1
|
Ramadan WS, Ahmed SBM, Talaat IM, Lozon L, Mouffak S, Gemoll T, Mansour WY, El-Awady R. The histone acetyltransferase CBP participates in regulating the DNA damage response through ATM after double-strand breaks. Genome Biol 2025; 26:89. [PMID: 40200339 PMCID: PMC11980100 DOI: 10.1186/s13059-025-03528-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 03/05/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Spatial and temporal control of DNA damage response pathways after DNA damage is crucial for maintenance of genomic stability. Ataxia telangiectasia mutated (ATM) protein plays a central role in DNA damage response pathways. The chain of events following induction of DNA damage that results in full activation of ATM is still evolving. Here we set out to explore the role of CREB-binding protein (CBP), a histone acetyltransferase (HAT), in DNA damage response, particularly in the ATM activation pathway. RESULTS In response to DNA damage, CBP is stabilized and is recruited at sites of DNA double-strand breaks where it acetylates ATM and promotes its kinase activity. Cells deficient in CBP display an impairment in DNA double-strand break repair and high sensitivity to chemo- and radiotherapy. Importantly, re-expressing CBP's HAT domain in CBP-deficient cells restores the DNA repair capability, demonstrating the essential role of CBP's HAT domain in repairing DNA double-strand breaks. CONCLUSIONS Together, our findings shed the light on CBP as a key participant in the ATM activation pathway and in the subsequent repair of DNA double-strand breaks, which may serve as a potential target to modulate the cellular response to DNA damaging agents in cancer.
Collapse
Affiliation(s)
- Wafaa S Ramadan
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Samrein B M Ahmed
- School of Biosciences and Chemistry, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Iman M Talaat
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Lama Lozon
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Soraya Mouffak
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Timo Gemoll
- Section for Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Wael Y Mansour
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Mildred Scheel Cancer Career Center, HaTriCS4 Program, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- II. Medical Clinic and Polyclinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Raafat El-Awady
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates.
| |
Collapse
|
2
|
Leeson HC, Aguado J, Gómez-Inclán C, Chaggar HK, Fard AT, Hunter Z, Lavin MF, Mackay-Sim A, Wolvetang EJ. Ataxia Telangiectasia patient-derived neuronal and brain organoid models reveal mitochondrial dysfunction and oxidative stress. Neurobiol Dis 2024; 199:106562. [PMID: 38876322 DOI: 10.1016/j.nbd.2024.106562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024] Open
Abstract
Ataxia Telangiectasia (AT) is a rare disorder caused by mutations in the ATM gene and results in progressive neurodegeneration for reasons that remain poorly understood. In addition to its central role in nuclear DNA repair, ATM operates outside the nucleus to regulate metabolism, redox homeostasis and mitochondrial function. However, a systematic investigation into how and when loss of ATM affects these parameters in relevant human neuronal models of AT was lacking. We therefore used cortical neurons and brain organoids from AT-patient iPSC and gene corrected isogenic controls to reveal levels of mitochondrial dysfunction, oxidative stress, and senescence that vary with developmental maturity. Transcriptome analyses identified disruptions in regulatory networks related to mitochondrial function and maintenance, including alterations in the PARP/SIRT signalling axis and dysregulation of key mitophagy and mitochondrial fission-fusion processes. We further show that antioxidants reduce ROS and restore neurite branching in AT neuronal cultures, and ameliorate impaired neuronal activity in AT brain organoids. We conclude that progressive mitochondrial dysfunction and aberrant ROS production are important contributors to neurodegeneration in AT and are strongly linked to ATM's role in mitochondrial homeostasis regulation.
Collapse
Affiliation(s)
- Hannah C Leeson
- The University of Queensland, Australian Institute for Bioengineering & Nanotechnology (AIBN), St. Lucia, Brisbane, QLD 4072, Australia.
