1
|
An RF, Wu KT, Pan J, Zhang WJ, Qin HY, Li XR, Liu W, Huang XF. Design, synthesis and cytotoxic activity of novel lipophilic cationic derivatives of diosgenin and sarsasapogenin. Bioorg Med Chem Lett 2025; 119:130094. [PMID: 39778752 DOI: 10.1016/j.bmcl.2025.130094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 12/27/2024] [Accepted: 01/05/2025] [Indexed: 01/11/2025]
Abstract
Novel lipophilic cationic derivatives including quaternary ammonium salt and triphenylphosphine series were designed and synthesized using diosgenin (1) and sarsasapogenin (2) as substrates to improve the cytotoxicity and selectivity. Most of the derivatives showed higher cytotoxicity against all cancer cell lines tested, compound 13 exhibited the most superior activity against A549 cells with an IC50 value of 0.95 μM, which was 34-fold of diosgenin. Preliminary cellular mechanism studies elucidated that compound 13 might arrest cell cycle at G0/G1 phase, trigger apoptosis via up-regulating the expression of Bax, down-regulating the expression of Bcl-2 and caspase-3, and induce an increase in the generation of intracellular reactive oxygen species (ROS) in A549 cells. In addition, molecular docking analysis revealed that compound 13 could occupy the active site of p38α-MAPK well and interact to the surrounding amino acids by salt bridge and conjugation. These results suggested that compound 13 had the potential to serve as an antitumor lead agent, probably exert antitumor effect through mitochondrial pathway and p38α MAPK pathway.
Collapse
Affiliation(s)
- Ren-Feng An
- Department of Natural Medicinal Chemistry, School of Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009 China
| | - Kai-Tian Wu
- Department of Natural Medicinal Chemistry, School of Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009 China
| | - Jie Pan
- Department of Pharmacology, Nanjing Medical University, Nanjing 210029 China
| | - Wen-Jin Zhang
- Department of Natural Medicinal Chemistry, School of Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009 China
| | - Hui-Ying Qin
- Department of Natural Medicinal Chemistry, School of Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009 China
| | - Xiao-Rui Li
- Department of Natural Medicinal Chemistry, School of Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009 China
| | - Wei Liu
- Department of Pharmacology, Nanjing Medical University, Nanjing 210029 China.
| | - Xue-Feng Huang
- Department of Natural Medicinal Chemistry, School of Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009 China.
| |
Collapse
|
2
|
Pan P, Zhang Z, Xu Y, Li F, Yang Q, Liang B. Sarsasapogenin Inhibits HCT116 and Caco-2 Cell Malignancy and Tumor Growth in a Xenograft Mouse Model of Colorectal Cancer by Inactivating MAPK Signaling. J Biochem Mol Toxicol 2025; 39:e70189. [PMID: 40009047 DOI: 10.1002/jbt.70189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/27/2024] [Accepted: 02/08/2025] [Indexed: 02/27/2025]
Abstract
Colorectal cancer (CRC) is a prevalent malignancy globally and holds the third position in terms of cancer-related mortality in the United States. The study aimed to explore the impact of sarsasapogenin (Sar), a natural component, on CRC cell behavior and the related mechanism. Caco-2 and HCT116 cells were treated with 0-40 μM Sar or 5-fluorouracil (5-FU) to compare their cytotoxicity. Then, the optimal concentration of Sar was identified for subsequent experiments, and CRC cells in the control group were treated with dimethyl sulfoxide (DMSO). Cell counting kit-8 assays, colony-forming assays, and flow cytometry analyses were carried out to measure cell viability, proliferation, and apoptosis, respectively. Cell migration and invasion were evaluated by Transwell assays. HCT116 cells were inoculated into nude mice to induce tumorigenesis, and oral gavage of Sar was performed when tumor volume reached 50-100 mm3. Immunohistochemistry was performed to measure Ki67, E-cadherin, Vimentin, and N-cadherin expression in mouse tumor tissues. Western blot analysis was performed to assess protein levels of factors related to apoptosis, epithelial-mesenchymal transition (EMT) and mitogen-activated protein kinase (MAPK) pathway in CRC cells or mouse tumor tissues. Results showed that Sar repressed CRC cell viability in a dose-dependent manner, and the IC50 of Sar is 9.53 and 9.69 μM in HCT116 cells and Caco-2 cells. The number of CRC cell colonies was significantly decreased by Sar compared with that in DMSO group (HCT116: 52 vs. 162; Caco-2: 46 vs. 146), while cell apoptotic rate was increased by Sar (20.41% and 20.78%) compared to that in response to DMSO treatment (5.26% and 5.65%). Sar led to significant upregulation of Bax and cleaved caspase-3 protein levels while reducing Bcl-2 protein level. The number of migrated cells was reduced by Sar treatment in comparison to those in the context of DMSO treatment (HCT116: 65 vs. 223; Caco-2: 32 vs. 168). The same inhibitory impact of Sar was found on the number of invaded cells (p < 0.001). E-cadherin level was noticeably elevated while N-cadherin and vimentin levels were prominently lessened in Sar-treated CRC cells. For animal experiments, the size, growth rate, and weight of tumors were all repressed by Sar (p < 0.001). Ki67 expression was reduced and the EMT process was obstructed in mouse tumors of the Sar group (p < 0.001). Sar inhibited the activation of MAPK signaling both in CRC cells and mouse tumors (p < 0.001). In conclusion, Sar represses HCT116 and Caco-2 cell proliferation, migration, invasion, and xenograft tumor growth while promoting CRC cell apoptosis by inactivating the MAPK signaling.
