1
|
Rauner M, Foessl I, Formosa MM, Kague E, Prijatelj V, Lopez NA, Banerjee B, Bergen D, Busse B, Calado Â, Douni E, Gabet Y, Giralt NG, Grinberg D, Lovsin NM, Solan XN, Ostanek B, Pavlos NJ, Rivadeneira F, Soldatovic I, van de Peppel J, van der Eerden B, van Hul W, Balcells S, Marc J, Reppe S, Søe K, Karasik D. Perspective of the GEMSTONE Consortium on Current and Future Approaches to Functional Validation for Skeletal Genetic Disease Using Cellular, Molecular and Animal-Modeling Techniques. Front Endocrinol (Lausanne) 2021; 12:731217. [PMID: 34938269 PMCID: PMC8686830 DOI: 10.3389/fendo.2021.731217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/30/2021] [Indexed: 12/26/2022] Open
Abstract
The availability of large human datasets for genome-wide association studies (GWAS) and the advancement of sequencing technologies have boosted the identification of genetic variants in complex and rare diseases in the skeletal field. Yet, interpreting results from human association studies remains a challenge. To bridge the gap between genetic association and causality, a systematic functional investigation is necessary. Multiple unknowns exist for putative causal genes, including cellular localization of the molecular function. Intermediate traits ("endophenotypes"), e.g. molecular quantitative trait loci (molQTLs), are needed to identify mechanisms of underlying associations. Furthermore, index variants often reside in non-coding regions of the genome, therefore challenging for interpretation. Knowledge of non-coding variance (e.g. ncRNAs), repetitive sequences, and regulatory interactions between enhancers and their target genes is central for understanding causal genes in skeletal conditions. Animal models with deep skeletal phenotyping and cell culture models have already facilitated fine mapping of some association signals, elucidated gene mechanisms, and revealed disease-relevant biology. However, to accelerate research towards bridging the current gap between association and causality in skeletal diseases, alternative in vivo platforms need to be used and developed in parallel with the current -omics and traditional in vivo resources. Therefore, we argue that as a field we need to establish resource-sharing standards to collectively address complex research questions. These standards will promote data integration from various -omics technologies and functional dissection of human complex traits. In this mission statement, we review the current available resources and as a group propose a consensus to facilitate resource sharing using existing and future resources. Such coordination efforts will maximize the acquisition of knowledge from different approaches and thus reduce redundancy and duplication of resources. These measures will help to understand the pathogenesis of osteoporosis and other skeletal diseases towards defining new and more efficient therapeutic targets.
Collapse
Affiliation(s)
- Martina Rauner
- Department of Medicine III, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- University Hospital Carl Gustav Carus, Dresden, Germany
| | - Ines Foessl
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Endocrine Lab Platform, Medical University of Graz, Graz, Austria
| | - Melissa M. Formosa
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Erika Kague
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Vid Prijatelj
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- The Generation R Study, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Nerea Alonso Lopez
- Rheumatology and Bone Disease Unit, CGEM, Institute of Genetics and Cancer (IGC), Edinburgh, United Kingdom
| | - Bodhisattwa Banerjee
- Musculoskeletal Genetics Laboratory, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Dylan Bergen
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ângelo Calado
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Eleni Douni
- Department of Biotechnology, Agricultural University of Athens, Athens, Greece
- Institute for Bioinnovation, B.S.R.C. “Alexander Fleming”, Vari, Greece
| | - Yankel Gabet
- Department of Anatomy & Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Natalia García Giralt
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, Barcelona, Spain
| | - Daniel Grinberg
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, CIBERER, IBUB, IRSJD, Barcelona, Spain
| | - Nika M. Lovsin
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Xavier Nogues Solan
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, Barcelona, Spain
| | - Barbara Ostanek
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Nathan J. Pavlos
- Bone Biology & Disease Laboratory, School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia
| | | | - Ivan Soldatovic
- Institute of Medical Statistics and Informatic, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jeroen van de Peppel
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Bram van der Eerden
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Wim van Hul
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Susanna Balcells
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, CIBERER, IBUB, IRSJD, Barcelona, Spain
| | - Janja Marc
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Sjur Reppe
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Kent Søe
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - David Karasik
- Azrieli Faculty of Medicine, Bar-Ilan University, Ramat Gan, Israel
- Marcus Research Institute, Hebrew SeniorLife, Boston, MA, United States
| |
Collapse
|
2
|
Jensen PR, Andersen TL, Chavassieux P, Roux JP, Delaisse JM. Bisphosphonates impair the onset of bone formation at remodeling sites. Bone 2021; 145:115850. [PMID: 33465485 DOI: 10.1016/j.bone.2021.115850] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/08/2021] [Accepted: 01/15/2021] [Indexed: 12/20/2022]
Abstract
Bisphosphonates are widely used anti-osteoporotic drugs targeting osteoclasts. They strongly inhibit bone resorption, but also strongly reduce bone formation. This reduced formation is commonly ascribed to the mechanism maintaining the resorption/formation balance during remodeling. The present study provides evidence for an additional mechanism where bisphosphonates actually impair the onset of bone formation after resorption. The evidence is based on morphometric parameters recently developed to assess the activities reversing resorption to formation. Herein, we compare these parameters in cancellous bone of alendronate- and placebo-treated postmenopausal osteoporotic patients. Alendronate increases the prevalence of eroded surfaces characterized by reversal cells/osteoprogenitors at low cell density and remote from active bone surfaces. This indicates deficient cell expansion on eroded surfaces - an event that is indispensable to start formation. Furthermore, alendronate decreases the coverage of these eroded surfaces by remodeling compartment canopies, a putative source of reversal cells/osteoprogenitors. Finally, alendronate strongly decreases the activation frequency of bone formation, and decreases more the formative compared to the eroded surfaces. All these parameters correlate with each other. These observations lead to a model where bisphosphonates hamper the osteoprogenitor recruitment required to initiate bone formation. This effect results in a larger eroded surface, thereby explaining the well-known paradox that bisphosphonates strongly inhibit bone resorption without strongly decreasing eroded surfaces. The possible mechanism for hampered osteoprogenitor recruitment is discussed: bisphosphonates may decrease the release of osteogenic factors by the osteoclasts, and/or bisphosphonates released by osteoclasts may act directly on neighboring osteoprogenitor cells as reported in preclinical studies.