| | - Julio Aguado
- The University of Queensland, Australian Institute for Bioengineering & Nanotechnology (AIBN), St. Lucia, Brisbane, QLD 4072, Australia
| | - Cecilia Gómez-Inclán
- The University of Queensland, Australian Institute for Bioengineering & Nanotechnology (AIBN), St. Lucia, Brisbane, QLD 4072, Australia
| | - Harman Kaur Chaggar
- The University of Queensland, Australian Institute for Bioengineering & Nanotechnology (AIBN), St. Lucia, Brisbane, QLD 4072, Australia
| | - Atefah Taherian Fard
- The University of Queensland, Australian Institute for Bioengineering & Nanotechnology (AIBN), St. Lucia, Brisbane, QLD 4072, Australia
| | - Zoe Hunter
- The University of Queensland, Australian Institute for Bioengineering & Nanotechnology (AIBN), St. Lucia, Brisbane, QLD 4072, Australia
| | - Martin F Lavin
- The University of Queensland, UQ Centre for Clinical Research (UQCCR), Herston, Brisbane, QLD 4006, Australia
| | - Alan Mackay-Sim
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - Ernst J Wolvetang
- The University of Queensland, Australian Institute for Bioengineering & Nanotechnology (AIBN), St. Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
3
|
Averbeck D. Low-Dose Non-Targeted Effects and Mitochondrial Control. Int J Mol Sci 2023; 24:11460. [PMID: 37511215 PMCID: PMC10380638 DOI: 10.3390/ijms241411460] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Non-targeted effects (NTE) have been generally regarded as a low-dose ionizing radiation (IR) phenomenon. Recently, regarding long distant abscopal effects have also been observed at high doses of IR) relevant to antitumor radiation therapy. IR is inducing NTE involving intracellular and extracellular signaling, which may lead to short-ranging bystander effects and distant long-ranging extracellular signaling abscopal effects. Internal and "spontaneous" cellular stress is mostly due to metabolic oxidative stress involving mitochondrial energy production (ATP) through oxidative phosphorylation and/or anaerobic pathways accompanied by the leakage of O2- and other radicals from mitochondria during normal or increased cellular energy requirements or to mitochondrial dysfunction. Among external stressors, ionizing radiation (IR) has been shown to very rapidly perturb mitochondrial functions, leading to increased energy supply demands and to ROS/NOS production. Depending on the dose, this affects all types of cell constituents, including DNA, RNA, amino acids, proteins, and membranes, perturbing normal inner cell organization and function, and forcing cells to reorganize the intracellular metabolism and the network of organelles. The reorganization implies intracellular cytoplasmic-nuclear shuttling of important proteins, activation of autophagy, and mitophagy, as well as induction of cell cycle arrest, DNA repair, apoptosis, and senescence. It also includes reprogramming of mitochondrial metabolism as well as genetic and epigenetic control of the expression of genes and proteins in order to ensure cell and tissue survival. At low doses of IR, directly irradiated cells may already exert non-targeted effects (NTE) involving the release of molecular mediators, such as radicals, cytokines, DNA fragments, small RNAs, and proteins (sometimes in the form of extracellular vehicles or exosomes), which can induce damage of unirradiated neighboring bystander or distant (abscopal) cells as well as immune responses. Such non-targeted effects (NTE) are contributing to low-dose phenomena, such as hormesis, adaptive responses, low-dose hypersensitivity, and genomic instability, and they are also promoting suppression and/or activation of immune cells. All of these are parts of the main defense systems of cells and tissues, including IR-induced innate and adaptive immune responses. The present review is focused on the prominent role of mitochondria in these processes, which are determinants of cell survival and anti-tumor RT.
Collapse
Affiliation(s)
- Dietrich Averbeck
- Laboratory of Cellular and Molecular Radiobiology, PRISME, UMR CNRS 5822/IN2P3, IP2I, Lyon-Sud Medical School, University Lyon 1, 69921 Oullins, France
| |
Collapse
|
4
|
Subramanian GN, Yeo AJ, Gatei MH, Coman DJ, Lavin MF. Metabolic Stress and Mitochondrial Dysfunction in Ataxia-Telangiectasia. Antioxidants (Basel) 2022; 11:653. [PMID: 35453338 PMCID: PMC9032508 DOI: 10.3390/antiox11040653] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
The ataxia-telangiectasia mutated (ATM) protein kinase is, as the name implies, mutated in the human genetic disorder ataxia-telangiectasia (A-T). This protein has its "finger in many pies", being responsible for the phosphorylation of many thousands of proteins in different signaling pathways in its role in protecting the cell against a variety of different forms of stress that threaten to perturb cellular homeostasis. The classical role of ATM is the protection against DNA damage, but it is evident that it also plays a key role in maintaining cell homeostasis in the face of oxidative and other forms of non-DNA damaging stress. The presence of ATM is not only in the nucleus to cope with damage to DNA, but also in association with other organelles in the cytoplasm, which suggests a greater protective role. This review attempts to address this greater role of ATM in protecting the cell against both external and endogenous damage.
