1
|
Li Y, Jin M, Guo D, Shen S, Lu K, Pan R, Sun L, Zhang H, Shao J, Pan G. Unveiling the immunogenicity of allogeneic mesenchymal stromal cells: Challenges and strategies for enhanced therapeutic efficacy. Biomed Pharmacother 2024; 180:117537. [PMID: 39405918 DOI: 10.1016/j.biopha.2024.117537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 11/14/2024] Open
Abstract
Mesenchymal stromal cells (MSCs) exhibit significant potential in the context of cell therapy because of their capacity to perform a range of interconnected functions in damaged tissues, including immune modulation, hematopoietic support, and tissue regeneration. MSCs are hypoimmunogenic because of their diminished expression of major histocompatibility molecules, absence of costimulatory molecules, and presence of coinhibitory molecules. While autologous MSCs reduce the risk of rejection and infection, variability in cell numbers and proliferation limits their potential applications. Conversely, allogeneic MSCs (allo-MSCs) possess broad clinical applications unconstrained by donor physiology. Nonetheless, preclinical and clinical investigations highlight that transplanted allo-MSCs are subject to immune attack from recipients. These cells exhibit anti-inflammatory and proinflammatory phenotypes contingent on the microenvironment. Notably, the proinflammatory phenotype features enhanced immunogenicity and diminished immunosuppression, potentially triggering allogeneic immune reactions that impede long-term clinical efficacy. Consequently, preserving the low immunogenicity of allo-MSCs in vivo and mitigating immune rejection in diverse microenvironments represent crucial challenges for the widespread clinical application of MSCs. In this review, we elucidate the immune regulation of allo-MSCs, specifically focusing on two distinct subgroups, MSC1 and MSC2, that exhibit varying polarization states and immunogenicity. We discuss the factors and underlying mechanisms that induce MSC immunogenicity and polarization, highlighting the crucial role of major histocompatibility complex class I/II molecules in rejection post-transplantation. Additionally, we summarize the immunogenic regulatory targets and applications of allo-MSCs and outline strategies to address challenges in this promising field, aiming to enhance allo-MSC therapeutic efficacy for patients.
Collapse
Affiliation(s)
- Yuanhui Li
- Department of Oncological Surgery, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China
| | - Mengting Jin
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Dongyang Guo
- Hangzhou City University, School of Medicine, 50 Huzhou Street, Hangzhou, China
| | - Shuang Shen
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Kaining Lu
- Breast Disease Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ruolang Pan
- Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou, China
| | - Li Sun
- Department of Oncological Surgery, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China
| | - Hongchen Zhang
- Department of Gatroenterology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, No. 261 HuanSha Road, Hangzhou, China.
| | - Jianzhong Shao
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Gang Pan
- Department of Oncological Surgery, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China.
| |
Collapse
|
2
|
Barrère-Lemaire S, Vincent A, Jorgensen C, Piot C, Nargeot J, Djouad F. Mesenchymal stromal cells for improvement of cardiac function following acute myocardial infarction: a matter of timing. Physiol Rev 2024; 104:659-725. [PMID: 37589393 DOI: 10.1152/physrev.00009.2023] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/05/2023] [Accepted: 08/16/2023] [Indexed: 08/18/2023] Open
Abstract
Acute myocardial infarction (AMI) is the leading cause of cardiovascular death and remains the most common cause of heart failure. Reopening of the occluded artery, i.e., reperfusion, is the only way to save the myocardium. However, the expected benefits of reducing infarct size are disappointing due to the reperfusion paradox, which also induces specific cell death. These ischemia-reperfusion (I/R) lesions can account for up to 50% of final infarct size, a major determinant for both mortality and the risk of heart failure (morbidity). In this review, we provide a detailed description of the cell death and inflammation mechanisms as features of I/R injury and cardioprotective strategies such as ischemic postconditioning as well as their underlying mechanisms. Due to their biological properties, the use of mesenchymal stromal/stem cells (MSCs) has been considered a potential therapeutic approach in AMI. Despite promising results and evidence of safety in preclinical studies using MSCs, the effects reported in clinical trials are not conclusive and even inconsistent. These discrepancies were attributed to many parameters such as donor age, in vitro culture, and storage time as well as injection time window after AMI, which alter MSC therapeutic properties. In the context of AMI, future directions will be to generate MSCs with enhanced properties to limit cell death in myocardial tissue and thereby reduce infarct size and improve the healing phase to increase postinfarct myocardial performance.
Collapse
Affiliation(s)
- Stéphanie Barrère-Lemaire
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Université de Nice, Nice, France
| | - Anne Vincent
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Université de Nice, Nice, France
| | - Christian Jorgensen
- Institute of Regenerative Medicine and Biotherapies, Université de Montpellier, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- Centre Hospitalier Universitaire Montpellier, Montpellier, France
| | - Christophe Piot
- Département de Cardiologie Interventionnelle, Clinique du Millénaire, Montpellier, France
| | - Joël Nargeot
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Université de Nice, Nice, France
| | - Farida Djouad
- Institute of Regenerative Medicine and Biotherapies, Université de Montpellier, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- Centre Hospitalier Universitaire Montpellier, Montpellier, France
| |
Collapse
|
3
|
Xu M, He Y, Li Y, Liu K, Zhang Y, Su T, Yao Y, Jin X, Zhang X, Lu F. Combined Use of Autologous Sustained-Release Scaffold of Adipokines and Acellular Adipose Matrix to Construct Vascularized Adipose Tissue. Plast Reconstr Surg 2024; 153:348e-360e. [PMID: 37171265 DOI: 10.1097/prs.0000000000010649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
BACKGROUND Adipose tissue engineering plays a key role in the reconstruction of soft-tissue defects. The acellular adipose matrix (AAM) is a promising biomaterial for the construction of engineered adipose tissue. However, AAM lacks sufficient adipoinduction potency because of the abundant loss of matrix-bound adipokines during decellularization. METHODS An adipose-derived extracellular matrix collagen scaffold, "adipose collagen fragment" (ACF), was prepared using a novel mechanical method that provides sustained release of adipokines. Here, the authors used label-free proteomics methods to detect the protein components in AAM and ACF. In vivo, ACF was incorporated into AAM or acellular dermal matrix and implanted into nude mice to evaluate adipogenesis. Neoadipocytes, neovessels, and corresponding gene expression were evaluated. The effects of ACF on adipogenic differentiation of human adipose-derived stem cells and tube formation by human umbilical vein endothelial cells were tested in vitro. RESULTS Proteomics analysis showed that ACF contains diverse adipogenic and angiogenic proteins. ACF can release diverse adipokines and induce highly vascularized, mature adipose tissue in AAM, and even in nonadipogenic acellular dermal matrix. Higher expression of adipogenic markers peroxisome proliferator-activated receptor gamma and CCAAT/enhancer-binding protein alpha and greater numbers of tubule structures were observed in ACF-treated groups in vitro. CONCLUSION The combination of ACF and AAM could serve as a novel and promising strategy to construct mature, vascularized adipose tissue for soft-tissue reconstruction. CLINICAL RELEVANCE STATEMENT The combined use of AAM and ACF has been proven to induce a highly vascularized, mature, engineered adipose tissue in the nude mouse model, which may serve as a promising strategy for soft-tissue reconstruction.