Collapse
Affiliation(s)
- Pia Rosgaard Jensen
- Clinical Cell Biology, Lillebælt Hospital, Department of Regional Health Research, University of Southern Denmark, Vejle, Denmark.
| | - Thomas Levin Andersen
- Clinical Cell Biology, Lillebælt Hospital, Department of Regional Health Research, University of Southern Denmark, Vejle, Denmark; Clinical Cell Biology, Department of Pathology, Odense University Hospital, Department of Clinical Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark; Department of Forensic Medicine, Aarhus University, Aarhus, Denmark.
| | | | | | - Jean-Marie Delaisse
- Clinical Cell Biology, Lillebælt Hospital, Department of Regional Health Research, University of Southern Denmark, Vejle, Denmark; Clinical Cell Biology, Department of Pathology, Odense University Hospital, Department of Clinical Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
3
|
Delaisse JM, Andersen TL, Kristensen HB, Jensen PR, Andreasen CM, Søe K. Re-thinking the bone remodeling cycle mechanism and the origin of bone loss. Bone 2020; 141:115628. [PMID: 32919109 DOI: 10.1016/j.bone.2020.115628] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 09/04/2020] [Accepted: 09/04/2020] [Indexed: 02/06/2023]
Abstract
Proper bone remodeling necessarily requires that osteoblasts reconstruct the bone that osteoclasts have resorbed. However, the cellular events connecting resorption to reconstruction have remained poorly known. The consequence is a fragmentary understanding of the remodeling cycle where only the resorption and formation steps are taken into account. New tools have recently made possible to elucidate how resorption shifts to formation, thereby allowing to comprehend the remodeling cycle as a whole. This new knowledge is reviewed herein. It shows how teams of osteoclasts and osteoblast lineage cells are progressively established and how they are subjected therein to reciprocal interactions. Contrary to the common view, osteoclasts and osteoprogenitors are intermingled on the eroded surfaces. The analysis of the resorption and cell population dynamics shows that osteoprogenitor cell expansion and resorption proceed as an integrated mechanism; that a threshold cell density of osteoprogenitors on the eroded surface is mandatory for onset of bone formation; that the cell initiating osteoprogenitor cell expansion is the osteoclast; and that the osteoclast therefore triggers putative osteoprogenitor reservoirs positioned at proximity of the eroded bone surface (bone lining cells, canopy cells, pericytes). The interplay between magnitude of resorption and rate of cell expansion governs how soon bone reconstruction is initiated and may determine uncoupling and permanent bone loss if a threshold cell density is not reached. The clinical perspectives opened by these findings are discussed.
Collapse
Affiliation(s)
- Jean-Marie Delaisse
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, Department of Clinical Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark.
| | - Thomas Levin Andersen
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, Department of Clinical Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark; Department of Forensic Medicine, Aarhus University, Aarhus, Denmark.
| | - Helene Bjoerg Kristensen
- Clinical Cell Biology, Lillebælt Hospital, Department of Regional Health Research, University of Southern Denmark, Vejle, Denmark.
| | - Pia Rosgaard Jensen
- Clinical Cell Biology, Lillebælt Hospital, Department of Regional Health Research, University of Southern Denmark, Vejle, Denmark.
| | - Christina Møller Andreasen
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, Department of Clinical Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark.
| | - Kent Søe
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, Department of Clinical Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
4
|
Abourehab MAS. Hyaluronic Acid Modified Risedronate and Teriparatide Co-loaded Nanocarriers for Improved Osteogenic Differentiation of Osteoblasts for the Treatment of Osteoporosis. Curr Pharm Des 2020; 25:2975-2988. [PMID: 31368869 DOI: 10.2174/1381612825666190801140703] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 07/31/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Owing to its multifactorial intricate pathogenesis, combined therapeutic regimen is considered appropriate for the treatment of osteoporosis. However, a multi-drug regimen is also associated with adverse effects due to the non-specific distribution of drugs. Therefore, the present study aims for efficient codelivery of risedronate (RDN) (a potent bone anti-resorptive drug) and teriparatide (TPD) (anabolic agent) as hyaluronic acid (HA)-modified chitosan nanoparticles (NPs). METHODS RDN/TPD NPs were synthesized using the high- pressure homogenization - solvent evaporation technique. The fabricated NPs were then characterized and optimized for suitable physicochemical characteristics. The optimized NPs were then evaluated for bone remodeling potential via assessment of time-mannered modulation in proliferation, differentiation, and mineralization of osteoblasts. RESULTS Results showed that HA-RDN/TPD NPs exhibited excellent physicochemical characteristics (nanoscopic size, stable zeta potential, high entrapment efficiency, and smooth spherical shape) and remained stable upon storage in the refrigerator. Assessment of various aspects of the cell growth cycle (i.e., proliferation, differentiation, and mineralization) evidenced promising bone regeneration efficacy of HA-RDN/TPD NPs. CONCLUSION This new strategy of employing simultaneous delivery of anti-resorptive and bone-forming agents would open new horizons for scientists, researchers, and healthcare providers as an efficient pharmacotherapy for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Mohammed A S Abourehab
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt.,Department of Pharmaceutics, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
5
|
Sims NA, Martin TJ. Osteoclasts Provide Coupling Signals to Osteoblast Lineage Cells Through Multiple Mechanisms. Annu Rev Physiol 2019; 82:507-529. [PMID: 31553686 DOI: 10.1146/annurev-physiol-021119-034425] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bone remodeling is essential for the repair and replacement of damaged and old bone. The major principle underlying this process is that osteoclast-mediated resorption of a quantum of bone is followed by osteoblast precursor recruitment; these cells differentiate to matrix-producing osteoblasts, which form new bone to replace what was resorbed. Evidence from osteopetrotic syndromes indicate that osteoclasts not only resorb bone, but also provide signals to promote bone formation. Osteoclasts act upon osteoblast lineage cells throughout their differentiation by facilitating growth factor release from resorbed matrix, producing secreted proteins and microvesicles, and expressing membrane-bound factors. These multiple mechanisms mediate the coupling of bone formation to resorption in remodeling. Additional interactions of osteoclasts with osteoblast lineage cells, including interactions with canopy and reversal cells, are required to achieve coordination between bone formation and resorption during bone remodeling.