Collapse
Affiliation(s)
| | - Abrey Jie Yeo
- University of Queensland Centre for Clinical Research, University of Queensland, Brisbane, QLD 4029, Australia
| | - Magtouf Hnaidi Gatei
- University of Queensland Centre for Clinical Research, University of Queensland, Brisbane, QLD 4029, Australia
| | - David John Coman
- Queensland Children's Hospital, Brisbane, QLD 4101, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD 4006, Australia
| | - Martin Francis Lavin
- University of Queensland Centre for Clinical Research, University of Queensland, Brisbane, QLD 4029, Australia
| |
Collapse
|
5
|
Levi H, Bar E, Cohen-Adiv S, Sweitat S, Kanner S, Galron R, Mitiagin Y, Barzilai A. Dysfunction of cerebellar microglia in Ataxia-telangiectasia. Glia 2021; 70:536-557. [PMID: 34854502 DOI: 10.1002/glia.24122] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022]
Abstract
Ataxia-telangiectasia (A-T) is a multisystem autosomal recessive disease caused by mutations in the ATM gene and characterized by cerebellar atrophy, progressive ataxia, immunodeficiency, male and female sterility, radiosensitivity, cancer predisposition, growth retardation, insulin-resistant diabetes, and premature aging. ATM phosphorylates more than 1500 target proteins, which are involved in cell cycle control, DNA repair, apoptosis, modulation of chromatin structure, and other cytoplasmic as well as mitochondrial processes. In our quest to better understand the mechanisms by which ATM deficiency causes cerebellar degeneration, we hypothesized that specific vulnerabilities of cerebellar microglia underlie the etiology of A-T. Our hypothesis is based on the recent finding that dysfunction of glial cells affect a variety of process leading to impaired neuronal functionality (Song et al., 2019). Whereas astrocytes and neurons descend from the neural tube, microglia originate from the hematopoietic system, invade the brain at early embryonic stage, and become the innate immune cells of the central nervous system and important participants in development of synaptic plasticity. Here we demonstrate that microglia derived from Atm-/- mouse cerebellum display accelerated cell migration and are severely impaired in phagocytosis, secretion of neurotrophic factors, and mitochondrial activity, suggestive of apoptotic processes. Interestingly, no microglial impairment was detected in Atm-deficient cerebral cortex, and Atm deficiency had less impact on astroglia than microglia. Collectively, our findings validate the roles of glial cells in cerebellar attrition in A-T.
Collapse
Affiliation(s)
- Hadar Levi
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ela Bar
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Stav Cohen-Adiv
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Suzan Sweitat
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Sivan Kanner
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ronit Galron
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yulia Mitiagin
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ari Barzilai
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
6
|
Ovchinnikov DA, Withey SL, Leeson HC, Lei UW, Sundarrajan A, Junday K, Pewarchuk M, Yeo AJ, Kijas AW, Lavin MF, Wolvetang EJ. Correction of ATM mutations in iPS cells from two ataxia-telangiectasia patients restores DNA damage and oxidative stress responses. Hum Mol Genet 2021; 29:990-1001. [PMID: 32037450 DOI: 10.1093/hmg/ddaa023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/06/2020] [Accepted: 02/04/2020] [Indexed: 01/23/2023] Open
Abstract
Patients with ataxia-telangiectasia (A-T) lack a functional ATM kinase protein and exhibit defective repair of DNA double-stranded breaks and response to oxidative stress. We show that CRISPR/Cas9-assisted gene correction combined with piggyBac (PB) transposon-mediated excision of the selection cassette enables seamless restoration of functional ATM alleles in induced pluripotent stem cells from an A-T patient carrying compound heterozygous exonic missense/frameshift mutations, and from a patient with a homozygous splicing acceptor mutation of an internal coding exon. We show that the correction of one allele restores expression of ~ 50% of full-length ATM protein and ameliorates DNA damage-induced activation (auto-phosphorylation) of ATM and phosphorylation of its downstream targets, KAP-1 and H2AX. Restoration of ATM function also normalizes radiosensitivity, mitochondrial ROS production and oxidative-stress-induced apoptosis levels in A-T iPSC lines, demonstrating that restoration of a single ATM allele is sufficient to rescue key ATM functions. Our data further show that despite the absence of a functional ATM kinase, homology-directed repair and seamless correction of a pathogenic ATM mutation is possible. The isogenic pairs of A-T and gene-corrected iPSCs described here constitute valuable tools for elucidating the role of ATM in ageing and A-T pathogenesis.
Collapse
Affiliation(s)
- Dmitry A Ovchinnikov
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia.,StemCore, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Sarah L Withey
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Hannah C Leeson
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - U Wang Lei
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Ashmitha Sundarrajan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Keerat Junday
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Michelle Pewarchuk
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Abrey J Yeo
- UQ Centre for Clinical Research (UQCCR), The University of Queensland, Herston, Brisbane, QLD 4006, Australia
| | - Amanda W Kijas
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Martin F Lavin
- UQ Centre for Clinical Research (UQCCR), The University of Queensland, Herston, Brisbane, QLD 4006, Australia
| | - Ernst J Wolvetang
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| |
Collapse
|
7
|
Shimura T. ATM-Mediated Mitochondrial Radiation Responses of Human Fibroblasts. Genes (Basel) 2021; 12:genes12071015. [PMID: 34208940 PMCID: PMC8305810 DOI: 10.3390/genes12071015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 01/15/2023] Open
Abstract
Ataxia telangiectasia (AT) is characterized by extreme sensitivity to ionizing radiation. The gene mutated in AT, Ataxia Telangiectasia Mutated (ATM), has serine/threonine protein kinase activity and mediates the activation of multiple signal transduction pathways involved in the processing of DNA double-strand breaks. Reactive oxygen species (ROS) created as a byproduct of the mitochondria's oxidative phosphorylation (OXPHOS) has been proposed to be the source of intracellular ROS. Mitochondria are uniquely vulnerable to ROS because they are the sites of ROS generation. ROS-induced mitochondrial mutations lead to impaired mitochondrial respiration and further increase the likelihood of ROS generation, establishing a vicious cycle of further ROS production and mitochondrial damage. AT patients and ATM-deficient mice display intrinsic mitochondrial dysfunction and exhibit constitutive elevations in ROS levels. ATM plays a critical role in maintaining cellular redox homeostasis. However, the precise mechanism of ATM-mediated mitochondrial antioxidants remains unclear. The aim of this review paper is to introduce our current research surrounding the role of ATM on maintaining cellular redox control in human fibroblasts. ATM-mediated signal transduction is important in the mitochondrial radiation response. Perturbation of mitochondrial redox control elevates ROS which are key mediators in the development of cancer by many mechanisms, including ROS-mediated genomic instability, tumor microenvironment formation, and chronic inflammation.