Collapse
Affiliation(s)
- Mimi Xu
- From the Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University
| | - Yunfan He
- From the Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University
| | - Yibao Li
- From the Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University
| | - Kaiyang Liu
- From the Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University
| | - Yuchen Zhang
- From the Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University
| | - Ting Su
- From the Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University
| | - Yao Yao
- From the Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University
| | - Xiaoxuan Jin
- From the Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University
| | - Xiangdong Zhang
- From the Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University
| | - Feng Lu
- From the Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University
| |
Collapse
|
4
|
Mardomi A, Mohammadi N, Ahmadzadeh F, Abediankenari S. CTLA4-Ig alleviates the allogeneic immune responses against insulin-producing cells in a murine model of cell transplantation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3195-3206. [PMID: 37231171 DOI: 10.1007/s00210-023-02527-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 05/10/2023] [Indexed: 05/27/2023]
Abstract
The adoptive transfer of insulin-producing cells (IPCs) is one of the promising treatments for insulin-dependent diabetes mellitus. While the use of allogeneic cell resources is inevitable in the case of a series of patients, alloimmune responses are a major barrier ahead of the successful implementation of allogeneic therapeutic cells. This study is aimed at evaluating the potential of CTLA4-Ig, as an approved immunomodulatory biologic, in protecting the IPCs against allogeneic immune responses. The C57BL/6 and BALB/c mice were used to establish a murine model of allogeneic cell transplantation. The mouse bone-marrow-derived mesenchymal stem cells were in vitro differentiated into IPCs, and the in vitro as well as the in vivo immune responses against IPCs were evaluated in the presence and absence of CTLA4-Ig. The allogeneic IPCs induced the in vitro activation of CD4+ T-cells, IFN-γ release, and the proliferation of lymphocytes, which all were controlled by CTLA4-Ig. Upon in vivo transfer of IPC into an allogeneic host, the splenic CD4+ and CD8+ T-cells exhibited a significant activation, and there was a significant donor-specific antibody response. Either of the mentioned cellular and humoral responses were modulated by a CTLA4-Ig regimen. This regimen also reduced the infiltration of CD3+ T-cells into the IPC injection site along with the improved overall survival of diabetic mice. CTLA4-Ig could be a complementary therapy for improving the efficacy of allogeneic IPC therapy through modulating the cellular and humoral responses that can lead to prolonged durability of IPCs within an allogeneic host.
Collapse
Affiliation(s)
- Alireza Mardomi
- Department of Medical Laboratory Sciences and Microbiology, Faculty of Medical Sciences, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Nabiallah Mohammadi
- Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fatemeh Ahmadzadeh
- Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeid Abediankenari
- Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
5
|
Baldwin C, Kim J, Sivaraman S, Rao RR. Stem cell-based strategies for skeletal muscle tissue engineering. J Tissue Eng Regen Med 2022; 16:1061-1068. [PMID: 36223074 DOI: 10.1002/term.3355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 09/06/2022] [Accepted: 09/27/2022] [Indexed: 01/05/2023]
Abstract
Skeletal muscle tissue engineering has been a key area of focus over the years and has been of interest for developing regenerative strategies for injured or degenerative skeletal muscle tissue. Stem cells have gained increased attention as sources for developing skeletal muscle tissue for subsequent studies or potential treatments. Focus has been placed on understanding the molecular pathways that govern skeletal muscle formation in development to advance differentiation of stem cells towards skeletal muscle fates in vitro. Use of growth factors and transcription factors have long been the method for guiding skeletal muscle differentiation in vitro. However, further research in small molecule induced differentiation offers a xeno-free option that could result from use of animal derived factors.
Collapse
Affiliation(s)
- Christofer Baldwin
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - Johntaehwan Kim
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Srikanth Sivaraman
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - Raj R Rao
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
6
|
Skeletal Muscle Regeneration by the Exosomes of Adipose Tissue-Derived Mesenchymal Stem Cells. Curr Issues Mol Biol 2021; 43:1473-1488. [PMID: 34698065 PMCID: PMC8929094 DOI: 10.3390/cimb43030104] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 12/17/2022] Open
Abstract
Profound skeletal muscle loss can lead to severe disability and cosmetic deformities. Mesenchymal stem cell (MSC)-derived exosomes have shown potential as an effective therapeutic tool for tissue regeneration. This study aimed to determine the regenerative capacity of MSC-derived exosomes for skeletal muscle regeneration. Exosomes were isolated from human adipose tissue-derived MSCs (AD-MSCs). The effects of MSC-derived exosomes on satellite cells were investigated using cell viability, relevant genes, and protein analyses. Moreover, NOD-SCID mice were used and randomly assigned to the healthy control (n = 4), muscle defect (n = 6), and muscle defect + exosome (n = 6) groups. Muscle defects were created using a biopsy punch on the quadriceps of the hind limb. Four weeks after the surgery, the quadriceps muscles were harvested, weighed, and histologically analyzed. MSC-derived exosome treatment increased the proliferation and expression of myocyte-related genes, and immunofluorescence analysis for myogenin revealed a similar trend. Histologically, MSC-derived exosome-treated mice showed relatively preserved shapes and sizes of the muscle bundles. Immunohistochemical staining revealed greater expression of myogenin and myoblast determination protein 1 in the MSC-derived exosome-treated group. These results indicate that exosomes extracted from AD-MSCs have the therapeutic potential for skeletal muscle regeneration.