Collapse
Affiliation(s)
- Ping Pan
- Tumor Internal Medicine Ward 2, Nanyang First People's Hospital, Nanyang, China
| | - Zhen Zhang
- Tumor Internal Medicine Ward 2, Nanyang First People's Hospital, Nanyang, China
| | - Yu Xu
- Department of Imaging, Nanyang Central Hospital, Nanyang, China
| | - Fangfang Li
- Tumor Internal Medicine Ward 2, Nanyang First People's Hospital, Nanyang, China
| | - Qingle Yang
- Tumor Internal Medicine Ward 2, Nanyang First People's Hospital, Nanyang, China
| | - Bing Liang
- Tumor Internal Medicine Ward 2, Nanyang First People's Hospital, Nanyang, China
| |
Collapse
|
3
|
Wang F, Liang L, Yu M, Wang W, Badar IH, Bao Y, Zhu K, Li Y, Shafi S, Li D, Diao Y, Efferth T, Xue Z, Hua X. Advances in antitumor activity and mechanism of natural steroidal saponins: A review of advances, challenges, and future prospects. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155432. [PMID: 38518645 DOI: 10.1016/j.phymed.2024.155432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/11/2024] [Accepted: 02/06/2024] [Indexed: 03/24/2024]
Abstract
BACKGROUND Cancer, the second leading cause of death worldwide following cardiovascular diseases, presents a formidable challenge in clinical settings due to the extensive toxic side effects associated with primary chemotherapy drugs employed for cancer treatment. Furthermore, the emergence of drug resistance against specific chemotherapeutic agents has further complicated the situation. Consequently, there exists an urgent imperative to investigate novel anticancer drugs. Steroidal saponins, a class of natural compounds, have demonstrated notable antitumor efficacy. Nonetheless, their translation into clinical applications has remained unrealized thus far. In light of this, we conducted a comprehensive systematic review elucidating the antitumor activity, underlying mechanisms, and inherent limitations of steroidal saponins. Additionally, we propose a series of strategic approaches and recommendations to augment the antitumor potential of steroidal saponin compounds, thereby offering prospective insights for their eventual clinical implementation. PURPOSE This review summarizes steroidal saponins' antitumor activity, mechanisms, and limitations. METHODS The data included in this review are sourced from authoritative databases such as PubMed, Web of Science, ScienceDirect, and others. RESULTS A comprehensive summary of over 40 steroidal saponin compounds with proven antitumor activity, including their applicable tumor types and structural characteristics, has been compiled. These steroidal saponins can be primarily classified into five categories: spirostanol, isospirostanol, furostanol, steroidal alkaloids, and cholestanol. The isospirostanol and cholestanol saponins are found to have more potent antitumor activity. The primary antitumor mechanisms of these saponins include tumor cell apoptosis, autophagy induction, inhibition of tumor migration, overcoming drug resistance, and cell cycle arrest. However, steroidal saponins have limitations, such as higher cytotoxicity and lower bioavailability. Furthermore, strategies to address these drawbacks have been proposed. CONCLUSION In summary, isospirostanol and cholestanol steroidal saponins demonstrate notable antitumor activity and different structural categories of steroidal saponins exhibit variations in their antitumor signaling pathways. However, the clinical application of steroidal saponins in cancer treatment still faces limitations, and further research and development are necessary to advance their potential in tumor therapy.
Collapse
Affiliation(s)
- Fengge Wang
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Lu Liang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR, PR China
| | - Ma Yu
- School of Life Science and Engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, Sichuan, PR China
| | - Wenjie Wang
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Iftikhar Hussain Badar
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, PR China; Department of Meat Science and Technology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Yongping Bao
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, United Kingdom
| | - Kai Zhu
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Yanlin Li
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Saba Shafi
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Dangdang Li
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Yongchao Diao
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz 55128, Germany.
| | - Zheyong Xue
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China.
| | - Xin Hua
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China.
| |
Collapse
|
4
|
Zhang F, Chen S, Zhang J, Thakur K, Battino M, Cao H, Farag MA, Xiao J, Wei Z. Asparagus saponins: effective natural beneficial ingredient in functional foods, from preparation to applications. Crit Rev Food Sci Nutr 2023; 64:12284-12302. [PMID: 37615648 DOI: 10.1080/10408398.2023.2249097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Asparagus species is recognized as a perennial herb with several valuable functional ingredients, and has been widely used as medicine and food since ancient times. Among its main chemical constituents, saponins play a vital role in the health benefits and biological activities including anti-cancer, antioxidant, immunomodulatory, anti-microbial, anti-inflammatory, and hypoglycemic. This review summarizes the preparation methods, structure and classification, biological functions, as well as the food and non-food applications of asparagus saponins, with a special emphasis on its anti-cancer effects in vitro and in vivo. Further, the main challenges and limitations of the current research trends in asparagus saponins are highlighted after a detailed analysis of the recent research information. This review bridges the gap between bioactive components and human health and aids current research on functional and health-promoting foods and medicinal application of Asparagus saponins.
Collapse
Affiliation(s)
- Fan Zhang
- School of Life Sciences, Anhui Normal University, Wuhu, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| | - Shengxiong Chen
- Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| | - Jianguo Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- School of Biological Science and Engineering, North Minzu University, Yinchuan, China
| | - Kiran Thakur
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- School of Biological Science and Engineering, North Minzu University, Yinchuan, China
| | - Maurizio Battino
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea Del Atlántico, Santander, Spain
| | - Hui Cao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| | - Jianbo Xiao
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Zhaojun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- School of Biological Science and Engineering, North Minzu University, Yinchuan, China
| |
Collapse
|
5
|
Shiau JP, Chuang YT, Tang JY, Yang KH, Chang FR, Hou MF, Yen CY, Chang HW. The Impact of Oxidative Stress and AKT Pathway on Cancer Cell Functions and Its Application to Natural Products. Antioxidants (Basel) 2022; 11:1845. [PMID: 36139919 PMCID: PMC9495789 DOI: 10.3390/antiox11091845] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 01/10/2023] Open
Abstract
Oxidative stress and AKT serine-threonine kinase (AKT) are responsible for regulating several cell functions of cancer cells. Several natural products modulate both oxidative stress and AKT for anticancer effects. However, the impact of natural product-modulating oxidative stress and AKT on cell functions lacks systemic understanding. Notably, the contribution of regulating cell functions by AKT downstream effectors is not yet well integrated. This review explores the role of oxidative stress and AKT pathway (AKT/AKT effectors) on ten cell functions, including apoptosis, autophagy, endoplasmic reticulum stress, mitochondrial morphogenesis, ferroptosis, necroptosis, DNA damage response, senescence, migration, and cell-cycle progression. The impact of oxidative stress and AKT are connected to these cell functions through cell function mediators. Moreover, the AKT effectors related to cell functions are integrated. Based on this rationale, natural products with the modulating abilities for oxidative stress and AKT pathway exhibit the potential to regulate these cell functions, but some were rarely reported, particularly for AKT effectors. This review sheds light on understanding the roles of oxidative stress and AKT pathway in regulating cell functions, providing future directions for natural products in cancer treatment.
Collapse
Affiliation(s)
- Jun-Ping Shiau
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan or
| | - Ya-Ting Chuang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaoshiung Medical University, Kaohsiung 80708, Taiwan
| | - Kun-Han Yang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ming-Feng Hou
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan or
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ching-Yu Yen
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan 71004, Taiwan
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
6
|
Yang T, Tian S, Wang Y, Ji J, Zhao J. Antitumor activity of pachymic acid in cervical cancer through inducing endoplasmic reticulum stress, mitochondrial dysfunction, and activating the AMPK pathway. ENVIRONMENTAL TOXICOLOGY 2022; 37:2121-2132. [PMID: 35524978 DOI: 10.1002/tox.23555] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 04/17/2022] [Accepted: 04/23/2022] [Indexed: 06/14/2023]
Abstract
Pachymic acid has various pharmacological effects, including anti-inflammatory, antioxidant, immunomodulatory, and antitumor. However, the role of pachymic acid in cervical cancer remains unclear. So, we investigated the effects of pachymic acid in cervical cancer and elucidated the underlying mechanisms. We treated HeLa cells and normal cervical epithelial cells (HUCECs) with pachymic acid (0, 10, 20, 40, 80, or 160 μM) for 72 h, and found the cell activity was decreased in cells treated with 160 μM pachymic acid for 48 h or 80 μM pachymic acid for 72 h, while HUCECs viability without effect. Next, we observed that endoplasmic reticulum (ER) related gene expression, mitochondrial membrane potential (MMP) changes, ATP depletion, reactive oxygen species (ROS) generation and apoptosis were increased. Moreover, we observed that cytochrome C (Cytc) expression was increased and apoptosis-inducing factor (AIF) was decreased in the cytoplasm of pachymic acid-treated HeLa cells. Tauroursodeoxycholic acid (TUDCA) of ER stress inhibitor reversed the effects of pachymic acid on HeLa cells. Phosphorylation of AMPK and acetyl-CoA carboxylase (ACC) of the AMPK pathway key protein was upregulated in pachymic acid-induced HeLa cells. Finally, we subcutaneously implanted HeLa cells into female nude mice and treated them with pachymic acid (50 mg/kg) for 3 weeks (5 days/week), and observed in pachymic acid induced xenograft mice, tumor growth was suppressed, cell apoptosis, ER-related gene expression, and ROS levels in tumor tissues were increased. Therefore, these findings demonstrated that pachymic acid plays an anti-tumor activity in cervical cancer through inducing ER stress, mitochondrial dysfunction, and activating the AMPK pathway.