Collapse
Affiliation(s)
- Tsutomu Shimura
- Department of Environmental Health, National Institute of Public Health 2-3-6 Minami, Wako 351-0197, Saitama, Japan
| |
Collapse
|
8
|
Babushkina NP, Postrigan AE, Kucher AN. Involvement of Variants in the Genes Encoding BRCA1-Associated Genome Surveillance Complex (BASC) in the Development of Human Common Diseases. Mol Biol 2021. [DOI: 10.1134/s0026893321020047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Blignaut M, Harries S, Lochner A, Huisamen B. Ataxia Telangiectasia Mutated Protein Kinase: A Potential Master Puppeteer of Oxidative Stress-Induced Metabolic Recycling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8850708. [PMID: 33868575 PMCID: PMC8032526 DOI: 10.1155/2021/8850708] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/15/2021] [Accepted: 02/28/2021] [Indexed: 02/07/2023]
Abstract
Ataxia Telangiectasia Mutated protein kinase (ATM) has recently come to the fore as a regulatory protein fulfilling many roles in the fine balancing act of metabolic homeostasis. Best known for its role as a transducer of DNA damage repair, the activity of ATM in the cytosol is enjoying increasing attention, where it plays a central role in general cellular recycling (macroautophagy) as well as the targeted clearance (selective autophagy) of damaged mitochondria and peroxisomes in response to oxidative stress, independently of the DNA damage response. The importance of ATM activation by oxidative stress has also recently been highlighted in the clearance of protein aggregates, where the expression of a functional ATM construct that cannot be activated by oxidative stress resulted in widespread accumulation of protein aggregates. This review will discuss the role of ATM in general autophagy, mitophagy, and pexophagy as well as aggrephagy and crosstalk between oxidative stress as an activator of ATM and its potential role as a master regulator of these processes.
Collapse
Affiliation(s)
- Marguerite Blignaut
- Centre for Cardio-Metabolic Research in Africa (CARMA), Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - Sarah Harries
- Centre for Cardio-Metabolic Research in Africa (CARMA), Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - Amanda Lochner
- Centre for Cardio-Metabolic Research in Africa (CARMA), Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - Barbara Huisamen
- Centre for Cardio-Metabolic Research in Africa (CARMA), Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| |
Collapse
|
10
|
Bhalla K, Jaber S, Reagan K, Hamburg A, Underwood KF, Jhajharia A, Singh M, Bhandary B, Bhat S, Nanaji NM, Hisa R, McCracken C, Creasy HH, Lapidus RG, Kingsbury T, Mayer D, Polster B, Gartenhaus RB. SIRT3, a metabolic target linked to ataxia-telangiectasia mutated (ATM) gene deficiency in diffuse large B-cell lymphoma. Sci Rep 2020; 10:21159. [PMID: 33273545 PMCID: PMC7712916 DOI: 10.1038/s41598-020-78193-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 11/10/2020] [Indexed: 12/16/2022] Open
Abstract
Inactivation of Ataxia-telangiectasia mutated (ATM) gene results in an increased risk to develop cancer. We show that ATM deficiency in diffuse large B-cell lymphoma (DLBCL) significantly induce mitochondrial deacetylase sirtuin-3 (SIRT3) activity, disrupted mitochondrial structure, decreased mitochondrial respiration, and compromised TCA flux compared with DLBCL cells expressing wild type (WT)-ATM. This corresponded to enrichment of glutamate receptor and glutamine pathways in ATM deficient background compared to WT-ATM DLBCL cells. ATM-/- DLBCL cells have decreased apoptosis in contrast to radiosensitive non-cancerous A-T cells. In vivo studies using gain and loss of SIRT3 expression showed that SIRT3 promotes growth of ATM CRISPR knockout DLBCL xenografts compared to wild-type ATM control xenografts. Importantly, screening of DLBCL patient samples identified SIRT3 as a putative therapeutic target, and validated an inverse relationship between ATM and SIRT3 expression. Our data predicts SIRT3 as an important therapeutic target for DLBCL patients with ATM null phenotype.