Collapse
|
7
|
IFN- γ Licensing Does Not Enhance the Reduced Immunomodulatory Potential and Migratory Ability of Differentiation-Induced Porcine Bone Marrow-Derived Mesenchymal Stem Cells in an In Vitro Xenogeneic Application. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4604856. [PMID: 34527737 PMCID: PMC8437647 DOI: 10.1155/2021/4604856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/12/2021] [Accepted: 08/14/2021] [Indexed: 01/10/2023]
Abstract
IFN-γ licensing to mesenchymal stem cells (MSCs) is applied to enhance the therapeutic potential of MSCs. However, although the features of MSCs are affected by several stimuli, little information is available on changes to the therapeutic potential of IFN-γ-licensed differentiated MSCs during xenogeneic applications. Therefore, the present study is aimed at clarifying the effects of adipogenic/osteogenic differentiation and IFN-γ licensing on the in vitro immunomodulatory and migratory properties of porcine bone marrow-derived MSCs in xenogeneic applications using human peripheral blood mononuclear cells (PBMCs). IFN-γ licensing in differentiated MSCs lowered lineage-specific gene expression but did not affect MSC-specific cell surface molecules. Although indoleamine 2,3 deoxygenase (IDO) activity and expression were increased after IFN-γ licensing in undifferentiated MSCs, they were reduced after differentiation. IFN-γ licensing to differentiated MSCs elevated the reduced IDO expression in differentiated MSCs; however, the increase was not sufficient to reach to the level achieved by undifferentiated MSCs. During a mixed lymphocyte reaction with quantification of TNF-α concentration, proliferation and activation of xenogeneic PBMCs were suppressed by undifferentiated MSCs but inhibited to a lesser extent by differentiated MSCs. IFN-γ licensing increasingly suppressed proliferation of PBMCs in undifferentiated MSCs but it was incapable of elevating the reduced immunosuppressive ability of differentiated MSCs. Migratory ability through a scratch assay and gene expression study was reduced in differentiated MSCs than their undifferentiated counterparts; IFN-γ licensing was unable to enhance the reduced migratory ability in differentiated MSCs. Similar results were found in a Transwell system with differentiated MSCs in the upper chamber toward xenogeneic PBMCs in the lower chamber, despite IFN-γ licensing increased the migratory ability of undifferentiated MSCs. Overall, IFN-γ licensing did not enhance the reduced immunomodulatory and migratory properties of differentiated MSCs in a xenogeneic application. This study provides a better understanding of the ways in which MSC therapy can be applied.
Collapse
|
8
|
Kamm JL, Riley CB, Parlane N, Gee EK, McIlwraith CW. Interactions Between Allogeneic Mesenchymal Stromal Cells and the Recipient Immune System: A Comparative Review With Relevance to Equine Outcomes. Front Vet Sci 2021; 7:617647. [PMID: 33521090 PMCID: PMC7838369 DOI: 10.3389/fvets.2020.617647] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/02/2020] [Indexed: 12/27/2022] Open
Abstract
Despite significant immunosuppressive activity, allogeneic mesenchymal stromal cells (MSCs) carry an inherent risk of immune rejection when transferred into a recipient. In naïve recipients, this immune response is initially driven by the innate immune system, an immediate reaction to the foreign cells, and later, the adaptive immune system, a delayed response that causes cell death due to recognition of specific alloantigens by host cells and antibodies. This review describes the actions of MSCs to both suppress and activate the different arms of the immune system. We then review the survival and effectiveness of the currently used allogeneic MSC treatments.
Collapse
Affiliation(s)
- J Lacy Kamm
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Christopher B Riley
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Natalie Parlane
- Hopkirk Laboratory, AgResearch, Palmerston North, New Zealand
| | - Erica K Gee
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - C Wayne McIlwraith
- Orthopaedic Research Center, C. Wayne McIlwraith Translational Medical Institute, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
9
|
Wang W, Zhao Y, Li H, Zhang Y, Jia X, Wang C, Zhu P, Wang J, Hou Y. Exosomes secreted from mesenchymal stem cells mediate the regeneration of endothelial cells treated with rapamycin by delivering pro-angiogenic microRNAs. Exp Cell Res 2020; 399:112449. [PMID: 33347856 DOI: 10.1016/j.yexcr.2020.112449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/07/2020] [Accepted: 12/16/2020] [Indexed: 01/08/2023]
Abstract
Delayed endothelial healing after drug eluting stent (DES) implantation is a critical clinical problem in treatment of coronary artery diseases. Exosomes exhibit proangiogenic potential in a variety of ischemic diseases. However, the association of exosomes with endothelial regeneration after DES implantation has been rarely reported. In this study, we aimed to investigate the therapeutic effects of mesenchymal stem cell (MSC)-derived exosomes on endothelial cells treated with rapamycin and explore the potential mechanisms of MSC-derived exosomes in promoting endothelial regeneration. Exosomes were isolated from MSCs by ultracentrifugation and identified by transmission electron microscopy, nanoparticle tracking analysis, and Western blot assay. The in vitro effects of MSC-derived exosomes on the proliferation and migration of endothelial cells treated with rapamycin were evaluated by integrated experiment, cell counting kit-8, scratch, tube formation, and transwell assays. And the apoptosis of rapamycin-induced endothelial cells loaded with MSC-derived exosomes was detected using TUNEL and Annexin-V FITC and PI double-staining assays. The microRNA (miRNA) cargo of MSC-derived exosomes was identified by high-throughput RNA sequencing. Pro-angiogenic miRNAs and key pathways were further characterized. Our results indicated that MSC-derived exosomes could be ingested into umbilical vein endothelial cells (HUVECs) and significantly enhanced cell proliferation rate, migratory and tube-forming capabilities in vitro. MSC-derived exosomes also inhibited the apoptosis of HUVECs induced by rapamycin. A distinct class of exosomal miRNAs was further identified, including six miRNAs tightly related to neovasculogenesis. Silencing the expression of exosomal miRNA-21-5p and let-7c-5p attenuated the pro-proliferative and pro-migratory capacity of MSC-derived exosomes. Moreover, functional enrichment analysis indicated that metabolic pathways might contribute to reendothelialization. This study highlights a proregenerative effect of MSC-derived exosomes in vitro, which may be partly explained by the delivery of pro-angiogenic miRNAs to endothelial cells.