Collapse
Affiliation(s)
- Natalie A Sims
- Bone Cell Biology and Disease Unit, St. Vincent's Institute of Medical Research, Melbourne, Victoria 3065, Australia; , .,Department of Medicine, The University of Melbourne, St. Vincent's Hospital, Melbourne, Victoria 3065, Australia
| | - T John Martin
- Bone Cell Biology and Disease Unit, St. Vincent's Institute of Medical Research, Melbourne, Victoria 3065, Australia; , .,Department of Medicine, The University of Melbourne, St. Vincent's Hospital, Melbourne, Victoria 3065, Australia
| |
Collapse
|
6
|
Frost M, Tencerova M, Andreasen CM, Andersen TL, Ejersted C, Svaneby D, Qui W, Kassem M, Zarei A, McAlister WH, Veis DJ, Whyte MP, Frederiksen AL. Absence of an osteopetrosis phenotype in IKBKG (NEMO) mutation-positive women: A case-control study. Bone 2019; 121:243-254. [PMID: 30659980 PMCID: PMC6457251 DOI: 10.1016/j.bone.2019.01.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/12/2018] [Accepted: 01/14/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND NF-κB essential modulator (NEMO), encoded by IKBKG, is necessary for activation of the ubiquitous transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Animal studies suggest NEMO is required for NF-κB mediated bone homeostasis, but this has not been thoroughly studied in humans. IKBKG loss-of-function mutation causes incontinentia pigmenti (IP), a rare X-linked disease featuring linear hypopigmentation, alopecia, hypodontia, and immunodeficiency. Single case reports describe osteopetrosis (OPT) in boys carrying hypomorphic IKBKG mutations. METHOD We studied the bone phenotype in women with IP with evaluation of radiographs of the spine and non-dominant arm and leg; lumbar spine and femoral neck aBMD using DXA; μ-CT and histomorphometry of trans-iliac crest biopsy specimens; bone turnover markers; and cellular phenotype in bone marrow skeletal (stromal) stem cells (BM-MSCs) in a cross-sectional, age-, sex-, and BMI-matched case-control study. X-chromosome inactivation was measured in blood leucocytes and BM-MSCs using a PCR method with methylation of HpaII sites. NF-κB activity was quantitated in BM-MSCs using a luciferase NF-κB reporter assay. RESULTS Seven Caucasian women with IP (age: 24-67 years and BMI: 20.0-35.2 kg/m2) and IKBKG mutation (del exon 4-10 (n = 4); c.460C>T (n = 3)) were compared to matched controls. The IKBKG mutation carriers had extremely skewed X-inactivation (>90:10%) in blood, but not in BM-MSCs. NF-κB activity was lower in BM-MSCs from IKBKG mutation carriers (n = 5) compared to controls (3094 ± 679 vs. 5422 ± 1038/μg protein, p < 0.01). However, no differences were identified on skeletal radiographics, aBMD, μ-architecture of the iliac crest, or bone turnover markers. The IKBKG mutation carriers had a 1.7-fold greater extent of eroded surfaces relative to osteoid surfaces (p < 0.01), and a 2.0-fold greater proportion of arrested reversal surface relative to active reversal surface (p < 0.01). CONCLUSION Unlike mutation-positive males, the IKBKG mutation-positive women did not manifest OPT.
Collapse
Affiliation(s)
- Morten Frost
- Department of Clinical Research, Faculty of Health, University of Southern Denmark (SDU), Winsløwparken 19. 3, DK-5000 Odense C, Denmark; Steno Diabetes Center Odense, Odense University Hospital (OUH), J.B. Winsløws Vej 4, DK-5000 Odense C, Denmark; Department of Endocrinology, Molecular Endocrinology Unit, OUH, J.B. Winsløws Vej 4, DK-5000 Odense C, Denmark.
| | - Michaela Tencerova
- Department of Endocrinology, Molecular Endocrinology Unit, OUH, J.B. Winsløws Vej 4, DK-5000 Odense C, Denmark.
| | - Christina M Andreasen
- Orthopaedic Research Laboratory, Department of Orthopaedic Surgery & Traumatology, OUH, J.B. Winsløws Vej 15, DK-5000 Odense C, Denmark; Department of Clinical Cell Biology, Vejle Hospital, Beridderbakken 4, DK-7100 Vejle, Denmark.