Collapse
Affiliation(s)
- Kavita Bhalla
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| | - Sausan Jaber
- Department of Anesthesiology, University of Maryland, Baltimore, MD, 21201, USA
| | - Kayla Reagan
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Arielle Hamburg
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Karen F Underwood
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Aditya Jhajharia
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD, USA
| | - Maninder Singh
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD, USA
| | - Binny Bhandary
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Shambhu Bhat
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Nahid M Nanaji
- Veterans Administration Medical Center, Baltimore, MD, 21201, USA
| | - Ruching Hisa
- Electron Microscopy Core Imaging Facility, Department of Medicine, University of Maryland, Baltimore, USA
| | - Carrie McCracken
- Institute of Genome Sciences, University of Maryland, Baltimore, MD, 21201, USA
| | - Heather Huot Creasy
- Institute of Genome Sciences, University of Maryland, Baltimore, MD, 21201, USA
| | - Rena G Lapidus
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Tami Kingsbury
- Department of Physiology, The Center for Stem Cell Biology and Regenerative Medicine, Baltimore, MD, 21201, USA
| | - Dirk Mayer
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD, USA
| | - Brian Polster
- Department of Anesthesiology, University of Maryland, Baltimore, MD, 21201, USA
| | - Ronald B Gartenhaus
- Hunter Holmes McGuire Veterans Administration Medical Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| |
Collapse
|
11
|
Abstract
Cancer cells die when their decimated DNA damage response (DDR) unsuccessfully handles DNA damage. This notion has been successfully exploited when targeting PARP (poly ADP-ribose polymerase) in homologous recombination-deficient cells. With the greater understanding of DDR achieved in the last decade, new cancer therapy targets within the DDR network have been identified. Intriguingly, many of the molecules that have advanced into clinical trials are inhibitors of DDR kinases. This special issue is devoted to discussing the mechanism of cell killing and the level of success that such inhibitors have reached in pre-clinical and clinical settings.
Collapse
Affiliation(s)
- Vanesa Gottifredi
- Fundación Instituto Leloir - Instituto de Investigaciones Bioquímicas de Buenos Aires. Consejo de Investigaciones Científicas y Técnicas. Avenida Patricias Argentinas 435, C1405BWE, Buenos Aires, Argentina.
| |
Collapse
|
12
|
Lavin MF, Yeo AJ. Clinical potential of ATM inhibitors. Mutat Res 2020; 821:111695. [PMID: 32304909 DOI: 10.1016/j.mrfmmm.2020.111695] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 01/04/2023]
Abstract
The protein defective in the human genetic disorder ataxia-telangiectasia, ATM, plays a central role in responding to DNA double strand breaks and other lesions to protect the genome against DNA damage and in this way minimize the risk of mutations that can lead to abnormal cellular behaviour. Its function in normal cells is to protect the cell against genotoxic stress but inadvertently it can assist cancer cells by providing resistance against chemotherapeutic agents and thus favouring tumour growth and survival. However, it is now evident that ATM also functions in a DNA damage-independent fashion to protect the cell against other forms of stress such as oxidative and nutrient stress and this non-canonical mechanism may also be relevant to cancer susceptibility in individuals who lack a functional ATM gene. Thus the use of ATM inhibitors to combat resistance in tumours may extend beyond a role for this protein in the DNA damage response. Here, we provide some background on ATM and its activation and investigate the efficacy of ATM inhibitors in treating cancer.
Collapse
Affiliation(s)
- Martin F Lavin
- University of Queensland Centre for Clinical Research, University of Queensland, Brisbane, Australia.
| | - Abrey J Yeo
- University of Queensland Centre for Clinical Research, University of Queensland, Brisbane, Australia
| |
Collapse
|
13
|
Blignaut M, Loos B, Botchway SW, Parker AW, Huisamen B. Ataxia-Telangiectasia Mutated is located in cardiac mitochondria and impacts oxidative phosphorylation. Sci Rep 2019; 9:4782. [PMID: 30886180 PMCID: PMC6423017 DOI: 10.1038/s41598-019-41108-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/26/2019] [Indexed: 01/16/2023] Open
Abstract
The absence of Ataxia-Telangiectasia mutated protein kinase (ATM) is associated with neurological, metabolic and cardiovascular defects. The protein has been associated with mitochondria and its absence results in mitochondrial dysfunction. Furthermore, it can be activated in the cytosol by mitochondrial oxidative stress and mediates a cellular anti-oxidant response through the pentose phosphate pathway (PPP). However, the precise location and function of ATM within mitochondria and its role in oxidative phosphorylation is still unknown. We show that ATM is found endogenously within cardiac myocyte mitochondria under normoxic conditions and is consistently associated with the inner mitochondrial membrane. Acute ex vivo inhibition of ATM protein kinase significantly decreased mitochondrial electron transfer chain complex I-mediated oxidative phosphorylation rate but did not decrease coupling efficiency or oxygen consumption rate during β-oxidation. Chemical inhibition of ATM in rat cardiomyoblast cells (H9c2) significantly decreased the excited-state autofluorescence lifetime of enzyme-bound reduced NADH and its phosphorylated form, NADPH (NAD(P)H; 2.77 ± 0.26 ns compared to 2.57 ± 0.14 ns in KU60019-treated cells). This suggests an interaction between ATM and the electron transfer chain in the mitochondria, and hence may have an important role in oxidative phosphorylation in terminally differentiated cells such as cardiomyocytes.