Collapse
Affiliation(s)
- Weizong Wang
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Jinan, 250014, China
| | - Yixin Zhao
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Jinan, 250014, China
| | - Huilin Li
- Cheeloo College of Medicine, Shandong University, No. 44, Wenhua Xi Road, Jinan, 250012, China
| | - Yujiao Zhang
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Jinan, 250014, China
| | - Xiaomeng Jia
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Jinan, 250014, China
| | - Cong Wang
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Jinan, 250014, China
| | - Pengju Zhu
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Jinan, 250014, China
| | - Jiangrong Wang
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Jinan, 250014, China
| | - Yinglong Hou
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Jinan, 250014, China.
| |
Collapse
|
10
|
Mohammadi N, Mardomi A, Hassannia H, Enderami SE, Ranjbaran H, Rafiei A, Abediankenari S. Mouse bone marrow-derived mesenchymal stem cells acquire immunogenicity concurrent with differentiation to insulin-producing cells. Immunobiology 2020; 225:151994. [PMID: 32962814 DOI: 10.1016/j.imbio.2020.151994] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/26/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Although mesenchymal stem cells (MSCs) are regarded as immune-elusive and even immunosuppressive, recent evidence suggests that allogeneic immune response might is inevitable in the case of some lineages differentiated from MSCs. Regarding the importance of allogeneic IPCs and MSCs in pre-clinical and clinical studies, the present study aimed to investigate the possible changes in the immunogenicity of MSCs during the differentiation to IPCs in a murine model of allogeneic transplantation. MATERIAL AND METHODS Two mouse strains, C57BL/6 (H2Db) and BALB/c (H2Dd) were selected to establish an allogeneic cell transplantation model. Bone marrow MSCs were differentiated into IPCs and the expression of H2D, CD80, and Qa-2 molecules were evaluated via flowcytometry on MSCs and IPCs. The differentiated and undifferentiated MSCs were encountered to allogeneic splenocytes and the proliferation, CD44 activation marker, and cytokine release in the splenocytes were evaluated. RESULTS IPCs exhibited increased expression of MHC-I and CD80 that elicited an allogenic response including the activation-induced proliferation of splenocytes, activation of CD4+ T cells, and IFNγ response. CONCLUSIONS MSCs acquire immunogenicity after differentiation to functional IPCs, which might cause decreased efficacy in the case of allogeneic transplantation. Careful precautions might be critical for saving the IPCs against the detrimental allogeneic responses.
Collapse
Affiliation(s)
- Nabiallah Mohammadi
- Department of Immunology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alireza Mardomi
- Department of Immunology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hadi Hassannia
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Amol Faculty of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Ehsan Enderami
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hossein Ranjbaran
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alireza Rafiei
- Department of Immunology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeid Abediankenari
- Department of Immunology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
11
|
Growth arrest-specific gene 6 transfer promotes mesenchymal stem cell survival and cardiac repair under hypoxia and ischemia via enhanced autocrine signaling and paracrine action. Arch Biochem Biophys 2018; 660:108-120. [PMID: 30365934 DOI: 10.1016/j.abb.2018.10.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 10/08/2018] [Accepted: 10/22/2018] [Indexed: 01/10/2023]
Abstract
Poor cell viability after transplantation has restricted the therapeutic capacity of mesenchymal stem cells (MSCs) for cardiac dysfunction after myocardial infarction (MI). Growth arrest-specific gene 6 (Gas6) encodes a secreted γ-carboxyglutamic acid (Gla)-containing protein that functions in cell growth, adhesion, chemotaxis, mitogenesis and cell survival. In this study, we genetically modified MSCs with Gas6 and evaluated cell survival, cardiac function, and infarct size in a rat model of MI via intramyocardial delivery. Functional studies demonstrated that Gas6 transfer significantly reduced MSC apoptosis, increased survival of MSCs in vitro and in vivo, and that Gas6-engineered MSCs (MSCGas6)-treated animals had smaller infarct size and showed remarkably functional recovery as compared with control MSCs (MSCNull)-treated animals. Mechanistically, Gas6 could enhance phosphatidylinositol 3-kinase (PI3K)/Akt signaling and improve hypoxia-inducible factor-1 alpha (HIF-1α)-driven secretion of four major growth factors (VEGF, bFGF, SDF and IGF-1) in MSCs under hypoxia in an Axl-dependent autocrine manner. The paracrine action of MSCGas6 was further validated by coculture neonatal rat cardiomyocytes with conditioned medium from hypoxia-treated MSCGas6, as well as by pretreatment cardiomyocytes with the specific receptor inhibitors of VEGF, bFGF, SDF and IGF-1. Collectively, our data suggest that Gas6 may advance the efficacy of MSC therapy for post-infarcted heart failure via enhanced Gas6/Axl autocrine prosurvival signaling and paracrine cytoprotective action.