| | - Thomas L Andersen
- Department of Clinical Cell Biology, Vejle Hospital, Beridderbakken 4, DK-7100 Vejle, Denmark.
| | - Charlotte Ejersted
- Department of Endocrinology, Molecular Endocrinology Unit, OUH, J.B. Winsløws Vej 4, DK-5000 Odense C, Denmark.
| | - Dea Svaneby
- Department of Clinical Genetics, Vejle Hospital, Beridderbakken 4, DK-7100 Vejle, Denmark.
| | - Weimin Qui
- Department of Endocrinology, Molecular Endocrinology Unit, OUH, J.B. Winsløws Vej 4, DK-5000 Odense C, Denmark
| | - Moustapha Kassem
- Department of Endocrinology, Molecular Endocrinology Unit, OUH, J.B. Winsløws Vej 4, DK-5000 Odense C, Denmark.
| | - Allahdad Zarei
- Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO, USA.
| | - William H McAlister
- Department of Pediatric Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine at St. Louis Children's Hospital, St. Louis, MO, USA.
| | - Deborah J Veis
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospital for Children, St. Louis, MO, USA; Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO, USA.
| | - Michael P Whyte
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospital for Children, St. Louis, MO, USA; Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO, USA.
| | - Anja L Frederiksen
- Department of Clinical Research, Faculty of Health, University of Southern Denmark (SDU), Winsløwparken 19. 3, DK-5000 Odense C, Denmark; Department of Clinical Genetics, Odense University Hospital, J.B. Winsløws Vej 4, DK-5000 Odense C, Denmark.
| |
Collapse
|
7
|
Brook N, Brook E, Dharmarajan A, Dass CR, Chan A. Breast cancer bone metastases: pathogenesis and therapeutic targets. Int J Biochem Cell Biol 2018; 96:63-78. [DOI: 10.1016/j.biocel.2018.01.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/31/2017] [Accepted: 01/04/2018] [Indexed: 01/03/2023]
|
8
|
Ciapetti G, Di Pompo G, Avnet S, Martini D, Diez-Escudero A, Montufar EB, Ginebra MP, Baldini N. Osteoclast differentiation from human blood precursors on biomimetic calcium-phosphate substrates. Acta Biomater 2017; 50:102-113. [PMID: 27940198 DOI: 10.1016/j.actbio.2016.12.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/08/2016] [Accepted: 12/06/2016] [Indexed: 12/25/2022]
Abstract
The design of synthetic bone grafts to foster bone formation is a challenge in regenerative medicine. Understanding the interaction of bone substitutes with osteoclasts is essential, since osteoclasts not only drive a timely resorption of the biomaterial, but also trigger osteoblast activity. In this study, the adhesion and differentiation of human blood-derived osteoclast precursors (OCP) on two different micro-nanostructured biomimetic hydroxyapatite materials consisting in coarse (HA-C) and fine HA (HA-F) crystals, in comparison with sintered stoichiometric HA (sin-HA, reference material), were investigated. Osteoclasts were induced to differentiate by RANKL-containing supernatant using cell/substrate direct and indirect contact systems, and calcium (Ca++) and phosphorus (P5+) in culture medium were measured. We observed that OCP adhered to the experimental surfaces, and that osteoclast-like cells formed at a rate influenced by the micro- and nano-structure of HA, which also modulate extracellular Ca++. Qualitative differences were found between OCP on biomimetic HA-C and HA-F and their counterparts on plastic and sin-HA. On HA-C and HA-F cells shared typical features of mature osteoclasts, i.e. podosomes, multinuclearity, tartrate acid phosphatase (TRAP)-positive staining, and TRAP5b-enzyme release. However, cells were less in number compared to those on plastic or on sin-HA, and they did not express some specific osteoclast markers. In conclusion, blood-derived OCP are able to attach to biomimetic and sintered HA substrates, but their subsequent fusion and resorptive activity are hampered by surface micro-nano-structure. Indirect cultures suggest that fusion of OCP is sensitive to topography and to extracellular calcium. STATEMENT OF SIGNIFICANCE The novelty of the paper is the differentiation of human blood-derived osteoclast precursors, instead of mouse-derived macrophages as used in most studies, directly on biomimetic micro-nano structured HA-based surfaces, as triggered by osteoblast-produced factors (RANKL/OPG), and influenced by chemistry and topography of the substrate(s). Biomimetic HA-surfaces, like those obtained in calcium phosphate cements, are very different from the conventional calcium phosphate ceramics, both in terms of topography and ion exchange. The role of these factors in modulating precursors' differentiation and activity is analysed. The system is closely reproducing the physiological process of attachment of host cells and further maturation to osteoclasts toward resorption of the substrate, which occurs in vivo after filling bone defects with the calcium phosphate grafts.
Collapse
Affiliation(s)
- Gabriela Ciapetti
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Gemma Di Pompo
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy.
| | - Sofia Avnet
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Desirée Martini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy.
| | - Anna Diez-Escudero
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia, BarcelonaTech (UPC), Barcelona, Spain.
| | - Edgar B Montufar
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia, BarcelonaTech (UPC), Barcelona, Spain.