Collapse
Affiliation(s)
- Ting Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Sijuan Tian
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Yaohui Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Jing Ji
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Juan Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| |
Collapse
|
7
|
Mustafa NH, Sekar M, Fuloria S, Begum MY, Gan SH, Rani NNIM, Ravi S, Chidambaram K, Subramaniyan V, Sathasivam KV, Jeyabalan S, Uthirapathy S, Ponnusankar S, Lum PT, Bhalla V, Fuloria NK. Chemistry, Biosynthesis and Pharmacology of Sarsasapogenin: A Potential Natural Steroid Molecule for New Drug Design, Development and Therapy. Molecules 2022; 27:2032. [PMID: 35335393 PMCID: PMC8955086 DOI: 10.3390/molecules27062032] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/12/2022] [Accepted: 03/16/2022] [Indexed: 12/13/2022] Open
Abstract
Sarsasapogenin is a natural steroidal sapogenin molecule obtained mainly from Anemarrhena asphodeloides Bunge. Among the various phytosteroids present, sarsasapogenin has emerged as a promising molecule due to the fact of its diverse pharmacological activities. In this review, the chemistry, biosynthesis and pharmacological potentials of sarsasapogenin are summarised. Between 1996 and the present, the relevant literature regarding sarsasapogenin was obtained from scientific databases including PubMed, ScienceDirect, Scopus, and Google Scholar. Overall, sarsasapogenin is a potent molecule with anti-inflammatory, anticancer, antidiabetic, anti-osteoclastogenic and neuroprotective activities. It is also a potential molecule in the treatment for precocious puberty. This review also discusses the metabolism, pharmacokinetics and possible structural modifications as well as obstacles and opportunities for sarsasapogenin to become a drug molecule in the near future. More comprehensive preclinical studies, clinical trials, drug delivery, formulations of effective doses in pharmacokinetics studies, evaluation of adverse effects and potential synergistic effects with other drugs need to be thoroughly investigated to make sarsasapogenin a potential molecule for future drug development.
Collapse
Affiliation(s)
- Nur Hanisah Mustafa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh 30450, Malaysia; (N.H.M.); (P.T.L.)
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh 30450, Malaysia; (N.H.M.); (P.T.L.)
| | | | - M. Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia;
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Kuala Lumpur 47500, Malaysia;
| | - Nur Najihah Izzati Mat Rani
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh 30450, Malaysia;
| | - Subban Ravi
- Department of Chemistry, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India;
| | - Kumarappan Chidambaram
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia;
| | - Vetriselvan Subramaniyan
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jalan SP 2, Bandar Saujana Putra, Jenjarom 42610, Malaysia;
| | | | - Srikanth Jeyabalan
- Department of Pharmacology, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research (DU), Porur, Chennai 600116, Tamil Nadu, India;
| | - Subasini Uthirapathy
- Faculty of Pharmacy, Tishk International University, Erbil 44001, Kurdistan Region, Iraq;
| | - Sivasankaran Ponnusankar
- Department of Pharmacy Practice, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty 643001, Tamil Nadu, India;
| | - Pei Teng Lum
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh 30450, Malaysia; (N.H.M.); (P.T.L.)
| | - Vijay Bhalla
- SGT College of Pharmacy, SGT University, Gurugram 122505, Haryana, India;
| | - Neeraj Kumar Fuloria
- Faculty of Pharmacy, AIMST University, Bedong 08100, Malaysia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospital, Saveetha University, Chennai 600077, Tamil Nadu, India
| |
Collapse
|
8
|
Dash MK, Joshi N, Dubey VS, Dwivedi KN, Gautam DNS. Screening of anti-cancerous potential of classical Raudra rasa and modified Raudra rasa modified with hiraka bhasma (nanodiamond) through FTIR & LC-MS analysis. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2022; 19:669-682. [PMID: 35106982 DOI: 10.1515/jcim-2021-0410] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/29/2021] [Indexed: 01/10/2023]
Abstract
OBJECTIVES Raudra rasa is an ayurvedic medicine explicitly prescribed for the treatment of arbuda (cancer), whereas hiraka bhasma has the potential to promote cancer healing properties. Together, these two medicines provide multifunction benefits. This paper analyses the functional groups of Raudra rasa modified with hiraka bhasma and compares it with the classically prepared raudra rasa. To identify the functional group, organic ligands, and active compounds present in samples of raudra rasa (CRR) and modified raudra rasa with hiraka bhasma (MRR) contributing to cancer alleviation by using Fourier transform infrared spectroscopy (FTIR) & LC-MS analysis. METHODS Classical raudra rasa (CRR), its ingredients, shadguna kajjali (SK); decoction of Piper betel Linn. (PBD); Amaranthus spinosus Linn. (ASD); Boerhaavia diffusa Linn. (BDD); Piper longum Linn. (PLD); cow urine (GM), & similarly modified raudra rasa (MRR), its ingredients, hiraka bhasma (HB); shadguna rasasindura (SHR); water-soluble extract of Piper betel Linn. (PBE); Amaranthus spinosus Linn. (ASE); Boerhaavia diffusa Linn. (BDE); cow urine ark (GA); Piper Longum Linn. (PLE) were subjected to FTIR and LC-MS analysis. RESULTS Among all 15 samples studied, maximum numbers of peaks (21) were seen in MRR indicating a greater number of functional groups. Further, in MRR, a maximum peak in the double bond region is suggestive of its higher stability compared to CRR. Both the compound is preliminarily a mixture of the number of functional groups like; fluoro, methyl, amino, hydroxy, nitro, methylamino, carbonyl, and iodo groups, having known anti-proliferative activities. By the FT-IR analysis, the biologically active compounds in aqueous and methanol extract of CRR & MRR were identified that have anti-cancerous compounds. In the present study, a total of 40 major compounds like alkaloids, amino acid, carboxylic acid, Flavonoids, Nucleoside, Nucleotide, phenylpropanoid, Sphingosine, stilbenoid, sugar, phosphate, terpenoids, vitamin from aqueous & methanol extract of CRR & MRR were identified by LC-MS. CONCLUSIONS This research paper highlights the presence of different functional groups and bioactive compounds known to have anti-cancer activities. Thus, this review suggests future recommendations for the design and development of improved anticancer drugs with higher efficacy.