Collapse
Affiliation(s)
- Marguerite Blignaut
- Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, South Africa.
| | - Ben Loos
- Department of Physiological Sciences, Faculty of Sciences, Stellenbosch University, Stellenbosch, 7602, South Africa
| | - Stanley W Botchway
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0QX, UK
- Oxford Brookes University, Department of Biological and Medical Sciences, Oxford, OX3 0BP, UK
| | - Anthony W Parker
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0QX, UK
- Department of Physics, Faculty of Science, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Barbara Huisamen
- Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, South Africa
- Biomedical, Research and Innovation Platform, South African Medical Research Council, Tygerberg, 7505, South Africa
| |
Collapse
|
14
|
Chow HM, Cheng A, Song X, Swerdel MR, Hart RP, Herrup K. ATM is activated by ATP depletion and modulates mitochondrial function through NRF1. J Cell Biol 2019; 218:909-928. [PMID: 30642892 PMCID: PMC6400560 DOI: 10.1083/jcb.201806197] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/27/2018] [Accepted: 12/26/2018] [Indexed: 12/19/2022] Open
Abstract
Oxidative stress, resulting from neuronal activity and depleted ATP levels, activates ATM, which phosphorylates NRF1, causing nuclear translocation and up regulation of mitochondrial gene expression. In ATM deficiency, ATP levels recover more slowly, particularly in active neurons with high energy demands. Ataxia-telangiectasia (A-T) is an autosomal recessive disease caused by mutation of the ATM gene and is characterized by loss of cerebellar Purkinje cells, neurons with high physiological activity and dynamic ATP demands. Here, we show that depletion of ATP generates reactive oxygen species that activate ATM. We find that when ATM is activated by oxidative stress, but not by DNA damage, ATM phosphorylates NRF1. This leads to NRF1 dimerization, nuclear translocation, and the up-regulation of nuclear-encoded mitochondrial genes, thus enhancing the capacity of the electron transport chain (ETC) and restoring mitochondrial function. In cells lacking ATM, cells replenish ATP poorly following surges in energy demand, and chronic ATP insufficiency endangers cell survival. We propose that in the absence of ATM, cerebellar Purkinje cells cannot respond adequately to the increase in energy demands of neuronal activity. Our findings identify ATM as a guardian of mitochondrial output, as well as genomic integrity, and suggest that alternative fuel sources may ameliorate A-T disease symptoms.
Collapse
Affiliation(s)
- Hei-Man Chow
- Division of Life Science and The State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong .,Institute for Advanced Study, Hong Kong University of Science and Technology, Hong Kong
| | - Aifang Cheng
- Division of Life Science and The State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong
| | - Xuan Song
- Division of Life Science and The State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong
| | - Mavis R Swerdel
- Department of Cell Biology and Neuroscience, Rutgers University, New Brunswick, NJ
| | - Ronald P Hart
- Department of Cell Biology and Neuroscience, Rutgers University, New Brunswick, NJ
| | - Karl Herrup
- Division of Life Science and The State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong
| |
Collapse
|
15
|
Fransen M, Lismont C. Redox Signaling from and to Peroxisomes: Progress, Challenges, and Prospects. Antioxid Redox Signal 2019; 30:95-112. [PMID: 29433327 DOI: 10.1089/ars.2018.7515] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Peroxisomes are organelles that are best known for their role in cellular lipid and hydrogen peroxide (H2O2) metabolism. Emerging evidence suggests that these organelles serve as guardians and modulators of cellular redox balance, and that alterations in their redox metabolism may contribute to aging and the development of chronic diseases such as neurodegeneration, diabetes, and cancer. Recent Advances: H2O2 is an important signaling messenger that controls many cellular processes by modulating protein activity through cysteine oxidation. Somewhat surprisingly, the potential involvement of peroxisomes in H2O2-mediated signaling processes has been overlooked for a long time. However, recent advances in the development of live-cell approaches to monitor and modulate spatiotemporal fluxes in redox species at the subcellular level have opened up new avenues for research in redox biology and boosted interest in the concept of peroxisomes as redox signaling platforms. CRITICAL ISSUES This review first introduces the reader to what is known about the role of peroxisomes in cellular H2O2 production and clearance, with a focus on mammalian cells. Next, it briefly describes the benefits and drawbacks of current strategies used to investigate the complex interplay between peroxisome metabolism and cellular redox state. Furthermore, it integrates and critically evaluates literature dealing with the interrelationship between peroxisomal redox metabolism, cell signaling, and human disease. FUTURE DIRECTIONS As the precise molecular mechanisms underlying many of these associations are still poorly understood, a key focus for future research should be the identification of primary targets for peroxisome-derived H2O2.
