1
|
Roy N, Debnath P, Gaur HS. Adoption of Multi-omics Approaches to Address Drought Stress Tolerance in Rice and Mitigation Strategies for Sustainable Production. Mol Biotechnol 2025:10.1007/s12033-025-01400-0. [PMID: 40088409 DOI: 10.1007/s12033-025-01400-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 02/03/2025] [Indexed: 03/17/2025]
Abstract
Drought is considered one of the major limiting factors for crop production. Drought-affected areas are consistently expanding. As rice stands as a primary grain widely consumed as a staple food by people across the globe, with a particular prominence in Asian countries. Due to its short root structure, thin cuticular wax layer and quick stomatal closure, rice is considered as drought-sensitive crop. The impact of drought on rice amplifies with plant growth and its adverse effects are more pronounced during the reproductive phase, including stages such as blooming, filling and maturity. Every year rice growers are facing a considerable deterioration of yield due to abiotic stresses specially drought. To address this undesirable consequences, multi-omics approaches are successfully being utilized as a mitigation strategy. A thorough, precise and systematic comprehension of the fundamental biological and cellular mechanisms activated by crop plants during stress is achieved through a range of omics technologies, including genomics, transcriptomics, proteomics and metabolomics. The integration of multi omics approaches offers a holistic understanding of cellular dynamics during drought or other stress conditions. These omics-based tools can identify and manipulate drought-tolerant genes. Utilizing omics approaches to stack these genes in rice contributes to the development of a drought resistant plant architecture. This review article aims to compile the latest published strategies on the application of multi omics approaches to accelerate the development of drought-tolerant rice plants.
Collapse
Affiliation(s)
- Nabarun Roy
- School of Agriculture, Galgotias University, Greater Noida, Uttar Pradesh, 203201, India.
- Department of Agricultural Biotechnology, Assam Agricultural University (AAU), Jorhat, Assam, 785013, India.
| | - Prasenjit Debnath
- College of Agriculture, Lembucherra, Agartala, Tripura, 799210, India
| | - Hari Shankar Gaur
- School of Agriculture, Galgotias University, Greater Noida, Uttar Pradesh, 203201, India
| |
Collapse
|
2
|
Alavi Naini SM, Soussi-Yanicostas N. Heparan Sulfate as a Therapeutic Target in Tauopathies: Insights From Zebrafish. Front Cell Dev Biol 2018; 6:163. [PMID: 30619849 PMCID: PMC6306439 DOI: 10.3389/fcell.2018.00163] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/15/2018] [Indexed: 12/13/2022] Open
Abstract
Microtubule-associated protein tau (MAPT) hyperphosphorylation and aggregation, are two hallmarks of a family of neurodegenerative disorders collectively referred to as tauopathies. In many tauopathies, including Alzheimer's disease (AD), progressive supranuclear palsy (PSP) and Pick's disease, tau aggregates are found associated with highly sulfated polysaccharides known as heparan sulfates (HSs). In AD, amyloid beta (Aβ) peptide aggregates associated with HS are also characteristic of disease. Heparin, an HS analog, promotes misfolding, hyperphosphorylation and aggregation of tau protein in vitro. HS also provides cell surface receptors for attachment and uptake of tau seeds, enabling their propagation. These findings point to HS-tau interactions as potential therapeutic targets in tauopathies. The zebrafish genome contains genes paralogous to MAPT, genes orthologous to HS biosynthetic and chain modifier enzymes, and other genes implicated in AD. The nervous system in the zebrafish bears anatomical and chemical similarities to that in humans. These homologies, together with numerous technical advantages, make zebrafish a valuable model for investigating basic mechanisms in tauopathies and identifying therapeutic targets. Here, we comprehensively review current knowledge on the role of HSs in tau pathology and HS-targeting therapeutic approaches. We also discuss novel insights from zebrafish suggesting a role for HS 3-O-sulfated motifs in tau pathology and establishing HS antagonists as potential preventive agents or therapies for tauopathies.
Collapse
Affiliation(s)
- Seyedeh Maryam Alavi Naini
- Department of Neuroscience, Institut de Biologie Paris Seine (IBPS), INSERM, CNRS, Sorbonne Université, Paris, France
| | | |
Collapse
|
3
|
Stephenson EL, Yong VW. Pro-inflammatory roles of chondroitin sulfate proteoglycans in disorders of the central nervous system. Matrix Biol 2018; 71-72:432-442. [PMID: 29702175 DOI: 10.1016/j.matbio.2018.04.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/21/2018] [Accepted: 04/21/2018] [Indexed: 02/06/2023]
Abstract
The extracellular matrix of the central nervous system is an interconnected network of proteins and sugars. It is crucial for homeostasis, but its remodeling in neurological diseases impacts both injury and repair. Here we introduce an extracellular matrix family member that participates in immune-matrix interactions, the chondroitin sulfate proteoglycans. Chondroitin sulfate proteoglycans integrate signals from the microenvironment to activate immune cells, and they boost inflammatory responses by binding immunological receptors including toll-like receptors, selectins, CD44, and β1 integrin. Chondroitin sulfate proteoglycans also bind signaling molecules for immune cells such as cytokines and chemokines, and they activate matrix-degrading enzymes. Chondroitin sulfate proteoglycans accumulate in the damaged CNS, including during traumatic brain/spinal cord injury and multiple sclerosis, and they help drive pathogenesis. This Review aims to give new insights into the remodeling of chondroitin sulfate proteoglycans during inflammation, and how these matrix glycoproteins are able to drive neuroinflammation.