Collapse
|
12
|
Barrachina L, Remacha AR, Romero A, Zaragoza P, Vázquez FJ, Rodellar C. Differentiation of equine bone marrow derived mesenchymal stem cells increases the expression of immunogenic genes. Vet Immunol Immunopathol 2018; 200:1-6. [DOI: 10.1016/j.vetimm.2018.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 03/14/2018] [Accepted: 04/09/2018] [Indexed: 12/27/2022]
|
13
|
Lu Z, Chen Y, Dunstan C, Roohani-Esfahani S, Zreiqat H. Priming Adipose Stem Cells with Tumor Necrosis Factor-Alpha Preconditioning Potentiates Their Exosome Efficacy for Bone Regeneration. Tissue Eng Part A 2017; 23:1212-1220. [PMID: 28346798 DOI: 10.1089/ten.tea.2016.0548] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been widely used for tissue repair and regeneration. However, the inherent drawbacks, including limited cell survival after cell transplantation, have hindered direct MSC transplantation for tissue repair and regeneration. The aim of this study was to investigate if exosomes isolated from MSCs can promote the proliferation and differentiation of human primary osteoblastic cells (HOBs) and be potentially used for bone tissue regeneration. We showed that adipose tissue-derived MSC (ASC)-derived exosomes (ASC-EXO) were able to promote the proliferation and osteogenic differentiation in HOBs; and the trophic effects of ASC-EXO on HOBs were further harnessed when ASCs were preconditioned with tumor necrosis factor-alpha (TNF-α) for 3 days, which mimics the acute inflammatory phase upon bone injury. In addition, we showed that Wnt-3a content was elevated in ASC-EXO when ASCs were preconditioned by TNF-α, and inhibiting Wnt signaling decreased the osteogenic gene expression levels in HOBs which were cultured in TNF-α preconditioned ASCs conditioned medium. In conclusion, it was demonstrated that ASC-EXO, especially primed by TNF-α preconditioning on ASCs, offer a promising approach to replace direct stem cell transplantation for bone repair and regeneration.
Collapse
Affiliation(s)
- ZuFu Lu
- Biomaterials and Tissue Engineering Research Unit, School of AMME, The University of Sydney , Sydney, Australia
| | - YongJuan Chen
- Biomaterials and Tissue Engineering Research Unit, School of AMME, The University of Sydney , Sydney, Australia
| | - Colin Dunstan
- Biomaterials and Tissue Engineering Research Unit, School of AMME, The University of Sydney , Sydney, Australia
| | - Seyediman Roohani-Esfahani
- Biomaterials and Tissue Engineering Research Unit, School of AMME, The University of Sydney , Sydney, Australia
| | - Hala Zreiqat
- Biomaterials and Tissue Engineering Research Unit, School of AMME, The University of Sydney , Sydney, Australia
| |
Collapse
|
14
|
Cao Y, Gang X, Sun C, Wang G. Mesenchymal Stem Cells Improve Healing of Diabetic Foot Ulcer. J Diabetes Res 2017; 2017:9328347. [PMID: 28386568 PMCID: PMC5366201 DOI: 10.1155/2017/9328347] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 02/28/2017] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs), an ideal cell source for regenerative therapy with no ethical issues, play an important role in diabetic foot ulcer (DFU). Growing evidence has demonstrated that MSCs transplantation can accelerate wound closure, ameliorate clinical parameters, and avoid amputation. In this review, we clarify the mechanism of preclinical studies, as well as safety and efficacy of clinical trials in the treatment of DFU. Bone marrow-derived mesenchymal stem cells (BM-MSCs), compared with MSCs derived from other tissues, may be a suitable cell type that can provide easy, effective, and cost-efficient transplantation to treat DFU and protect patients from amputation.
Collapse
Affiliation(s)
- Yue Cao
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun 130021, China
| | - Xiaokun Gang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun 130021, China
| | - Chenglin Sun
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun 130021, China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun 130021, China
- *Guixia Wang:
| |
Collapse
|
15
|
Adipose-Derived Cell Transplantation in Systemic Sclerosis: State of the Art and Future Perspectives. JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2016. [DOI: 10.5301/jsrd.5000222] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Systemic sclerosis (SSc) is one of the most complex connective tissue diseases. Although significant progress in the knowledge of pathogenic mechanisms and timely diagnosis, therapeutic options remain limited. The attempt to find new treatments for SSc has led researchers to investigate the potential of cellular therapies using autologous and allogeneic stem cells. Multipotent mesenchymal stromal cells (MSCs) are considered an attractive candidate for cell-based therapies. MSCs comprise a heterogeneous population of cells with multilineage differentiation potential that are preferentially able to home to the sites of damage, and secrete various cytokines and growth factors that can have immunomodulatory, angiogenic, anti-inflammatory and anti-apoptotic effects. MSCs from bone-marrow have been first extensively characterized. Adipose tissue represents an additional abundant and accessible source of stem cells. Compared with BM-MSCs, adipose-derived stromal/stem cells (ASCs) offer several advantages, including ease of isolation, less donor morbidity, relative abundance, and rapidity of expansion. For all these reasons, at present ASCs are one of the most attractive and promising sources of adult stem cells for cell therapy, finding a field of application in the treatment of SSc, too. This review will focus on the current applications and possible future perspectives of adipose tissue-cell therapies in SSc.
Collapse
|
16
|
Faiella W, Atoui R. Therapeutic use of stem cells for cardiovascular disease. Clin Transl Med 2016; 5:34. [PMID: 27539581 PMCID: PMC4990528 DOI: 10.1186/s40169-016-0116-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 08/10/2016] [Indexed: 12/21/2022] Open
Abstract
Stem cell treatments are a desirable therapeutic option to regenerate myocardium and improve cardiac function after myocardial infarction. Several different types of cells have been explored, each with their own benefits and limitations. Induced pluripotent stem cells possess an embryonic-like state and therefore have a high proliferative capacity, but they also pose a risk of teratoma formation. Mesenchymal stem cells have been investigated from both bone marrow and adipose tissue. Their immunomodulatory characteristics may permit the use of allogeneic cells as universal donor cells in the future. Lastly, studies have consistently shown that cardiac stem cells are better able to express markers of cardiogenesis compared to other cell types, as well improve cardiac function. The ideal source of stem cells depends on multiple factors such as the ease of extraction/isolation, effectiveness of engraftment, ability to differentiate into cardiac lineages and effect on cardiac function. Although multiple studies highlight the benefits and limitations of each cell type and reinforce the successful potential use of these cells to regenerate damaged myocardium, more studies are needed to directly compare cells from various sources. It is interesting to note that research using stem cell therapies is also expanding to treat other cardiovascular diseases including non-ischemic cardiomyopathies.
