy to Control Neuroinflammation: Neuroprotective Effects in Experimental Models of Spinal Cord and Brain Injury. J Neurotrauma 2017; 34:2609-2623. [PMID: 28095731 DOI: 10.1089/neu.2016.4808] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Modulation of N-acylethanolamine-hydrolyzing acid amidase (NAAA) represents a potential alternative strategy in the treatment of neuroinflammation. Recent studies showed that pharmacological modulation of NAAA could be achieved with the oxazoline of palmitoylethanolamide (PEA; PEA-OXA). The aim of this study was to evaluate the neuroprotective effects of PEA-OXA in the secondary neuroinflammatory events induced by spinal and brain trauma in mice. Animals were subjected to spinal cord and brain injury models and PEA-OXA (10 mg/kg) was administered both intraperitoneally and orally 1 h and 6 h after trauma. PEA-OXA treatment markedly reduced the histological alterations induced by spinal cord injury (SCI) and traumatic brain injury (TBI) and ameliorated the motor function and behavioral deficits, as well. In addition, the expression of neurotrophic factors, such as glial cell line-derived neurotrophic factor, brain-derived neurotrophic factor, and neurotrophin-3 were increased by PEA-OXA treatment. Moreover, PEA-OXA also significantly decreased glial fibrillary acidic protein hyperexpression, the nuclear translocation of nuclear factor (NF)-κB, phosphorylation of Ser536 on the NF-κB subunit p65, and degradation of IκB-α, as well as diminished the expression of pro-inflammatory mediators such as cyclooxygenase-2 (COX-2), inducible nitric oxide synthase, tumor necrosis factor (TNF)-α and interleukin (IL)-1β. The modulation of intracellular NAAA by PEA-OXA treatment could thus represent a novel therapy to control neuroinflammatory conditions associated with SCI and TBI.
Collapse
Affiliation(s)
- Daniela Impellizzeri
- 1 Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina , Messina, Italy
| | - Marika Cordaro
- 1 Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina , Messina, Italy
| | - Giuseppe Bruschetta
- 1 Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina , Messina, Italy
| | - Rosalba Siracusa
- 1 Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina , Messina, Italy
| | - Rosalia Crupi
- 1 Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina , Messina, Italy
| | - Emanuela Esposito
- 1 Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina , Messina, Italy
| | - Salvatore Cuzzocrea
- 1 Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina , Messina, Italy .,2 Manchester Biomedical Research Centre, Manchester Royal Infirmary, School of Medicine, University of Manchester , United Kingdom
| |
Collapse
|
13
|
Yang CY, Chau YP, Chen A, Lee OKS, Tarng DC, Yang AH. Targeting cannabinoid signaling for peritoneal dialysis-induced oxidative stress and fibrosis. World J Nephrol 2017; 6:111-118. [PMID: 28540200 PMCID: PMC5424432 DOI: 10.5527/wjn.v6.i3.111] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/20/2017] [Accepted: 02/20/2017] [Indexed: 02/06/2023] Open
Abstract
Long-term exposure to bioincompatible peritoneal dialysis (PD) solutions frequently results in peritoneal fibrosis and ultrafiltration failure, which limits the life-long use of and leads to the cessation of PD therapy. Therefore, it is important to elucidate the pathogenesis of peritoneal fibrosis in order to design therapeutic strategies to prevent its occurrence. Peritoneal fibrosis is associated with a chronic inflammatory status as well as an elevated oxidative stress (OS) status. Beyond uremia per se, OS also results from chronic exposure to high glucose load, glucose degradation products, advanced glycation end products, and hypertonic stress. Therapy targeting the cannabinoid (CB) signaling pathway has been reported in several chronic inflammatory diseases with elevated OS. We recently reported that the intra-peritoneal administration of CB receptor ligands, including CB1 receptor antagonists and CB2 receptor agonists, ameliorated dialysis-related peritoneal fibrosis. As targeting the CB signaling pathway has been reported to be beneficial in attenuating the processes of several chronic inflammatory diseases, we reviewed the interaction among the cannabinoid system, inflammation, and OS, through which clinicians ultimately aim to prolong the peritoneal survival of PD patients.