Collapse
Affiliation(s)
- Erin L Stephenson
- Hotchkiss Brain Institute and the University of Calgary, Calgary, Alberta, Canada
| | - V Wee Yong
- Hotchkiss Brain Institute and the University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
4
|
Warford JR, Lamport AC, Clements DR, Malone A, Kennedy BE, Kim Y, Gujar SA, Hoskin DW, Easton AS. Surfen, a proteoglycan binding agent, reduces inflammation but inhibits remyelination in murine models of Multiple Sclerosis. Acta Neuropathol Commun 2018; 6:4. [PMID: 29301568 PMCID: PMC5755315 DOI: 10.1186/s40478-017-0506-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 12/17/2017] [Indexed: 01/18/2023] Open
Abstract
Proteoglycans are promising therapeutic targets in Multiple Sclerosis (MS), because they regulate many aspects of the immune response. This was studied using surfen, an agent that binds both heparan sulphate proteoglycans (HSPGs) and chondroitin sulphate proteoglycans (CSPGs). Initial cell culture work on bone marrow derived macrophages (BMDMs) found that surfen reduced concentrations of the chemokines CCL2, CCL4 and CCL5, with reduced messenger (m)RNA expression for Tumor Necrosis Factor, IL-6, IL-1β and inducible nitric oxide synthase. These data were further explored using Experimental Autoimmune Encephalomyelitis (EAE) in mice. Surfen reduced clinical signs during EAE when administered from disease onset, and reduced infiltration by CD4 positive T cells and macrophages into the central nervous system. These mice also showed reduced mRNA expression for the chemokines CCL3 and CCL5, with reduced concentrations of CCL2, CCL3 and CCL5. During EAE, surfen treatment induced a persistent increase in Interleukin (IL)-4 concentrations which may enhance T helper 2 responses. During EAE, surfen treatment reduced mRNA expression for HSPGs (NDST1, agrin, syndecan-4, perlecan, serglycin, syndecan-1) and the CSPG versican. By contrast, surfen increased mRNA expression for the CSPG aggrecan, with no effect on neurocan. During EAE, significant positive correlations were found between mRNA expression and clinical score for syndecan-4, serglycin and syndecan-1 and a significant negative correlation for aggrecan. These correlations were absent in surfen treated mice. Repair in the later stages of MS involves remyelination, which was modeled by injecting lysolecithin (lysophosphatidylcholine, LPC) into mouse corpus callosum to create regions of demyelination. When surfen was injected 2 days after LPC, it delayed remyelination of the lesions, but had no effect when injected 7 days after LPC. The delayed remyelination was associated with local increases in CSPG expression. Therefore surfen suppresses inflammation but inhibits remyelination in these models. A mechanism in common may be increased CSPG expression.
Collapse
|
5
|
Huang ML, Michalak AL, Fisher CJ, Christy M, Smith RAA, Godula K. Small Molecule Antagonist of Cell Surface Glycosaminoglycans Restricts Mouse Embryonic Stem Cells in a Pluripotent State. Stem Cells 2017; 36:45-54. [PMID: 28984039 DOI: 10.1002/stem.2714] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 09/06/2017] [Accepted: 09/14/2017] [Indexed: 11/06/2022]
Abstract
Recently, the field of stem cell-based regeneration has turned its attention toward chemical approaches for controlling the pluripotency and differentiation of embryonic stem cells (ESCs) using drug-like small molecule modulators. Growth factor receptors or their associated downstream kinases that regulate intracellular signaling pathways during differentiation are typically the targets for these molecules. The glycocalyx, which plays an essential role in actuating responses to growth factors at the cellular boundary, offers an underexplored opportunity for intervention using small molecules to influence differentiation. Here, we show that surfen, an antagonist of cell-surface glycosaminoglycans required for growth factor association with cognate receptors, acts as a potent and general inhibitor of differentiation and promoter of pluripotency in mouse ESCs. This finding shows that drugging the stem cell Glycome with small molecules to silence differentiation cues can provide a powerful new alternative to existing techniques for controlling stem cell fate. Stem Cells 2018;36:45-54.