Collapse
Affiliation(s)
- Manoj Kumar Dash
- Department of Rasashastra, Faculty of Ayurveda, IMS, BHU, Varanasi, India
| | - Namrata Joshi
- Department of Rasashastra, Faculty of Ayurveda, IMS, BHU, Varanasi, India
| | - Vd Sushil Dubey
- Department of Kriya Sarira, Faculty of Ayurveda, IMS, BHU, Varanasi, India
| | | | | |
Collapse
|
9
|
Halike X, Li J, Yuan P, Yasheng K, Chen M, Xia L, Li J. The petroleum ether extract of Brassica rapa L. induces apoptosis of lung adenocarcinoma cells via the mitochondria-dependent pathway. Food Funct 2021; 12:10023-10039. [PMID: 34523644 DOI: 10.1039/d1fo01547h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Brassica rapa L. is one of the most popular traditional foods with a variety of biological activities. In this study, the petroleum ether extract of B. rapa was separated by silica gel column chromatography, and named BRPS, which was identified by LC-MS. The effects and pharmacological mechanisms of BRPS on the treatment of lung cancer were investigated both in vitro and in vivo. The results showed that BRPS significantly inhibited the proliferation of both human lung cancer A549 and mouse lung cancer LLC cells, while its toxicity to normal cells was lower than that of cancer cells. BRPS induced cell cycle arrest at the G2/M phase and significantly reduced the levels of CDK1 and CyclinB1 in A549 cells. Moreover, BRPS induced apoptosis in a dose-dependent manner, and increased the Bax/Bcl-2 ratio, while it decreased mitochondrial membrane potential, promoted the release of cytochrome c, activated caspase 9 and 3, and enhanced the degradation of PARP in A549 cells. Furthermore, the levels of reactive oxygen species (ROS) were also upregulated by BRPS and ROS inhibitor reversed BRPS-induced apoptosis. Importantly, BRPS significantly suppressed the growth of LLC cells in vivo without any obvious side effect on body weight and organs of mice, and increased the proportion of B cells, CD4+ T cells, CD8+ T cells and CD44+CD8+ T cells in the spleen. These results revealed that BRPS inhibited the growth of lung cancer cells through inducing cell cycle arrest, mitochondria-dependent apoptosis, and activating immunity of mice, and BRPS might be a potential anti-tumor functional food and promising agent for the treatment of lung cancer.
Collapse
Affiliation(s)
- Xierenguli Halike
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China.
| | - Jinyu Li
- College of Life Science, Xinjiang Normal University, Urumqi, Xinjiang, China
| | - Pengfei Yuan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China.
| | - Kaimeiliya Yasheng
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China.
| | - Min Chen
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China.
| | - Lijie Xia
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China.
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China.
| |
Collapse
|
10
|
de Seabra Rodrigues Dias IR, Lo HH, Zhang K, Law BYK, Nasim AA, Chung SK, Wong VKW, Liu L. Potential therapeutic compounds from traditional Chinese medicine targeting endoplasmic reticulum stress to alleviate rheumatoid arthritis. Pharmacol Res 2021; 170:105696. [PMID: 34052360 DOI: 10.1016/j.phrs.2021.105696] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease which affects about 0.5-1% of people with symptoms that significantly impact a sufferer's lifestyle. The cells involved in propagating RA tend to display pro-inflammatory and cancer-like characteristics. Medical drug treatment is currently the main avenue of RA therapy. However, drug options are limited due to severe side effects, high costs, insufficient disease retardation in a majority of patients, and therapeutic effects possibly subsiding over time. Thus there is a need for new drug therapies. Endoplasmic reticulum (ER) stress, a condition due to accumulation of misfolded proteins in the ER, and subsequent cellular responses have been found to be involved in cancer and inflammatory pathologies, including RA. ER stress protein markers and their modulation have therefore been suggested as therapeutic targets, such as GRP78 and CHOP, among others. Some current RA therapeutic drugs have been found to have ER stress-modulating properties. Traditional Chinese Medicines (TCMs) frequently use natural products that affect multiple body and cellular targets, and several medicines and/or their isolated compounds have been found to also have ER stress-modulating capabilities, including TCMs used in RA treatment by Chinese Medicine practitioners. This review encourages, in light of the available information, the study of these RA-treating, ER stress-modulating TCMs as potential new pharmaceutical drugs for use in clinical RA therapy, along with providing a list of other ER stress-modulating TCMs utilized in treatment of cancers, inflammatory diseases and other diseases, that have potential use in RA treatment given similar ER stress-modulating capacity.
Collapse
Affiliation(s)
- Ivo Ricardo de Seabra Rodrigues Dias
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Hang Hong Lo
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Kaixi Zhang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Betty Yuen Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, China
| | - Ali Adnan Nasim
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Sookja Kim Chung
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China; Faculty of Medicine, Macau University of Science and Technology, Macau, China.
| | - Vincent Kam Wai Wong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, China.
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, China.
| |
Collapse
|
11
|
Basnet R, Khadka S, Basnet BB, Basnet TB, Chidi BB, Nirala S, Gupta R, Sharma B. Xanthine Oxidase and Transforming Growth Factor Beta-activated Kinase 1: Potential Targets for Gout Intervention. Curr Rheumatol Rev 2020; 17:153-161. [PMID: 33243128 DOI: 10.2174/1573397116666201126162202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/16/2020] [Accepted: 09/25/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Gout, inflammatory arthritis caused by the deposition of monosodium urate crystals into affected joints and other tissues, has become one of the major health problems of today's world. The main risk factor for gout is hyperuricemia, which may be caused by excessive or insufficient excretion of uric acid. The incidence is usually in the age group of 30- 50 years, commonly in males. In developed countries, the incidence of gout ranges from 1 to 4%. Despite effective treatments, there has been an increase in the number of cases over the past few decades. OBJECTIVE In recent years, the development of targeted drugs in gout has made significant achievements. The global impact of gout continues to increase, and as a result, the focus of disease-modifying therapies remains elusive. In addition, the characterization of available instrumental compounds is urgently needed to explore the use of novel selective and key protein-ligand interactions for the effective treatment of gout. Xanthine oxidase (XO) is a key target in gout to consider the use of XO inhibitors in patients with mild to moderate condition, however, the costs are high, and no other direct progress has been made. Despite many XO inhibitors, a selective potent inhibitor for XO is limited. Likewise, in recent years, attention has been focused on different strategies for the discovery and development of new selectivity ligands against transforming growth factor beta- activated kinase 1 (TAK1), a potential therapeutic target for gout. Therefore, the insight on human XO structure and TAK1 provides a clue into protein-ligand interactions and provides the basis for molecular modeling and structure-based drug design. CONCLUSION In this review, we briefly introduce the clinical characteristics, the development of crystal, inhibitors, and crystal structure of XO and TAK1 protein.