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia, BarcelonaTech (UPC), Barcelona, Spain; Institute for Bioengineering of Catalonia, Barcelona, Spain.
| | - Nicola Baldini
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy.
| |
Collapse
|
9
|
Abstract
INTRODUCTION Osteoporosis is a significant public health issue affecting over half of women aged over 50. With an aging population, its importance is set to increase further over time. Prevention of fragility fractures avoids significant mortality and morbidity as well as saving significant direct and indirect costs to the economy. In this review, we discuss existing treatments to contextualize the treatment landscape, and demonstrate how our understanding of bone pathophysiology has led to novel therapies-in the form of combinations and altered durations of existing treatments, as well as newer drug therapies. SOURCES OF DATA PubMed and Embase were searched for randomized controlled trials of new therapies for osteoporosis. These searches were supplemented with material presented in abstract form at international meetings. AREAS OF AGREEMENT New drugs that appear promising in the treatment of osteoporosis include the cathepsin K inhibitor, monoclonal antibodies against sclerostin and parathyroid hormone-related protein analog. AREAS OF CONTROVERSY Separate to the development of novel drug therapies is the issue of how best to use agents that are currently available to us; specifically which agent to choose, alone or in combination; duration of therapy; how best to identify patients at highest risk of fracture, and to ensure the highest possible adherence to medication. Many of these issues have been addressed in other excellent review papers, and will not be considered in detail here. GROWING POINTS As with all new treatments, we await results of long-term use and experience in 'real life' patient populations. AREAS TIMELY FOR DEVELOPING RESEARCH As alluded to above, data are urgently required regarding the optimal duration of therapy; use of combination therapy; ordering of therapies for best therapeutic effect. As stratified medicine becomes more strongly considered in all areas of therapy, its merits in osteoporosis as in other musculoskeletal conditions, is timely and valuable.
Collapse
Affiliation(s)
| | - Alice Mason
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Cyrus Cooper
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | - Elaine Dennison
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| |
Collapse
|
10
|
Abdelgawad ME, Delaisse JM, Hinge M, Jensen PR, Alnaimi RW, Rolighed L, Engelholm LH, Marcussen N, Andersen TL. Early reversal cells in adult human bone remodeling: osteoblastic nature, catabolic functions and interactions with osteoclasts. Histochem Cell Biol 2016; 145:603-15. [PMID: 26860863 DOI: 10.1007/s00418-016-1414-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2015] [Indexed: 12/31/2022]
Abstract
The mechanism coupling bone resorption and formation is a burning question that remains incompletely answered through the current investigations on osteoclasts and osteoblasts. An attractive hypothesis is that the reversal cells are likely mediators of this coupling. Their nature is a big matter of debate. The present study performed on human cancellous bone is the first one combining in situ hybridization and immunohistochemistry to demonstrate their osteoblastic nature. It shows that the Runx2 and CD56 immunoreactive reversal cells appear to take up TRAcP released by neighboring osteoclasts. Earlier preclinical studies indicate that reversal cells degrade the organic matrix left behind by the osteoclasts and that this degradation is crucial for the initiation of the subsequent bone formation. To our knowledge, this study is the first addressing these catabolic activities in adult human bone through electron microscopy and analysis of molecular markers. Periosteoclastic reversal cells show direct contacts with the osteoclasts and with the demineralized resorption debris. These early reversal cells show (1) ¾-collagen fragments typically generated by extracellular collagenases of the MMP family, (2) MMP-13 (collagenase-3) and (3) the endocytic collagen receptor uPARAP/Endo180. The prevalence of these markers was lower in the later reversal cells, which are located near the osteoid surfaces and morphologically resemble mature bone-forming osteoblasts. In conclusion, this study demonstrates that reversal cells colonizing bone surfaces right after resorption are osteoblast-lineage cells, and extends to adult human bone remodeling their role in rendering eroded surfaces osteogenic.
Collapse
Affiliation(s)
- Mohamed Essameldin Abdelgawad
- Department of Clinical Cell Biology (KCB), Vejle Hospital - Lillebaelt Hospital, IRS, University of Southern Denmark, Kabbeltoft 25, 7100, Vejle, Denmark.,Faculty of Science, Helwan University, Helwan, Egypt
| | - Jean-Marie Delaisse
- Department of Clinical Cell Biology (KCB), Vejle Hospital - Lillebaelt Hospital, IRS, University of Southern Denmark, Kabbeltoft 25, 7100, Vejle, Denmark.
| | - Maja Hinge
- Department of Clinical Cell Biology (KCB), Vejle Hospital - Lillebaelt Hospital, IRS, University of Southern Denmark, Kabbeltoft 25, 7100, Vejle, Denmark.,Division of Hematology, Department of Internal Medicine, Vejle Hospital - Lillebaelt Hospital, IRS, University of Southern Denmark, Vejle, Denmark
| | - Pia Rosgaard Jensen
- Department of Clinical Cell Biology (KCB), Vejle Hospital - Lillebaelt Hospital, IRS, University of Southern Denmark, Kabbeltoft 25, 7100, Vejle, Denmark
| | - Ragad Walid Alnaimi
- Department of Clinical Cell Biology (KCB), Vejle Hospital - Lillebaelt Hospital, IRS, University of Southern Denmark, Kabbeltoft 25, 7100, Vejle, Denmark
| | - Lars Rolighed
- Breast and Endocrine Section, Department of Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Lars H Engelholm
- The Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Niels Marcussen
- Department of Clinical Pathology, Odense University Hospital, Odense, Denmark
| | - Thomas Levin Andersen
- Department of Clinical Cell Biology (KCB), Vejle Hospital - Lillebaelt Hospital, IRS, University of Southern Denmark, Kabbeltoft 25, 7100, Vejle, Denmark.