Collapse
Affiliation(s)
- Whitney Faiella
- Division of Cardiac Surgery, Health Sciences North, 41 Ramsey Lake Road, Sudbury, ON, P3E 5J1, Canada
| | - Rony Atoui
- Division of Cardiac Surgery, Health Sciences North, 41 Ramsey Lake Road, Sudbury, ON, P3E 5J1, Canada.
| |
Collapse
|
17
|
Cao J, Hou S, Ding H, Liu Z, Song M, Qin X, Wang X, Yu M, Sun Z, Liu J, Sun S, Xiao P, Lv Q, Fan H. In Vivo Tracking of Systemically Administered Allogeneic Bone Marrow Mesenchymal Stem Cells in Normal Rats through Bioluminescence Imaging. Stem Cells Int 2016; 2016:3970942. [PMID: 27610137 PMCID: PMC5005574 DOI: 10.1155/2016/3970942] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/26/2016] [Accepted: 07/03/2016] [Indexed: 01/14/2023] Open
Abstract
Recently, mesenchymal stem cells (MSCs) are increasingly used as a panacea for multiple types of disease short of effective treatment. Dozens of clinical trials published demonstrated strikingly positive therapeutic effects of MSCs. However, as a specific agent, little research has focused on the dynamic distribution of MSCs after in vivo administration. In this study, we track systemically transplanted allogeneic bone marrow mesenchymal stem cells (BMSCs) in normal rats through bioluminescence imaging (BLI) in real time. Ex vivo organ imaging, immunohistochemistry (IHC), and RT-PCR were conducted to verify the histological distribution of BMSCs. Our results showed that BMSCs home to the dorsal skin apart from the lungs and kidneys after tail vein injection and could not be detected 14 days later. Allogeneic BMSCs mainly appeared not at the parenchymatous organs but at the subepidermal connective tissue and adipose tissue in healthy rats. There were no significant MSCs-related adverse effects except for transient decrease in neutrophils. These findings will provide experimental evidences for a better understanding of the biocharacteristics of BMSCs.
Collapse
Affiliation(s)
- Juan Cao
- Institute of Disaster Medicine and Public Health, Affiliated Hospital of Logistic University of Chinese People's Armed Police Force, Tianjin, China
- Key Laboratory of Emergency and Disaster Medicine in Chinese People's Liberation Army (PLA), Tianjin 300162, China
| | - Shike Hou
- Institute of Disaster Medicine and Public Health, Affiliated Hospital of Logistic University of Chinese People's Armed Police Force, Tianjin, China
- Key Laboratory of Emergency and Disaster Medicine in Chinese People's Liberation Army (PLA), Tianjin 300162, China
| | - Hui Ding
- Institute of Disaster Medicine and Public Health, Affiliated Hospital of Logistic University of Chinese People's Armed Police Force, Tianjin, China
- Key Laboratory of Emergency and Disaster Medicine in Chinese People's Liberation Army (PLA), Tianjin 300162, China
| | - Ziquan Liu
- Institute of Disaster Medicine and Public Health, Affiliated Hospital of Logistic University of Chinese People's Armed Police Force, Tianjin, China
- Key Laboratory of Emergency and Disaster Medicine in Chinese People's Liberation Army (PLA), Tianjin 300162, China
| | - Meijuan Song
- Institute of Disaster Medicine and Public Health, Affiliated Hospital of Logistic University of Chinese People's Armed Police Force, Tianjin, China
- Key Laboratory of Emergency and Disaster Medicine in Chinese People's Liberation Army (PLA), Tianjin 300162, China
| | - Xiaojing Qin
- Department of Pathology, Affiliated Hospital of Logistic University of Chinese People's Armed Police Force, Tianjin, China
| | - Xue Wang
- Institute of Disaster Medicine and Public Health, Affiliated Hospital of Logistic University of Chinese People's Armed Police Force, Tianjin, China
- Key Laboratory of Emergency and Disaster Medicine in Chinese People's Liberation Army (PLA), Tianjin 300162, China
| | - Mengyang Yu
- Institute of Disaster Medicine and Public Health, Affiliated Hospital of Logistic University of Chinese People's Armed Police Force, Tianjin, China
- Key Laboratory of Emergency and Disaster Medicine in Chinese People's Liberation Army (PLA), Tianjin 300162, China
| | - Zhiguang Sun
- Institute of Disaster Medicine and Public Health, Affiliated Hospital of Logistic University of Chinese People's Armed Police Force, Tianjin, China
- Key Laboratory of Emergency and Disaster Medicine in Chinese People's Liberation Army (PLA), Tianjin 300162, China
| | - Jinyang Liu
- Institute of Disaster Medicine and Public Health, Affiliated Hospital of Logistic University of Chinese People's Armed Police Force, Tianjin, China
- Key Laboratory of Emergency and Disaster Medicine in Chinese People's Liberation Army (PLA), Tianjin 300162, China
| | - Shuli Sun
- Institute of Disaster Medicine and Public Health, Affiliated Hospital of Logistic University of Chinese People's Armed Police Force, Tianjin, China
- Key Laboratory of Emergency and Disaster Medicine in Chinese People's Liberation Army (PLA), Tianjin 300162, China
| | - Peixin Xiao
- Institute of Disaster Medicine and Public Health, Affiliated Hospital of Logistic University of Chinese People's Armed Police Force, Tianjin, China
- Key Laboratory of Emergency and Disaster Medicine in Chinese People's Liberation Army (PLA), Tianjin 300162, China
| | - Qi Lv
- Institute of Disaster Medicine and Public Health, Affiliated Hospital of Logistic University of Chinese People's Armed Police Force, Tianjin, China
- Key Laboratory of Emergency and Disaster Medicine in Chinese People's Liberation Army (PLA), Tianjin 300162, China
| | - Haojun Fan
- Institute of Disaster Medicine and Public Health, Affiliated Hospital of Logistic University of Chinese People's Armed Police Force, Tianjin, China
- Key Laboratory of Emergency and Disaster Medicine in Chinese People's Liberation Army (PLA), Tianjin 300162, China
| |
Collapse
|
18
|
Immunotolerant Properties of Mesenchymal Stem Cells: Updated Review. Stem Cells Int 2015; 2016:1859567. [PMID: 26839557 PMCID: PMC4709780 DOI: 10.1155/2016/1859567] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/03/2015] [Accepted: 10/11/2015] [Indexed: 12/24/2022] Open
Abstract
Stem cell transplantation is a potential therapeutic option to regenerate damaged myocardium and restore function after infarct. Current research is focused on the use of allogeneic mesenchymal stem cells (MSCs) due to their unique immunomodulatory characteristics and ability to be harvested from young and healthy donors. Both animal and human studies support the immunoprivileged state of MSCs and even demonstrate improvements in cardiac function after transplantation. This research continues to be a topic of interest, as advances will ultimately enable the clinical use of these universal cells for therapy after a myocardial infarction. Updated in vitro, in vivo, and clinical trial studies are discussed in detail in the following review.