Collapse
Affiliation(s)
- Rajesh Basnet
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Sandhya Khadka
- Department of Pharmacy, Hope International College, Purbanchal University, Lalitpur, Nepal
| | | | - Til Bahadur Basnet
- Little Buddha College of Health Sciences, Purbanchal University, Min Bhawan Kathmandu, Nepal
| | - Buddhi Bal Chidi
- Department of Drug Administration, Government of Nepal, Kathmandu, Nepal
| | - Sanjeev Nirala
- Department of Cardiology of the Ruijin Hospital affiliated to the Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Radheshyam Gupta
- Dept. of General Surgery, Bariatric and Metabolic Surgery, Nepal Korea Friendship Municipality Hospital, Madhyapur Thimi, Nepal, Qiqihar Medical University, Heilongjiang, China
| | - Bidur Sharma
- Department of Pharmacy, School of Science, Kathmandu University, Dhulikhel, Nepal
| |
Collapse
|
12
|
Peng J, Zhao K, Zhu J, Wang Y, Sun P, Yang Q, Zhang T, Han W, Hu W, Yang W, Ruan J, Qian Y. Sarsasapogenin Suppresses RANKL-Induced Osteoclastogenesis in vitro and Prevents Lipopolysaccharide-Induced Bone Loss in vivo. Drug Des Devel Ther 2020; 14:3435-3447. [PMID: 32943842 PMCID: PMC7474134 DOI: 10.2147/dddt.s256867] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 07/23/2020] [Indexed: 01/02/2023] Open
Abstract
INTRODUCTION Osteoclasts are giant polynuclear cells; their main function is bone resorption. An increased number of osteoclasts and enhanced bone resorption exert significant effects on osteoclast-related bone-lytic diseases, including osteoporosis. Given the limitations of current therapies for osteolytic diseases, it is urgently required to develop safer and more effective alternatives. Sarsasapogenin, a major sapogenin from Anemarrhena asphodeloides Bunge, possesses potent antitumor effects and inhibits NF-κB and MAPK signaling. However, the manner in which it affects osteoclasts is unclear. METHODS We investigated the effects of anti-osteoclastogenic and anti-resorptive of sarsasapogenin on bone marrow-derived osteoclasts. RESULTS Sarsasapogenin inhibited multiple RANKL-induced signaling cascades, thereby inhibiting the induction of key osteoclast transcription factor NFATc1. The in vivo and in vitro results were consistent: sarsasapogenin treatment protected against bone loss in a mouse osteolysis model induced by lipopolysaccharide. CONCLUSION Our research confirms that sarsasapogenin can be used as a new treatment for osteoclast-related osteolytic diseases.
Collapse
Affiliation(s)
- Jiaxuan Peng
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Guangxi530021, People’s Republic of China
| | - Kangxian Zhao
- The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang325000, People’s Republic of China
| | - Jiling Zhu
- Department of Clinical Medicine, Medical College of Shaoxing University, Shaoxing, Zhejiang312000, People’s Republic of China
| | - Yanben Wang
- Department of Orthopaedics, Shaoxing People’s Hospital, Zhejiang University School of Medicine, Shaoxing312000, Zhejiang, People’s Republic of China
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Peng Sun
- The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang325000, People’s Republic of China
| | - Qichang Yang
- The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang325000, People’s Republic of China
| | - Tan Zhang
- Department of Orthopaedics, Shaoxing People’s Hospital, Zhejiang University School of Medicine, Shaoxing312000, Zhejiang, People’s Republic of China
| | - Weiqi Han
- Department of Orthopaedics, Shaoxing People’s Hospital, Zhejiang University School of Medicine, Shaoxing312000, Zhejiang, People’s Republic of China
| | - Wenjun Hu
- Department of Orthopaedics, Shaoxing People’s Hospital, Zhejiang University School of Medicine, Shaoxing312000, Zhejiang, People’s Republic of China
| | - Wanlei Yang
- Department of Orthopaedics, Shaoxing People’s Hospital, Zhejiang University School of Medicine, Shaoxing312000, Zhejiang, People’s Republic of China
| | - Jianwei Ruan
- Department of Orthopaedics, Taizhou Municipal Hospital, Taizhou318000, Zhejiang, Republic of China
| | - Yu Qian
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Guangxi530021, People’s Republic of China
- The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang325000, People’s Republic of China
- Department of Orthopaedics, Shaoxing People’s Hospital, Zhejiang University School of Medicine, Shaoxing312000, Zhejiang, People’s Republic of China
| |
Collapse
|
13
|
Wang S, Liu M, Wang W, Li T, Cui M, Sun W, Yang X, Song S. Preparation and Evaluation of mPEG-PLGA Block Copolymer Micelles Loaded with a Sarsasapogenin Derivative. AAPS PharmSciTech 2019; 20:280. [PMID: 31399832 DOI: 10.1208/s12249-019-1491-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/23/2019] [Indexed: 02/07/2023] Open
Abstract
Sarsasapogenin derivative 5n (SGD 5n) is a new compound with potent antitumor efficacy, but the low solubility severely affects its absorption and bioavailability. Therefore, the SGD 5n-loaded mPEG-PLGA block copolymer micelles were developed to improve the value of SGD 5n in clinical application. The polymeric micelles were prepared by an organic solvent evaporation method, and the encapsulation efficiency (EE), drug loading (DL), critical micelle concentrations (CMC), morphology, particle size, and zeta potential were determined. The cytotoxicity was examined by the MTT assay, and the cellular uptake study was performed by confocal laser scanning microscopy. A model of tumor-bearing mouse was established to study the antitumor activity in vivo. The results demonstrated that the particle size of the prepared micelle was 124.6 ± 9.6 nm, the encapsulation efficiency was 82.0 ± 2.9%, and the drug loading was 8.3 ± 0.4%. The results of cytotoxicity and cellular uptake demonstrated that the SGD 5n-loaded micelles could efficiently enter tumor cells, and the cellular uptake of SGD 5n presented concentration and time dependence. This study demonstrated that the prepared SGD 5n-loaded polymeric micelles had significant antitumor activity and provided a basis for clinical development of new compound SGD 5n.
Collapse
|
14
|
Pei L, Ge S, Ye Y, Jiang Z, Liang X, Zhao W, Ma L. Development and validation of a UPLC-MS/MS method for determination of Sarsasapogenin-AA22 in rat plasma and its application to a pharmacokinetic study. Biomed Chromatogr 2018; 32:e4295. [PMID: 29797524 DOI: 10.1002/bmc.4295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 05/16/2018] [Indexed: 11/12/2022]
Abstract
A sarsasapogenin derivative, sarsasapogenin-AA22 (AA22), with cyclobutylamine at the 3-hydroxyl position of sarsasapogenin, has great neuroprotective activity in PC12 cells and NO production inhibitory activity in RAW264.7 cell lines. A method was developed to determine AA22 in rat plasma which was further applied to evaluate the pharmacokinetics of AA22 after taking a single dose of AA22. Liquid chromatography tandem mass spectrometry was used in the method, while diosgenin was used as internal standard. A simple protein precipitation based on acetonitrile was utilized. A simple sample cleanup promoted the throughput of the method considerably. The method was validated over the range of 1-1000 ng/mL with a correlation coefficient > 0.99. The lower limit of quantification was 1 ng/mL for AA22 in plasma. Intra- and inter-day accuracies for AA22 were 92-111 and 100-103%, respectively, and the inter-day precision was <15%. After a single oral dose of 25 mg/kg of AA22, the mean peak plasma concentration of AA22 was 2114 ± 362 ng/mL at 6 h. The area under the plasma concentration-time curve was 196,098 ± 69,375 h ng/mL, and the elimination half-life was 8.7 ± 2.2 h.