Collapse
Affiliation(s)
- Marc Fransen
- Laboratory of Lipid Biochemistry and Protein Interactions, Department of Cellular and Molecular Medicine, KU Leuven-University of Leuven , Leuven, Belgium
| | - Celien Lismont
- Laboratory of Lipid Biochemistry and Protein Interactions, Department of Cellular and Molecular Medicine, KU Leuven-University of Leuven , Leuven, Belgium
| |
Collapse
|
16
|
Redox control in cancer development and progression. Mol Aspects Med 2018; 63:88-98. [PMID: 29501614 DOI: 10.1016/j.mam.2018.02.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 02/26/2018] [Accepted: 02/26/2018] [Indexed: 02/07/2023]
Abstract
Cancer is the leading cause of death worldwide after cardiovascular diseases. This has been the case for the last few decades despite there being an increase in the number of cancer treatments. One reason for the apparent lack of drug effectiveness might be, at least in part, due to unspecificity for tumors; which often leads to substantial side effects. One way to improve the treatment of cancer is to increase the specificity of the treatment in accordance with the concept of individualized medicine. This will help to prevent further progression of an existing cancer or even to reduce the tumor burden. Alternatively it would be much more attractive and efficient to prevent the development of cancer in the first place. Therefore, it is important to understand the risk factors and the mechanisms of carcinogenesis in detail. One such risk factor, often associated with tumorigenesis and tumor progression, is an increased abundance of reactive oxygen species (ROS) arising from an imbalance of ROS-producing and -eliminating components. A surplus of ROS can induce oxidative damage of macromolecules including proteins, lipids and DNA. In contrast, ROS are essential for an adequate signal transduction and are known to regulate crucial cellular processes like cellular quiescence, differentiation and even apoptosis. Therefore, regulated ROS-formation at physiological levels can inhibit tumor formation and progression. With this review we provide an overview on the current knowledge of redox control in cancer development and progression.
Collapse
|
17
|
Choy KR, Watters DJ. Neurodegeneration in ataxia-telangiectasia: Multiple roles of ATM kinase in cellular homeostasis. Dev Dyn 2017; 247:33-46. [PMID: 28543935 DOI: 10.1002/dvdy.24522] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/02/2017] [Accepted: 05/10/2017] [Indexed: 12/13/2022] Open
Abstract
Ataxia-telangiectasia (A-T) is characterized by neuronal degeneration, cancer, diabetes, immune deficiency, and increased sensitivity to ionizing radiation. A-T is attributed to the deficiency of the protein kinase coded by the ATM (ataxia-telangiectasia mutated) gene. ATM is a sensor of DNA double-strand breaks (DSBs) and signals to cell cycle checkpoints and the DNA repair machinery. ATM phosphorylates numerous substrates and activates many cell-signaling pathways. There has been considerable debate about whether a defective DNA damage response is causative of the neurological aspects of the disease. In proliferating cells, ATM is localized mainly in the nucleus; however, in postmitotic cells such as neurons, ATM is mostly cytoplasmic. Recent studies reveal an increasing number of roles for ATM in the cytoplasm, including activation by oxidative stress. ATM associates with organelles including mitochondria and peroxisomes, both sources of reactive oxygen species (ROS), which have been implicated in neurodegenerative diseases and aging. ATM is also associated with synaptic vesicles and has a role in regulating cellular homeostasis and autophagy. The cytoplasmic roles of ATM provide a new perspective on the neurodegenerative process in A-T. This review will examine the expanding roles of ATM in cellular homeostasis and relate these functions to the complex A-T phenotype. Developmental Dynamics 247:33-46, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kay Rui Choy
- School of Natural Sciences, Griffith University, Brisbane, Queensland, Australia
| | - Dianne J Watters
- School of Natural Sciences, Griffith University, Brisbane, Queensland, Australia
| |
Collapse
|
18
|
Lavin MF, Yeo AJ, Kijas AW, Wolvetang E, Sly PD, Wainwright C, Sinclair K. Therapeutic targets and investigated treatments for Ataxia-Telangiectasia. Expert Opin Orphan Drugs 2016. [DOI: 10.1080/21678707.2016.1254618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
19
|
Requejo-Aguilar R, Bolaños JP. Mitochondrial control of cell bioenergetics in Parkinson's disease. Free Radic Biol Med 2016; 100:123-137. [PMID: 27091692 PMCID: PMC5065935 DOI: 10.1016/j.freeradbiomed.2016.04.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/13/2016] [Accepted: 04/14/2016] [Indexed: 12/15/2022]
Abstract
Parkinson disease (PD) is a neurodegenerative disorder characterized by a selective loss of dopaminergic neurons in the substantia nigra. The earliest biochemical signs of the disease involve failure in mitochondrial-endoplasmic reticulum cross talk and lysosomal function, mitochondrial electron chain impairment, mitochondrial dynamics alterations, and calcium and iron homeostasis abnormalities. These changes are associated with increased mitochondrial reactive oxygen species (mROS) and energy deficiency. Recently, it has been reported that, as an attempt to compensate for the mitochondrial dysfunction, neurons invoke glycolysis as a low-efficient mode of energy production in models of PD. Here, we review how mitochondria orchestrate the maintenance of cellular energetic status in PD, with special focus on the switch from oxidative phosphorylation to glycolysis, as well as the implication of endoplasmic reticulum and lysosomes in the control of bioenergetics.