| |
Collapse
|
11
|
Tumor-associated Endo180 requires stromal-derived LOX to promote metastatic prostate cancer cell migration on human ECM surfaces. Clin Exp Metastasis 2015; 33:151-65. [PMID: 26567111 PMCID: PMC4761374 DOI: 10.1007/s10585-015-9765-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 11/02/2015] [Indexed: 12/27/2022]
Abstract
The diverse composition and structure of extracellular matrix (ECM) interfaces encountered by tumor cells at secondary tissue sites can influence metastatic progression. Extensive in vitro and in vivo data has confirmed that metastasizing tumor cells can adopt different migratory modes in response to their microenvironment. Here we present a model that uses human stromal cell-derived matrices to demonstrate that plasticity in tumor cell movement is controlled by the tumor-associated collagen receptor Endo180 (CD280, CLEC13E, KIAA0709, MRC2, TEM9, uPARAP) and the crosslinking of collagen fibers by stromal-derived lysyl oxidase (LOX). Human osteoblast-derived and fibroblast-derived ECM supported a rounded ‘amoeboid-like’ mode of cell migration and enhanced Endo180 expression in three prostate cancer cell lines (PC3, VCaP, DU145). Genetic silencing of Endo180 reverted PC3 cells from their rounded mode of migration towards a bipolar ‘mesenchymal-like’ mode of migration and blocked their translocation on human fibroblast-derived and osteoblast-derived matrices. The concomitant decrease in PC3 cell migration and increase in Endo180 expression induced by stromal LOX inhibition indicates that the Endo180-dependent rounded mode of prostate cancer cell migration requires ECM crosslinking. In conclusion, this study introduces a realistic in vitro model for the study of metastatic prostate cancer cell plasticity and pinpoints the cooperation between tumor-associated Endo180 and the stiff microenvironment imposed by stromal-derived LOX as a potential target for limiting metastatic progression in prostate cancer.
Collapse
|
12
|
Geusens P. New insights into treatment of osteoporosis in postmenopausal women. RMD Open 2015; 1:e000051. [PMID: 26557374 PMCID: PMC4632141 DOI: 10.1136/rmdopen-2015-000051] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 04/22/2015] [Accepted: 04/24/2015] [Indexed: 01/05/2023] Open
Abstract
For the prevention of fractures, antiresorptive drugs (bisphosphonates and denosumab) that decrease high bone resorption and, secondarily, also bone formation, are the mainstream of therapy. Osteoanabolic drugs, such as teriparatide, increase bone formation more than bone resorption, and are used in severe osteoporosis, including patients treated with antiresorptive drugs who still lose bone and have recurrent fractures. New potential drugs for fracture prevention that uncouple bone resorption from bone formation include odanacatib, a specific inhibitor of cathepsin-K, the enzyme that degrades bone collagen type I, that inhibits bone resorption and only temporarily bone formation, and monoclonal antibodies against sclerostin (romosozumab, blosozumab), that stimulate bone formation and decrease bone resorption.
Collapse
Affiliation(s)
- Piet Geusens
- Department of Internal Medicine, Division of Rheumatology , CAPHRI School for Public Health and Primary Care, Maastricht University Medical Center , Maastricht , The Netherlands ; Hasselt University, Biomedical Research Institute, and Transnationale Universiteit Limburg , Hasselt , Belgium
| |
Collapse
|
13
|
Andreasen CM, Ding M, Overgaard S, Bollen P, Andersen TL. A reversal phase arrest uncoupling the bone formation and resorption contributes to the bone loss in glucocorticoid treated ovariectomised aged sheep. Bone 2015; 75:32-9. [PMID: 25689083 DOI: 10.1016/j.bone.2015.02.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 02/09/2015] [Indexed: 01/08/2023]
Abstract
Large animals as sheep are often used as models for human osteoporosis. Our aim was therefore to determine how glucocorticoid treatment of ovariectomised sheep affects the cancellous bone, determining the cellular events within the bone remodelling process that contributes to their bone loss. Twenty female sheep were assigned for two groups; an untreated control group and an ovariectomised group treated with glucocorticoids (0.6 mg/kg/day, 5 times weekly) for 7 months. At 7 months the glucocorticoid-treated ovariectomised sheep showed a significant change in the bone microstructure revealed by a decreased trabecular bone volume and thickness compared to the control sheep. The treatment led to a temporary elevation of the bone resorption marker CTX (c-terminal collagen telopeptide), while the bone formation marker osteocalcin remained suppressed all 7 months. Histomorphometrically, the treated sheep had a complete absence of osteoid surfaces, and a 5-fold increase in the extent of eroded/reversal surfaces after 7 months. Most of these reversal surfaces were actually arrested reversal surfaces, defined as reversal surfaces without the presence of neighbouring osteoid surfaces or osteoclasts, which is classically observed next to active reversal surfaces. As in humans, these arrested reversal surfaces had compared to active reversal surfaces a reduced canopy coverage, a significantly decreased cell density, and a decreased immunoreactivity for the osteoblastic markers osterix, runx2 and smooth muscle actin in the mononuclear reversal cells colonising the surfaces. In conclusion, glucocorticoid treatment of ovariectomised sheep induced a significant bone loss, caused by an arrest of the reversal phase, resulting in an uncoupling of the bone formation and resorption during the reversal phase, as recently demonstrated in postmenopausal women with glucocorticoid-induced osteoporosis. This supports the relevance of the sheep model to the pathophysiology of glucocorticoid-induced osteoporosis in postmenopausal women, making it a relevant preclinical model for orthopaedic implant and biomaterial research.