Collapse
Affiliation(s)
- Lixia Pei
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Songlan Ge
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yiyi Ye
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ziwei Jiang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoqiang Liang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenshu Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei Ma
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
15
|
Wang W, Zhang Y, Yao G, Wang W, Shang X, Zhang Y, Wang X, Wang S, Song S. Synthesis of new sarsasapogenin derivatives with antiproliferative and apoptotic effects in MCF-7 cells. Steroids 2018; 131:23-31. [PMID: 29337037 DOI: 10.1016/j.steroids.2018.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 12/13/2017] [Accepted: 01/08/2018] [Indexed: 01/08/2023]
Abstract
Sarsasapogenin, a kind of mainly effective component of Anemarrhena asphodeloides Bunge, possesses good antitumor properties. Two series of new sarsasapogenin derivatives were synthesized and evaluated for their cytotoxicities against three human cancer cell lines (HepG2, A549, MCF-7) using the MTT assay. The structure-activity relationship revealed that the N, N-dimethylamino, pyrrolidinyl, and imidazolyl substituted at the C26 position could increase the antitumor efficacy of the 3-oxo sarsasapogenin series of compounds. Compound 4c with pyrrolidinyl substituted at the C26 position exhibited the greatest cytotoxic activity against MCF-7 cell line (IC50 = 10.66 μM), which was 4.3-fold more potent than sarsasapogenin. Action mechanism investigations showed that 4c could inhibit the colony formation and induce the apoptosis of MCF-7 cells. Further researches showed that a decrease in mitochondrial membrane potential and increases in the expression level of cleaved-PARP and the ratio of Bax/Bcl-2 were observed in MCF-7 cells after treatment with 4c, suggesting that the mitochondrial pathway was involved in the 4c-mediated apoptosis. These results show that compound 4c may serve as a lead for further optimization.
Collapse
Affiliation(s)
- Wenbao Wang
- Department of Natural Products Chemistry, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Yingying Zhang
- Department of Natural Products Chemistry, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Guodong Yao
- Department of Natural Products Chemistry, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Wei Wang
- Department of Natural Products Chemistry, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xinyue Shang
- Department of Natural Products Chemistry, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Yan Zhang
- Department of Natural Products Chemistry, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xiaobo Wang
- Department of Natural Products Chemistry, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Chinese People's Liberation Army 210 Hospital, Dalian 116021, People's Republic of China.
| | - Shaojie Wang
- Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| | - Shaojiang Song
- Department of Natural Products Chemistry, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| |
Collapse
|
16
|
Liu X, Kang J, Wang H, Huang T. Mitochondrial ROS contribute to oridonin-induced HepG2 apoptosis through PARP activation. Oncol Lett 2017; 15:2881-2888. [PMID: 29435014 PMCID: PMC5778846 DOI: 10.3892/ol.2017.7665] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 11/10/2017] [Indexed: 01/11/2023] Open
Abstract
Oridonin, the main active constituent of Rabdosia rubescens, is known to exert antitumor activity via the induction of apoptosis in numerous types of human cancer cells. However, the underlying regulatory mechanisms of mitochondrial ROS in oridonin-induced HepG2 apoptosis remain largely unknown, due to limitations of subcellular imaging resolution. Previously, it has been suggested that mitochondria serve a potential role in sensing and signaling cellular redox changes in vital biological processes such as cell death and the abiotic stress response, based on studies involving the mitochondrial-targeted redox-sensitive green fluorescent protein (GFP). To address this, a mitochondrial-targeted Grx1-roGFP2 (mtGrx1-roGFP2) biosensor was implemented to monitor real-time mitochondrial redox changes of HepG2 cells in response to either H2O2/DTT or oridonin/SS31 treatment. It was determined that oridonin caused a perturbation in mitochondrial redox status, which in turn contributed to oridonin-induced apoptosis. Furthermore, a novel mechanism underlying the regulation of mitochondrial redox changes in oridonin-induced HepG2 apoptosis, presumably dependent on PARP cleavage, was proposed. In conclusion, the present study provides evidence in support of mitochondrial redox changes as a potential mediator in the apoptotic activities of oridonin in HepG2 cells, which provides insight into the molecular mechanisms by which mitochondrial redox signaling regulates oridonin-induced apoptosis in cancer therapy, and the development of mitochondria-specific oridonin as a promising novel anticancer therapeutic strategy.
Collapse
Affiliation(s)
- Xiaoning Liu
- Department of Biochemistry, School of Medicine, Huanghe College of Science and Technology, Zhengzhou, Henan 450063, P.R. China
| | - Jingjing Kang
- Department of Biochemistry, School of Medicine, Huanghe College of Science and Technology, Zhengzhou, Henan 450063, P.R. China
| | - Hui Wang
- Department of Biochemistry, School of Medicine, Huanghe College of Science and Technology, Zhengzhou, Henan 450063, P.R. China
| | - Tao Huang
- Department of Biochemistry, School of Medicine, Huanghe College of Science and Technology, Zhengzhou, Henan 450063, P.R. China
| |
Collapse
|
17
|
Khang PV, Phuong DM, Ma L. New steroids from Anemarrhena asphodeloides rhizome and their α-glucosidase inhibitory activity. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2017; 19:468-473. [PMID: 27658357 DOI: 10.1080/10286020.2016.1234459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 09/06/2016] [Indexed: 06/06/2023]
Abstract
Two new steroids were isolated from acid hydrolysis residue of the rhizomes of Anemarrhena asphodeloides. Their structures were identified on the basis of several spectroscopic analysis approaches including 1D, 2D-NMR techniques, and MS data, and by the comparison of spectral data of the known compounds. The biological activities of these two isolated compounds were explored on α-glucosidase. Compound 1 displayed 4.7 folds inhibitory activity against α-glucosidase compared with the positive control acarbose.