Collapse
|
14
|
Biernacki M, Łuczaj W, Gęgotek A, Toczek M, Bielawska K, Skrzydlewska E. Crosstalk between liver antioxidant and the endocannabinoid systems after chronic administration of the FAAH inhibitor, URB597, to hypertensive rats. Toxicol Appl Pharmacol 2016; 301:31-41. [PMID: 27086176 DOI: 10.1016/j.taap.2016.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/17/2016] [Accepted: 04/08/2016] [Indexed: 02/07/2023]
Abstract
Hypertension is accompanied by perturbations to the endocannabinoid and antioxidant systems. Thus, potential pharmacological treatments for hypertension should be examined as modulators of these two metabolic systems. The aim of this study was to evaluate the effects of chronic administration of the fatty acid amide hydrolase (FAAH) inhibitor [3-(3-carbamoylphenyl)phenyl]N-cyclohexylcarbamate (URB597) on the endocannabinoid system and on the redox balance in the livers of DOCA-salt hypertensive rats. Hypertension caused an increase in the levels of endocannabinoids [anandamide (AEA), 2-arachidonoyl-glycerol (2-AG) and N-arachidonoyl-dopamine (NADA)] and CB1 receptor and the activities of FAAH and monoacylglycerol lipase (MAGL). These effects were accompanied by an increase in the level of reactive oxygen species (ROS), a decrease in antioxidant activity/level, enhanced expression of transcription factor Nrf2 and changes to Nrf2 activators and inhibitors. Moreover, significant increases in lipid, DNA and protein oxidative modifications, which led to enhanced levels of proapoptotic caspases, were also observed. URB597 administration to the hypertensive rats resulted in additional increases in the levels of AEA, NADA and the CB1 receptor, as well as decreases in vitamin E and C levels, glutathione peroxidase and glutathione reductase activities and Nrf2 expression. Thus, after URB597 administration, oxidative modifications of cellular components were increased, while the inflammatory response was reduced. This study revealed that chronic treatment of hypertensive rats with URB597 disrupts the endocannabinoid system, which causes an imbalance in redox status. This imbalance increases the levels of electrophilic lipid peroxidation products, which later participate in metabolic disturbances in liver homeostasis.
Collapse
Affiliation(s)
- Michał Biernacki
- Department of Analytical Chemistry Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland
| | - Wojciech Łuczaj
- Department of Analytical Chemistry Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland
| | - Agnieszka Gęgotek
- Department of Analytical Chemistry Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland
| | - Marek Toczek
- Department of Experimental Physiology and Pathophysiology Medical University of Bialystok, Mickiewicza 2A, 15-222 Bialystok, Poland
| | - Katarzyna Bielawska
- Department of Analytical Chemistry Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland.
| |
Collapse
|
15
|
Impellizzeri D, Cordaro M, Bruschetta G, Crupi R, Pascali J, Alfonsi D, Marcolongo G, Cuzzocrea S. 2-pentadecyl-2-oxazoline: Identification in coffee, synthesis and activity in a rat model of carrageenan-induced hindpaw inflammation. Pharmacol Res 2016; 108:23-30. [PMID: 27083308 DOI: 10.1016/j.phrs.2016.04.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/11/2016] [Accepted: 04/11/2016] [Indexed: 12/18/2022]
Abstract
N-acylethanolamines (NAEs) comprise a family of bioactive lipid molecules present in animal and plant tissues, with N-palmitoylethanolamine (PEA) having received much attention owing to its anti-inflammatory, analgesic and neuroprotective activities. 2-Pentadecyl-2-oxazoline (PEA-OXA), the oxazoline of PEA, reportedly modulates activity of N-acylethanolamine-hydrolyzing acid amidase (NAAA), which catabolizes PEA. Because PEA is produced on demand and exerts pleiotropic effects on non-neuronal cells implicated in neuroinflammation, modulating the specific amidases for NAEs (NAAA in particular) could be a way to preserve PEA role in maintaining cellular homeostasis through its rapid on-demand synthesis and equally rapid degradation. This study provides the first description of PEA-OXA in both green and roasted coffee beans and Moka infusions, and its synthesis. In an established model of carrageenan (CAR)-induced rat paw inflammation, PEA-OXA was orally active in limiting histological damage and thermal hyperalgesia 6h after CAR intraplantar injection in the right hindpaw and the accumulation of infiltrating inflammatory cells. PEA-OXA appeared to be more potent compared to ultramicronized PEA given orally at the same dose (10mg/kg). PEA-OXA markedly reduced also the increase in hindpaw myeloperoxidase activity, an index of polymorphonuclear cell accumulation in inflammatory tissues. NAAA modulators like PEA-OXA may serve to maximize availability of NAEs (e.g. PEA) while providing for recycling of the NAE components for further resynthesis.