Collapse
|
19
|
Abstract
In the last year, the promising features of mesenchymal stem cells (MSCs), including their regenerative properties and ability to differentiate into diverse cell lineages, have generated great interest among researchers whose work has offered intriguing perspectives on cell-based therapies for various diseases. Currently the most commonly used adult stem cells in regenerative medicine, MSCs, can be isolated from several tissues, exhibit a strong capacity for replication in vitro, and can differentiate into osteoblasts, chondrocytes, and adipocytes. However, heterogeneous procedures for isolating and cultivating MSCs among laboratories have prompted the International Society for Cellular Therapy (ISCT) to issue criteria for identifying unique populations of these cells. Consequently, the isolation of MSCs according to ISCT criteria has produced heterogeneous, nonclonal cultures of stromal cells containing stem cells with different multipotent properties, committed progenitors, and differentiated cells. Though the nature and functions of MSCs remain unclear, nonclonal stromal cultures obtained from bone marrow and other tissues currently serve as sources of putative MSCs for therapeutic purposes, and several findings underscore their effectiveness in treating different diseases. To date, 493 MSC-based clinical trials, either complete or ongoing, appear in the database of the US National Institutes of Health. In the present article, we provide a comprehensive review of MSC-based clinical trials conducted worldwide that scrutinizes biological properties of MSCs, elucidates recent clinical findings and clinical trial phases of investigation, highlights therapeutic effects of MSCs, and identifies principal criticisms of the use of these cells. In particular, we analyze clinical trials using MSCs for representative diseases, including hematological disease, graft-versus-host disease, organ transplantation, diabetes, inflammatory diseases, and diseases in the liver, kidney, and lung, as well as cardiovascular, bone and cartilage, neurological, and autoimmune diseases.
Collapse
Affiliation(s)
- Tiziana Squillaro
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, Second University of Naples, Naples, Italy
| | | | | |
Collapse
|
20
|
Nakamura Y, Miyaki S, Ishitobi H, Matsuyama S, Nakasa T, Kamei N, Akimoto T, Higashi Y, Ochi M. Mesenchymal-stem-cell-derived exosomes accelerate skeletal muscle regeneration. FEBS Lett 2015; 589:1257-65. [PMID: 25862500 DOI: 10.1016/j.febslet.2015.03.031] [Citation(s) in RCA: 392] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 03/26/2015] [Indexed: 12/18/2022]
Abstract
Mesenchymal stem cell (MSC) transplantation is used for treatment of many diseases. The paracrine role of MSCs in tissue regeneration is attracting particular attention. We investigate the role of MSC exosomes in skeletal muscle regeneration. MSC exosomes promote myogenesis and angiogenesis in vitro, and muscle regeneration in an in vivo model of muscle injury. Although MSC exosomes had low concentrations of muscle-repair-related cytokines, a number of repair-related miRNAs were identified. This study suggests that the MSC-derived exosomes promote muscle regeneration by enhancing myogenesis and angiogenesis, which is at least in part mediated by miRNAs such as miR-494.
Collapse
Affiliation(s)
- Yoshihiro Nakamura
- Department of Orthopedic Surgery, Hiroshima University, Hiroshima, Japan.
| | - Shigeru Miyaki
- Department of Orthopedic Surgery, Hiroshima University, Hiroshima, Japan; Department of Regenerative Medicine, Hiroshima University Hospital, Hiroshima, Japan
| | - Hiroyuki Ishitobi
- Department of Regenerative Medicine, Hiroshima University Hospital, Hiroshima, Japan
| | - Sho Matsuyama
- Department of Orthopedic Surgery, Hiroshima University, Hiroshima, Japan
| | - Tomoyuki Nakasa
- Department of Orthopedic Surgery, Hiroshima University, Hiroshima, Japan
| | - Naosuke Kamei
- Department of Orthopedic Surgery, Hiroshima University, Hiroshima, Japan; Department of Regenerative Medicine, Hiroshima University Hospital, Hiroshima, Japan
| | - Takayuki Akimoto
- Division of Regenerative Medical Engineering, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Yukihito Higashi
- Department of Regenerative Medicine, Hiroshima University Hospital, Hiroshima, Japan
| | - Mitsuo Ochi
- Department of Orthopedic Surgery, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
21
|
Potential of 5-azacytidine induction decidual stromal cells from maternal human term placenta towards cardiomyocyte-like cells in serum-free medium. Cell Tissue Bank 2015; 16:477-85. [PMID: 25589450 DOI: 10.1007/s10561-015-9493-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 01/05/2015] [Indexed: 01/02/2023]
Abstract
Decidual stromal cells (DSCs) from maternal term placenta represent a potential source of cells for the treatment of cardiovascular and graft-versus-host diseases. However, it is not clear whether DSCs could be induced towards cardiomyocyte-like differentiation. We chose the placentas which should bred male new-baby. We isolated DSCs from placenta by tissue adherence. The morphology, immunophenotype, and multi-lineage potential were analyzed. Karyotype analysis (G-band) was performed to determine the source and karyotype stability of DSCs. DSCs were induced by 5-azacytidine. Expression of Myf5, α-cardiac actin, Cardiac troponin T (cTnT) and GAPDH was assessed by PCR, and cTnT expression was also analyzed by immunofluorescence. Karyotype analyses indicated that cells were derived from the maternal matrix. After induction with 5-azacytidine, DSCs expressed the cardiac-specific markers Myf5, myogenin and cTnT, indicating differentiation towards cardiomyocyte-like cells.