Collapse
Affiliation(s)
- Pham Van Khang
- a Faculty of Chemistry , Thai Nguyen University of Education , Thai Nguyen City 250000 , Viet Nam
- b Shanghai Key Laboratory of New Drug Design, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China
| | - Dao Mai Phuong
- a Faculty of Chemistry , Thai Nguyen University of Education , Thai Nguyen City 250000 , Viet Nam
| | - Lei Ma
- b Shanghai Key Laboratory of New Drug Design, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China
| |
Collapse
|
18
|
Two new steroidal saponins isolated from Anemarrhena asphodeloides. Chin J Nat Med 2017; 15:220-224. [DOI: 10.1016/s1875-5364(17)30038-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Indexed: 11/22/2022]
|
19
|
Wang W, Wang D, Wang Z, Yao G, Li X, Gao P, Li L, Zhang Y, Wang S, Song S. Synthesis of new sarsasapogenin derivatives with cytotoxicity and apoptosis-inducing activities in human breast cancer MCF-7 cells. Eur J Med Chem 2016; 127:62-71. [PMID: 28038327 DOI: 10.1016/j.ejmech.2016.12.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/02/2016] [Accepted: 12/03/2016] [Indexed: 12/31/2022]
Abstract
Based on the fact that Timosaponin A-III, a saponin isolated from the rhizome of Anemarrhena asphodeloides, is a promising bioactive lead compound in the treatment of cancer, structural modification at the C3 and C26 positions of sarsasapogenin has always been the focus of our structure-activity investigations. In this paper, we describe the synthesis of a range of new derivatives 5a-5o and the evaluation of their antitumor activities in a panel of six human cancer cell lines using the MTT assay in vitro. The results obtained showed that compounds 5h, 5i, and 5n exhibited significant cytotoxic activities against the six cell lines, being more potent than their parent compound sarsasapogenin. Furthermore, the p-fluorobenzyloxy series of compounds generally exhibited stronger cytotoxicities against all the tested cancer cells compared with the benzyloxy and p-methoxybenzyloxy series, and the substitution of pyrrolidinyl and piperazinyl groups at the C26 position was the preferred option for these compounds to display antitumor activities. Compound 5n exhibited excellent cytotoxic activity against MCF-7 cell line (IC50 = 2.95 μM), and was 16.7-fold more potent than sarsasapogenin. Further studies of the cellular mechanism of 5n showed that it arrested MCF-7 cells at the G2/M phase and induced apoptosis and necrosis. All these results show that it is important to carry out structural modification of sarsasapogenin to obtain some promising derivatives with marked antitumor activities, and the representative compound 5n is a lead compound for further research.
Collapse
Affiliation(s)
- Wenbao Wang
- Department of Natural Products Chemistry, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Di Wang
- Department of Natural Products Chemistry, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Zedan Wang
- Department of Natural Products Chemistry, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Guodong Yao
- Department of Natural Products Chemistry, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xue Li
- School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Pinyi Gao
- Shenyang University of Chemical Technology, Shenyang 110142, People's Republic of China
| | - Lingzhi Li
- Department of Natural Products Chemistry, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Yan Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Shaojie Wang
- Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| | - Shaojiang Song
- Department of Natural Products Chemistry, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| |
Collapse
|
20
|
Wang B, Zhao XH. Apigenin induces both intrinsic and extrinsic pathways of apoptosis in human colon carcinoma HCT-116 cells. Oncol Rep 2016; 37:1132-1140. [PMID: 27959417 DOI: 10.3892/or.2016.5303] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 11/24/2016] [Indexed: 11/06/2022] Open
Abstract
Apigenin is one of the plant-originated flavones with anticancer activities. In this study, apigenin was assessed for its in vitro effects on a human colon carcinoma line (HCT‑116 cells) in terms of anti-proliferation, cell cycle progression arrest, apoptosis and intracellular reactive oxygen species (ROS) generation, and then outlined its possible apoptotic mechanism for the cells. Apigenin exerted cytotoxic effect on the cells via inhibiting cell growth in a dose-time-dependent manner and causing morphological changes, arrested cell cycle progression at G0/G1 phase, and decreased mitochondrial membrane potential of the treated cells. Apigenin increased respective ROS generation and Ca2+ release and thereby, caused ER stress in the treated cells. Apigenin shows apoptosis induction towards the cells, resulting in enhanced portion of apoptotic cells. A mechanism involved ROS generation and endoplasmic reticulum stress was outlined for the apigenin-mediated apoptosis via both intrinsic mitochondrial and extrinsic pathways, based on the assayed mRNA and protein expression levels in the cells. With this mechanism, apigenin resulted in the HCT-116 cells with enhanced intracellular ROS generation and Ca2+ release together with damaged mitochondrial membrane, and upregulated protein expression of CHOP, DR5, cleaved BID, Bax, cytochrome c, cleaved caspase-3, cleaved caspase-8 and cleaved caspase-9, which triggered apoptosis of the cells.
Collapse
Affiliation(s)
- Bo Wang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| | - Xin-Huai Zhao
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| |
Collapse
|
21
|
Yang B, Liu Z, Hu J, Lai X, Xia P. Quantitative determination of sarsasapogenin in rat plasma using liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1022:213-219. [DOI: 10.1016/j.jchromb.2016.04.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 04/03/2016] [Accepted: 04/09/2016] [Indexed: 01/07/2023]
|
22
|
King YA, Chiu YJ, Chen HP, Kuo DH, Lu CC, Yang JS. Endoplasmic reticulum stress contributes to arsenic trioxide-induced intrinsic apoptosis in human umbilical and bone marrow mesenchymal stem cells. ENVIRONMENTAL TOXICOLOGY 2016; 31:314-328. [PMID: 25258189 DOI: 10.1002/tox.22046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 09/04/2014] [Indexed: 06/03/2023]
Abstract
Arsenic trioxide is an old drug and has been used for a long time in traditional Chinese and Western medicines. However, the cancer treatment of arsenic trioxide has heart and vascular toxicity. The cytotoxic effects of arsenic trioxide and its molecular mechanism in human umbilical mesenchymal stem cells (HUMSC) and human bone marrow-derived mesenchymal stem cells (HMSC-bm) were investigated in this study. Our results showed that arsenic trioxide significantly reduced the viability of HUMSC and HMSC-bm in a concentration- and time-dependent manner. Arsenic trioxide is able to induce apoptotic cell death in HUMSC and HMSC-bm, as shown from the results of morphological examination, flow cytometric analyses, DAPI staining and comet assay. The appearance of arsenic trioxide also led to an increase of intracellular free calcium (Ca(2+) ) concentration and the disruption of mitochondrial membrane potential (ΔΨm). The caspase-9 and caspase-3 activities were time-dependently increased in arsenic trioxide-treated HUMSC and HMSC-bm. In addition, the proteomic analysis and DNA microarray were carried out to investigate the expression level changes of genes and proteins affected by arsenic trioxide treatment in HUMSC. Our results suggest that arsenic trioxide induces a prompt induction of ER stress and mitochondria-modulated apoptosis in HUMSC and HMSC-bm. A framework was proposed for the effect of arsenic trioxide cytotoxicity by targeting ER stress.
Collapse
Affiliation(s)
- Yih-An King
- Department of Dermatology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yu-Jen Chiu
- Division of Reconstructive and Plastic Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hao-Ping Chen
- Department of Biochemistry, Tzu Chi University, Hualien, Taiwan
| | - Daih-Huang Kuo
- Department of Pharmacy and Graduate Institute of Pharmaceutical Technology, Tajen University, Pingtung, Taiwan
| | - Chi-Cheng Lu
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | | |
Collapse
|
23
|
Dai L, Liu J, Luo Z, Li M, Cai K. Tumor therapy: targeted drug delivery systems. J Mater Chem B 2016; 4:6758-6772. [DOI: 10.1039/c6tb01743f] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The review highlights the main targeted drug delivery systems for tumor therapy, including the targeting sites, strategies, mechanisms and preclinical/clinical trials.