Collapse
Affiliation(s)
- Christina M Andreasen
- Orthopaedic Research Laboratory, Department of Orthopaedics and Traumatology O, Odense University Hospital, Institute of Clinical Research, University of Southern Denmark, J. B. Winsloewsvej 15 ground floor, DK-5000 Odense C, Denmark.
| | - Ming Ding
- Orthopaedic Research Laboratory, Department of Orthopaedics and Traumatology O, Odense University Hospital, Institute of Clinical Research, University of Southern Denmark, J. B. Winsloewsvej 15 ground floor, DK-5000 Odense C, Denmark.
| | - Søren Overgaard
- Orthopaedic Research Laboratory, Department of Orthopaedics and Traumatology O, Odense University Hospital, Institute of Clinical Research, University of Southern Denmark, J. B. Winsloewsvej 15 ground floor, DK-5000 Odense C, Denmark.
| | - Peter Bollen
- Biomedical Laboratory, University of Southern Denmark, J. B. Winsloewsvej 23, DK-5000 Odense C, Denmark.
| | - Thomas L Andersen
- Department of Clinical Cell Biology (KCB), Vejle Hospital - Lillebaelt Hospital, Institute of Regional Health Research, University of Southern Denmark, Vejle, Kabbeltoft 25, DK-7100 Vejle, Denmark.
| |
Collapse
|
14
|
Jensen PR, Andersen TL, Hauge EM, Bollerslev J, Delaissé JM. A joined role of canopy and reversal cells in bone remodeling--lessons from glucocorticoid-induced osteoporosis. Bone 2015; 73:16-23. [PMID: 25497571 DOI: 10.1016/j.bone.2014.12.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 09/19/2014] [Accepted: 12/04/2014] [Indexed: 12/18/2022]
Abstract
Successful bone remodeling demands that osteoblasts restitute the bone removed by osteoclasts. In human cancellous bone, a pivotal role in this restitution is played by the canopies covering the bone remodeling surfaces, since disruption of canopies in multiple myeloma, postmenopausal- and glucocorticoid-induced osteoporosis is associated with the absence of progression of the remodeling cycle to bone formation, i.e., uncoupling. An emerging concept explaining this critical role of canopies is that they represent a reservoir of osteoprogenitors to be delivered to reversal surfaces. In postmenopausal osteoporosis, this concept is supported by the coincidence between the absence of canopies and scarcity of cells on reversal surfaces together with abortion of the remodeling cycle. Here we tested whether this concept holds true in glucocorticoid-induced osteoporosis. A histomorphometric analysis of iliac crest biopsies from patients exposed to long-term glucocorticoid treatment revealed a subpopulation of reversal surfaces corresponding to the characteristics of arrest found in postmenopausal osteoporosis. Importantly, these arrested reversal surfaces were devoid of canopy coverage in almost all biopsies, and their prevalence correlated with a deficiency in bone forming surfaces. Taken together with the other recent data, the functional link between canopies, reversal surface activity, and the extent of bone formation surface in postmenopausal- and glucocorticoid-induced osteoporosis, supports a model where bone restitution during remodeling demands recruitment of osteoprogenitors from the canopy onto reversal surfaces. These data suggest that securing the presence of functional local osteoprogenitors deserves attention in the search of strategies to prevent the bone loss that occurs during bone remodeling in pathological situations.
Collapse
Affiliation(s)
- Pia Rosgaard Jensen
- Department of Clinical Cell Biology (KCB), Vejle Hospital, IRS, University of Southern Denmark, Kabbeltoft 25, 7100 Vejle, Denmark.
| | - Thomas Levin Andersen
- Department of Clinical Cell Biology (KCB), Vejle Hospital, IRS, University of Southern Denmark, Kabbeltoft 25, 7100 Vejle, Denmark
| | - Ellen-Margrethe Hauge
- Department of Rheumatology, Aarhus University Hospital, Building 3, Nørrebrogade 44, 8000 Aarhus C, Denmark
| | - Jens Bollerslev
- Section of Specialized Endocrinology, Medical Clinic B, Oslo University Hospital, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Jean-Marie Delaissé
- Department of Clinical Cell Biology (KCB), Vejle Hospital, IRS, University of Southern Denmark, Kabbeltoft 25, 7100 Vejle, Denmark
| |
Collapse
|
15
|
Abdelgawad ME, Søe K, Andersen TL, Merrild DMH, Christiansen P, Kjærsgaard-Andersen P, Delaisse JM. Does collagen trigger the recruitment of osteoblasts into vacated bone resorption lacunae during bone remodeling? Bone 2014; 67:181-8. [PMID: 25019594 DOI: 10.1016/j.bone.2014.07.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/04/2014] [Accepted: 07/06/2014] [Indexed: 12/28/2022]
Abstract
Osteoblast recruitment during bone remodeling is obligatory to re-construct the bone resorbed by the osteoclast. This recruitment is believed to be triggered by osteoclast products and is therefore likely to start early during the remodeling cycle. Several osteoclast products with osteoblast recruitment potential are already known. Here we draw the attention on the osteoblast recruitment potential of the collagen that is freshly demineralized by the osteoclast. Our evidence is based on observations on adult human cancellous bone, combined with in vitro assays. First, freshly eroded surfaces where osteoblasts have to be recruited show the presence of non-degraded demineralized collagen and close cell-collagen interactions, as revealed by electron microscopy, while surface-bound collagen strongly attracts osteoblast lineage cells in a transmembrane migration assay. Compared with other extracellular matrix molecules, collagen's potency was superior and only equaled by fibronectin. Next, the majority of the newly recruited osteoblast lineage cells positioned immediately next to the osteoclasts exhibit uPARAP/Endo180, an endocytic collagen receptor reported to be involved in collagen internalization and cell migration in various cell types, and whose inactivation is reported to lead to lack of bone formation and skeletal deformities. In the present study, an antibody directed against this receptor inhibits collagen internalization in osteoblast lineage cells and decreases to some extent their migration to surface-bound collagen in the transmembrane migration assay. These complementary observations lead to a model where collagen demineralized by osteoclasts attracts surrounding osteoprogenitors onto eroded surfaces, and where the endocytic collagen receptor uPARAP/Endo180 contributes to this migration, probably together with other collagen receptors. This model fits recent knowledge on the position of osteoprogenitor cells immediately next to remodeling sites in adult human cancellous bone.