Collapse
Affiliation(s)
- Mia L Huang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| | - Austen L Michalak
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| | - Christopher J Fisher
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| | - Mitchell Christy
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| | - Raymond A A Smith
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| | - Kamil Godula
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
6
|
Abstract
Heparin and heparan sulfate glycosaminoglycans are long, linear polysaccharides that are made up of alternating dissacharide sequences of sulfated uronic acid and amino sugars. Unlike heparin, which is only found in mast cells, heparan sulfate is ubiquitously expressed on the cell surface and in the extracellular matrix of all animal cells. These negatively-charged glycans play essential roles in important cellular functions such as cell growth, adhesion, angiogenesis, and blood coagulation. These biomolecules are also involved in pathophysiological conditions such as pathogen infection and human disease. This review discusses past and current methods for targeting these complex biomolecules as a novel therapeutic strategy to treating disorders such as cancer, neurodegenerative diseases, and infection.
Collapse
Affiliation(s)
- Ryan J Weiss
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093-0358, USA
| | - Jeffrey D Esko
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093-0358, USA
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0358, USA.
| |
Collapse
|
7
|
Weiss RJ, Gordts PLSM, Le D, Xu D, Esko JD, Tor Y. Small molecule antagonists of cell-surface heparan sulfate and heparin-protein interactions. Chem Sci 2015; 6:5984-5993. [PMID: 28133533 PMCID: PMC5267326 DOI: 10.1039/c5sc01208b] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 07/21/2015] [Indexed: 01/13/2023] Open
Abstract
Surfen, bis-2-methyl-4-amino-quinolyl-6-carbamide, was previously reported as a small molecule antagonist of heparan sulfate (HS), a key cell-surface glycosaminoglycan found on all mammalian cells. To generate structure-activity relationships, a series of rationally designed surfen analogs was synthesized, where its dimeric structure, exocyclic amines, and urea linker region were modified to probe the role of each moiety in recognizing HS. An in vitro assay monitoring inhibition of fibroblast growth factor 2 binding to wild-type CHO cells was utilized to quantify interactions with cell surface HS. The dimeric molecular structure of surfen and its aminoquinoline ring systems was essential for its interaction with HS, and certain dimeric analogs displayed higher inhibitory potency than surfen and were also shown to block downstream FGF signaling in mouse embryonic fibroblast cells. These molecules were also able to antagonize other HS-protein interactions including the binding of soluble RAGE to HS. Importantly, selected molecules were shown to neutralize heparin and other heparinoids, including the synthetic pentasaccharide fondaparinux, in a factor Xa chromogenic assay and in vivo in mice. These results suggest that small molecule antagonists of heparan sulfate and heparin can be of therapeutic potential for the treatment of disorders involving glycosaminoglycan-protein interactions.
Collapse
Affiliation(s)
- Ryan J. Weiss
- Department of Chemistry and Biochemistry , University of California , San Diego , La Jolla , CA 92093-0358 , USA .
| | - Philip L. S. M. Gordts
- Cellular and Molecular Medicine , University of California , San Diego , La Jolla , CA 92093-0687 , USA
| | - Dzung Le
- Department of Medicine , University of California , San Diego , La Jolla , CA 92093-0612 , USA
- Glycobiology Research and Training Center , University of California , San Diego , La Jolla , CA 92093-0687 , USA
| | - Ding Xu
- Department of Oral Biology , University at Buffalo , Buffalo , NY 14260-1660 , USA
| | - Jeffrey D. Esko
- Cellular and Molecular Medicine , University of California , San Diego , La Jolla , CA 92093-0687 , USA
- Glycobiology Research and Training Center , University of California , San Diego , La Jolla , CA 92093-0687 , USA
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry , University of California , San Diego , La Jolla , CA 92093-0358 , USA .
- Glycobiology Research and Training Center , University of California , San Diego , La Jolla , CA 92093-0687 , USA
| |
Collapse
|
8
|
Zsila F. Glycosaminoglycan and DNA Binding Induced Intra- and Intermolecular Exciton Coupling of thebis-4-Aminoquinoline Surfen. Chirality 2015; 27:605-12. [DOI: 10.1002/chir.22471] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/28/2015] [Indexed: 02/02/2023]
Affiliation(s)
- Ferenc Zsila
- Research Group of Chemical Biology; Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences; Budapest Hungary
| |
Collapse
|
9
|
Zsila F. Inclusion excluded: Chiroptical sensing of the external surface of sulfated cyclodextrins. Biochem Biophys Res Commun 2015; 460:863-7. [DOI: 10.1016/j.bbrc.2015.03.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 03/21/2015] [Indexed: 12/27/2022]
|