Collapse
Affiliation(s)
- Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Marika Cordaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Giuseppe Bruschetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Rosalia Crupi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Jennifer Pascali
- dto Labs Analytical Excellence Center, Agilent Technologies, Via Fratta 25, 31023, Resana (TV), Italy
| | | | | | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| |
Collapse
|
16
|
Cyclooxygenase-2 contributes to the selective induction of cell death by the endocannabinoid 2-arachidonoyl glycerol in hepatic stellate cells. Biochem Biophys Res Commun 2016; 470:678-684. [DOI: 10.1016/j.bbrc.2016.01.083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 01/14/2016] [Indexed: 11/18/2022]
|
17
|
Skaper SD, Facci L, Barbierato M, Zusso M, Bruschetta G, Impellizzeri D, Cuzzocrea S, Giusti P. N-Palmitoylethanolamine and Neuroinflammation: a Novel Therapeutic Strategy of Resolution. Mol Neurobiol 2015; 52:1034-42. [PMID: 26055231 DOI: 10.1007/s12035-015-9253-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Indexed: 02/06/2023]
Abstract
Inflammation is fundamentally a protective cellular response aimed at removing injurious stimuli and initiating the healing process. However, when prolonged, it can override the bounds of physiological control and becomes destructive. Inflammation is a key element in the pathobiology of chronic pain, neurodegenerative diseases, stroke, spinal cord injury, and neuropsychiatric disorders. Glia, key players in such nervous system disorders, are not only capable of expressing a pro-inflammatory phenotype but respond also to inflammatory signals released from cells of immune origin such as mast cells. Chronic inflammatory processes may be counteracted by a program of resolution that includes the production of lipid mediators endowed with the capacity to switch off inflammation. These naturally occurring lipid signaling molecules include the N-acylethanolamines, N-arachidonoylethanolamine (an endocannabinoid), and its congener N-palmitoylethanolamine (palmitoylethanolamide or PEA). PEA may play a role in maintaining cellular homeostasis when faced with external stressors provoking, for example, inflammation. PEA is efficacious in mast cell-mediated models of neurogenic inflammation and neuropathic pain and is neuroprotective in models of stroke, spinal cord injury, traumatic brain injury, and Parkinson disease. PEA in micronized/ultramicronized form shows superior oral efficacy in inflammatory pain models when compared to naïve PEA. Intriguingly, while PEA has no antioxidant effects per se, its co-ultramicronization with the flavonoid luteolin is more efficacious than either molecule alone. Inhibiting or modulating the enzymatic breakdown of PEA represents a complementary therapeutic approach to treat neuroinflammation. This review is intended to discuss the role of mast cells and glia in neuroinflammation and strategies to modulate their activation based on leveraging natural mechanisms with the capacity for self-defense against inflammation.
Collapse
Affiliation(s)
- Stephen D Skaper
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo "Egidio Meneghetti" 2, 35131, Padua, Italy,
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
The physiological and pathophysiological functions of the endocannabinoid system have been studied extensively using transgenic and targeted knockout mouse models. The first gene deletions of the cannabinoid CB(1) receptor were described in the late 1990s, soon followed by CB(2) and FAAH mutations in early 2000. These mouse models helped to elucidate the fundamental role of endocannabinoids as retrograde transmitters in the CNS and in the discovery of many unexpected endocannabinoid functions, for example, in the skin, bone and liver. We now have knockout mouse models for almost every receptor and enzyme of the endocannabinoid system. Conditional mutant mice were mostly developed for the CB(1) receptor, which is widely expressed on many different neurons, astrocytes and microglia, as well as on many cells outside the CNS. These mouse strains include "floxed" CB(1) alleles and mice with a conditional re-expression of CB(1). The availability of these mice made it possible to decipher the function of CB(1) in specific neuronal circuits and cell populations or to discriminate between central and peripheral effects. Many of the genetic mouse models were also used in combination with viral expression systems. The purpose of this review is to provide a comprehensive overview of the existing genetic models and to summarize some of the most important discoveries that were made with these animals.
Collapse
MESH Headings
- Amidohydrolases/genetics
- Amidohydrolases/metabolism
- Animals
- Endocannabinoids/genetics
- Endocannabinoids/metabolism
- Gene Deletion
- Gene Expression Regulation
- Genotype
- Humans
- Hydrolysis
- Mice, Knockout
- Mice, Mutant Strains
- Monoacylglycerol Lipases/genetics
- Monoacylglycerol Lipases/metabolism
- Mutation
- Phenotype
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
- Signal Transduction/genetics
Collapse
Affiliation(s)
- Andreas Zimmer
- Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany.
| |
Collapse
|