Collapse
Affiliation(s)
- Mohamed Essameldin Abdelgawad
- Department of Clinical Cell Biology (KCB), Vejle Hospital, Institute of Regional Health Research, University of Southern Denmark, Denmark.
| | - Kent Søe
- Department of Clinical Cell Biology (KCB), Vejle Hospital, Institute of Regional Health Research, University of Southern Denmark, Denmark.
| | - Thomas Levin Andersen
- Department of Clinical Cell Biology (KCB), Vejle Hospital, Institute of Regional Health Research, University of Southern Denmark, Denmark
| | - Ditte M H Merrild
- Department of Clinical Cell Biology (KCB), Vejle Hospital, Institute of Regional Health Research, University of Southern Denmark, Denmark
| | - Peer Christiansen
- Department of Surgery P, Breast and Endocrine Section, Aarhus University Hospital, Aarhus, Denmark
| | - Per Kjærsgaard-Andersen
- Department of Orthopaedic Surgery, Vejle Hospital, Institute of Regional Health Research, University of Southern Denmark, Denmark
| | - Jean-Marie Delaisse
- Department of Clinical Cell Biology (KCB), Vejle Hospital, Institute of Regional Health Research, University of Southern Denmark, Denmark
| |
Collapse
|
16
|
Gruber R. Molecular and cellular basis of bone resorption. Wien Med Wochenschr 2014; 165:48-53. [PMID: 25223736 DOI: 10.1007/s10354-014-0310-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 08/27/2014] [Indexed: 10/24/2022]
Abstract
Osteoclast research has an exciting history and a challenging future. More than 3 decades ago, it became evident that bone-resorbing osteoclasts are of hematopoietic origin and are ultimately linked to the "basic multicellular unit," where they team up with the other cell types, including bone-forming osteoblasts. Since 2 decades, we have learned about the signaling pathways controlling genes relevant for osteoclastogenesis and bone resorption. It took another decade until the hypothesized "osteoclast differentiation" factor was discovered and was translated into an approved pharmacologic strategy. Here, the focus is on another molecular target, cathepsin K, a cysteine protease being released by the osteoclast into the resorption compartment. Genetic deletion and pharmacological blocking of cathepsin K reduces bone resorption but with ongoing bone formation. This observation not only holds great promise to become a new pharmacologic strategy, but it also provides new insights into the coordinated work of cells in the "basic multicellular unit" and thus, bridges the history and future of osteoclast research. This article is a short primer on osteoclast biology for readers of the special issue on odanacatib, a cathepsin K inhibitor.
Collapse
Affiliation(s)
- Reinhard Gruber
- Laboratory of Oral Cell Biology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010, Bern, Switzerland,
| |
Collapse
|
17
|
The reversal phase of the bone-remodeling cycle: cellular prerequisites for coupling resorption and formation. BONEKEY REPORTS 2014; 3:561. [PMID: 25120911 PMCID: PMC4130129 DOI: 10.1038/bonekey.2014.56] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 06/19/2014] [Indexed: 12/31/2022]
Abstract
The reversal phase couples bone resorption to bone formation by generating an osteogenic environment at remodeling sites. The coupling mechanism remains poorly understood, despite the identification of a number of ‘coupling' osteogenic molecules. A possible reason is the poor attention for the cells leading to osteogenesis during the reversal phase. This review aims at creating awareness of these cells and their activities in adult cancellous bone. It relates cell events (i) on the bone surface, (ii) in the mesenchymal envelope surrounding the bone marrow and appearing as a canopy above remodeling surfaces and (iii) in the bone marrow itself within a 50-μm distance of this canopy. When bone remodeling is initiated, osteoprogenitors at these three different levels are activated, likely as a result of a rearrangement of cell–cell and cell–matrix interactions. Notably, canopies are brought under the osteogenic influence of capillaries and osteoclasts, whereas bone surface cells become exposed to the eroded matrix and other osteoclast products. In several diverse pathophysiological situations, including osteoporosis, a decreased availability of osteoprogenitors from these local reservoirs coincides with decreased osteoblast recruitment and impaired initiation of bone formation, that is, uncoupling. Overall, this review stresses that coupling does not only depend on molecules able to activate osteogenesis, but that it also demands the presence of osteoprogenitors and ordered cell rearrangements at the remodeling site. It points to protection of local osteoprogenitors as a critical strategy to prevent bone loss.
Collapse
|
18
|
Role of vesicular trafficking in skeletal dynamics. Curr Opin Pharmacol 2014; 16:7-14. [PMID: 24566133 DOI: 10.1016/j.coph.2014.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 01/27/2014] [Indexed: 01/06/2023]
Abstract
Vesicular trafficking is critical for the function of bone cells, exemplified by bone diseases such as osteopetrosis, which frequently results from defects in this process. Recent work has further dissected the role of the endolysosomal system in both bone formation by osteoblasts and bone resorption by osteoclasts. This pathway also plays an important role in the communication between these and other cells in bone, through trafficking and degradation of growth factors and their receptors, and microvesicle release. In addition, a crucial role for autophagy in bone remodelling and bone disease is beginning to emerge. These insights into the molecular control of bone remodelling raise the possibility of developing novel therapeutics for bone diseases designed to target specific aspects of this process.
Collapse
|