Collapse
|
22
|
Li B, Zhang H, Zeng M, He W, Li M, Huang X, Deng DYB, Wu J. Bone marrow mesenchymal stem cells protect alveolar macrophages from lipopolysaccharide-induced apoptosis partially by inhibiting the Wnt/β-catenin pathway. Cell Biol Int 2014; 39:192-200. [PMID: 25229877 DOI: 10.1002/cbin.10359] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 08/01/2014] [Indexed: 12/30/2022]
Abstract
Apoptosis of alveolar macrophages (AMs) plays a pathogenic role in acute lung injury (ALI) and its severe type, acute respiratory distress syndrome (ARDS). Mesenchymal stem cells (MSCs) are promising therapeutic cells for preventing apoptosis and eliminating cellular injury. We investigated the effects of rat bone marrow mesenchymal stem cells (BMSCs) on lipopolysaccharide (LPS)-induced apoptosis in AMs using transwell experiments, and examined the underlying mechanisms LPS induced AMs apoptosis in a dose- and time-dependent fashion, whereas BMSCs reduced AMs apoptosis when co-cultured at appropriate ratios. BMSCs decreased expression of cleaved caspase-3 and the pro-apoptotic protein, Bax, whilst increased levels of the anti-apoptotic protein, Bcl-2, prolonging the lifespan of AMs in vitro. Promotion of AMs survival by BMSCs required down-regulation of p-GSK-3β and β-catenin in AMs. The anti-apoptosis action of BMSCs was reversed by SB216763, a specific inhibitor of GSK-3β that also activates Wnt/β-catenin signaling. In conclusion, BMSCs can attenuate AM apoptosis partially by suppressing the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Bin Li
- Department of MICU, The First Affiliated Hospital, Sun Yat-Sen University, 58# Zhongshan 2nd Road, Guangzhou, 510080, China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Lohan P, Coleman CM, Murphy JM, Griffin MD, Ritter T, Ryan AE. Changes in immunological profile of allogeneic mesenchymal stem cells after differentiation: should we be concerned? Stem Cell Res Ther 2014; 5:99. [PMID: 25158057 PMCID: PMC4282147 DOI: 10.1186/scrt488] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are an adult stromal cell population possessing potent differentiation capacity and a potential for use across major histocompatibility complex barriers. Although allogeneic MSCs have potent immunosuppressive properties, evidence also suggests that they elicit a weak allogeneic immune response. However, the effect of induced differentiation on the immunosuppressive ability and immunogenicity of allogeneic MSCs is a potential obstacle when applying MSCs in tissue replacement therapies. These concerns will be explored in this review, with particular emphasis on changes in the cell surface expression of immunogenic markers, changes in the secretion of immunosuppressive molecules and in vivo functional benefits of the cell therapy. We review the literature from a translational point of view, focusing on pre-clinical studies that have utilised and analysed the effects of allogeneic immune responses on the ability of allogeneic MSCs to regenerate damaged tissue in models of bone, heart and cartilage defects.
Collapse
|
24
|
Lee SM, Lee SC, Kim SJ. Contribution of human adipose tissue-derived stem cells and the secretome to the skin allograft survival in mice. J Surg Res 2014; 188:280-9. [PMID: 24560349 DOI: 10.1016/j.jss.2013.10.063] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/16/2013] [Accepted: 10/08/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND Despite considerable evidence showing the immunosuppressive properties of mesenchymal stem cells (MSCs) in vitro, such properties have not been fully demonstrated in vivo. The aim of this study was to evaluate the effect of MSCs and/or MSC secretome in inducing tolerance in a mouse skin transplantation model. METHODS After receiving full-thickness skin allotransplantation on the back of the mouse, the recipient mice were infused with phosphate-buffered saline, adipose tissue-derived stem cells (ASCs), conditioned media (CM), and control media. Specifically, ASCs (1.0 × 10(6)/0.1 mL) were transplanted to ASC-infused mice and 25-fold concentrated CM, which had been obtained from ASC culture were infused to CM-infused mice. Graft survival rates and the parameters reflecting immunologic consequences were assessed. RESULTS The serum level of proinflammatory cytokine interleukin 6 decreased in mice treated with ASCs or CM compared with the control groups after infusion (P < 0.05). Interferon gamma, interleukin 10, and tumor necrosis factor alpha messenger RNA levels in the skin graft seemed to be decreased in the ASC-infused mice and CM-infused mice. Hyporesponsiveness was identified in mixed lymphocyte reaction assay at 30-d posttransplantation in ASC- or CM-infused mice. And, administering ASCs and CM markedly increased skin allograft survival compared with control animals (P < 0.001). CONCLUSIONS These findings suggest that ASCs and their secretome have the potential to induce immunologic tolerance. Moreover, our results demonstrate that the immunosuppressive properties of ASCs are mediated by the ASC secretome. Our approach could provide insights into a promising strategy to avoid toxicities of chemical immunosuppressive regimen in solid organ transplantation.
Collapse
Affiliation(s)
- Sang Mook Lee
- Department of Anesthesiology, Daejeon St. Mary's Hospital, The Catholic University of Korea, Daejeon, Republic of Korea
| | - Sang Chul Lee
- Department of Surgery, Daejeon St. Mary's Hospital, The Catholic University of Korea, Daejeon, Republic of Korea
| | - Say-June Kim
- Department of Surgery, Daejeon St. Mary's Hospital, The Catholic University of Korea, Daejeon, Republic of Korea.
| |
Collapse
|