Collapse
Affiliation(s)
- Liangliang Dai
- Key Laboratory of Biorheological Science and Technology
- Ministry of Education College of Bioengineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Junjie Liu
- Key Laboratory of Biorheological Science and Technology
- Ministry of Education College of Bioengineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Zhong Luo
- Key Laboratory of Biorheological Science and Technology
- Ministry of Education College of Bioengineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Menghuan Li
- Key Laboratory of Biorheological Science and Technology
- Ministry of Education College of Bioengineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology
- Ministry of Education College of Bioengineering
- Chongqing University
- Chongqing 400044
- P. R. China
| |
Collapse
|
24
|
Joniova J, Misuth M, Sureau F, Miskovsky P, Nadova Z. Effect of PKCα expression on Bcl-2 phosphorylation and cell death by hypericin. Apoptosis 2015; 19:1779-92. [PMID: 25300800 DOI: 10.1007/s10495-014-1043-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In order to explain the contribution of the protein kinase Cα (PKCα) in apoptosis induced by photo-activation of hypericin (Hyp), a small interfering RNA was used for post-transcriptional silencing of pkcα gene expression. We have evaluated the influence of Hyp photo-activation on cell death in non-transfected and transfected (PKCα(-)) human glioma cells (U-87 MG). No significant differences were detected in cell survival between non-transfected and transfected PKCα(-) cells. However, the type of cell death was notably affected by silencing the pkcα gene. Photo-activation of Hyp strongly induced apoptosis in non-transfected cells, but the level of necrotic cells in transfected PKCα(-) cells increased significantly. The differences in cell death after Hyp photo-activation are demonstrated by changes in: (i) reactive oxygen species production, (ii) Bcl-2 phosphorylation on Ser70 (pBcl-2(Ser70)), (iii) cellular distributions of pBcl-2(Ser70) and (iv) cellular distribution of endogenous anti-oxidant glutathione and its co-localization with mitochondria. In summary, we suggest that post-transcriptional silencing of the pkcα gene and the related decrease of PKCα level considerably affects the anti-apoptotic function and the anti-oxidant function of Bcl-2. This implies that PKCα, as Bcl-2 kinase, indirectly protects U-87 MG cells against oxidative stress and subsequent cell death.
Collapse
Affiliation(s)
- Jaroslava Joniova
- Department of Biophysics, Faculty of Science, University of Pavol Jozef Safarik, Jesenna 5, 041 54, Kosice, Slovak Republic
| | | | | | | | | |
Collapse
|
25
|
Farooqi AA, Li KT, Fayyaz S, Chang YT, Ismail M, Liaw CC, Yuan SSF, Tang JY, Chang HW. Anticancer drugs for the modulation of endoplasmic reticulum stress and oxidative stress. Tumour Biol 2015; 36:5743-52. [PMID: 26188905 PMCID: PMC4546701 DOI: 10.1007/s13277-015-3797-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 07/10/2015] [Indexed: 12/20/2022] Open
Abstract
Prior research has demonstrated how the endoplasmic reticulum (ER) functions as a multifunctional organelle and as a well-orchestrated protein-folding unit. It consists of sensors which detect stress-induced unfolded/misfolded proteins and it is the place where protein folding is catalyzed with chaperones. During this folding process, an immaculate disulfide bond formation requires an oxidized environment provided by the ER. Protein folding and the generation of reactive oxygen species (ROS) as a protein oxidative byproduct in ER are crosslinked. An ER stress-induced response also mediates the expression of the apoptosis-associated gene C/EBP-homologous protein (CHOP) and death receptor 5 (DR5). ER stress induces the upregulation of tumor necrosis factor-related apoptosis inducing ligand (TRAIL) receptor and opening new horizons for therapeutic research. These findings can be used to maximize TRAIL-induced apoptosis in xenografted mice. This review summarizes the current understanding of the interplay between ER stress and ROS. We also discuss how damage-associated molecular patterns (DAMPs) function as modulators of immunogenic cell death and how natural products and drugs have shown potential in regulating ER stress and ROS in different cancer cell lines. Drugs as inducers and inhibitors of ROS modulation may respectively exert inducible and inhibitory effects on ER stress and unfolded protein response (UPR). Reconceptualization of the molecular crosstalk among ROS modulating effectors, ER stress, and DAMPs will lead to advances in anticancer therapy.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), KRL Hospital, Islamabad, Pakistan,
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Banerjee S, Dixit A, Shridharan RN, Karande AA, Chakravarty AR. Endoplasmic reticulum targeted chemotherapeutics: the remarkable photo-cytotoxicity of an oxovanadium(IV) vitamin-B6 complex in visible light. Chem Commun (Camb) 2015; 50:5590-2. [PMID: 24723198 DOI: 10.1039/c4cc02093f] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An oxovanadium(IV) vitamin-B6 Schiff base complex, viz. [VO(HL)(acdppz)]Cl, having (acridinyl)dipyridophenazine (acdppz) shows specific localization to endoplasmic reticulum (ER) and remarkable apoptotic photocytotoxicity in visible light (400-700 nm) in HeLa and MCF-7 cancer cells (IC50 < 0.6 μM) while being non-toxic in the dark and to MCF-10A normal cells (IC50 > 40 μM).
Collapse
Affiliation(s)
- Samya Banerjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | | | | | | | | |
Collapse
|
27
|
Endoplasmic reticulum stress signaling in mammalian oocytes and embryos: life in balance. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 316:227-65. [PMID: 25805126 DOI: 10.1016/bs.ircmb.2015.01.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mammalian oocytes and embryos are exquisitely sensitive to a wide range of insults related to physical stress, chemical exposure, and exposures to adverse maternal nutrition or health status. Although cells manifest specific responses to various stressors, many of these stressors intersect at the endoplasmic reticulum (ER), where disruptions in protein folding and production of reactive oxygen species initiate downstream signaling events. These signals modulate mRNA translation and gene transcription, leading to recovery, activation of autophagy, or with severe and prolonged stress, apoptosis. ER stress signaling has recently come to the fore as a major contributor to embryo demise. Accordingly, agents that modulate or inhibit ER stress signaling have yielded beneficial effects on embryo survival and long-term developmental potential. We review here the mechanisms of ER stress signaling, their connections to mammalian oocytes and embryos, and the promising indications that interventions in this pathway may provide new opportunities for improving mammalian reproduction and health.
Collapse
|
28
|
Goswami TK, Gadadhar S, Balaji B, Gole B, Karande AA, Chakravarty AR. Ferrocenyl-l-amino acid copper(ii) complexes showing remarkable photo-induced anticancer activity in visible light. Dalton Trans 2014; 43:11988-99. [DOI: 10.1039/c4dt01348d] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|