Collapse
Affiliation(s)
- Raquel Requejo-Aguilar
- Department of Biochemistry and Molecular Biology, University of Cordoba, Institute Maimonides of Biomedical Investigation of Cordoba (IMIBIC), Cordoba, Spain
| | - Juan P Bolaños
- Institute of Functional Biology and Genomics (IBFG), University of Salamanca-CSIC, Zacarias Gonzalez, 2, 37007 Salamanca, Spain.
| |
Collapse
|
20
|
Gregory MA, D'Alessandro A, Alvarez-Calderon F, Kim J, Nemkov T, Adane B, Rozhok AI, Kumar A, Kumar V, Pollyea DA, Wempe MF, Jordan CT, Serkova NJ, Tan AC, Hansen KC, DeGregori J. ATM/G6PD-driven redox metabolism promotes FLT3 inhibitor resistance in acute myeloid leukemia. Proc Natl Acad Sci U S A 2016; 113:E6669-E6678. [PMID: 27791036 PMCID: PMC5086999 DOI: 10.1073/pnas.1603876113] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Activating mutations in FMS-like tyrosine kinase 3 (FLT3) are common in acute myeloid leukemia (AML) and drive leukemic cell growth and survival. Although FLT3 inhibitors have shown considerable promise for the treatment of AML, they ultimately fail to achieve long-term remissions as monotherapy. To identify genetic targets that can sensitize AML cells to killing by FLT3 inhibitors, we performed a genome-wide RNA interference (RNAi)-based screen that identified ATM (ataxia telangiectasia mutated) as being synthetic lethal with FLT3 inhibitor therapy. We found that inactivating ATM or its downstream effector glucose 6-phosphate dehydrogenase (G6PD) sensitizes AML cells to FLT3 inhibitor induced apoptosis. Examination of the cellular metabolome showed that FLT3 inhibition by itself causes profound alterations in central carbon metabolism, resulting in impaired production of the antioxidant factor glutathione, which was further impaired by ATM or G6PD inactivation. Moreover, FLT3 inhibition elicited severe mitochondrial oxidative stress that is causative in apoptosis and is exacerbated by ATM/G6PD inhibition. The use of an agent that intensifies mitochondrial oxidative stress in combination with a FLT3 inhibitor augmented elimination of AML cells in vitro and in vivo, revealing a therapeutic strategy for the improved treatment of FLT3 mutated AML.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors
- Ataxia Telangiectasia Mutated Proteins/genetics
- Ataxia Telangiectasia Mutated Proteins/metabolism
- Benzothiazoles/pharmacology
- Cell Line, Tumor
- Cell Survival/drug effects
- Drug Resistance, Neoplasm/genetics
- Drug Therapy, Combination
- Female
- Gene Expression Regulation, Leukemic
- Glucosephosphate Dehydrogenase/antagonists & inhibitors
- Glucosephosphate Dehydrogenase/genetics
- Glucosephosphate Dehydrogenase/metabolism
- Humans
- Hydrazines/pharmacology
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/pathology
- Mice, Inbred NOD
- Middle Aged
- Oxidation-Reduction
- Phenylurea Compounds/pharmacology
- Protein Kinase Inhibitors/pharmacology
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Signal Transduction
- Survival Analysis
- Xenograft Model Antitumor Assays
- fms-Like Tyrosine Kinase 3/antagonists & inhibitors
- fms-Like Tyrosine Kinase 3/genetics
- fms-Like Tyrosine Kinase 3/metabolism
Collapse
Affiliation(s)
- Mark A Gregory
- Department of Biochemistry and Molecular Genetics, University of Colorado, Aurora, CO 80045; School of Medicine, University of Colorado, Aurora, CO 80045;
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado, Aurora, CO 80045; School of Medicine, University of Colorado, Aurora, CO 80045
| | - Francesca Alvarez-Calderon
- School of Medicine, University of Colorado, Aurora, CO 80045; Integrated Department of Immunology, University of Colorado, Aurora, CO 80045
| | - Jihye Kim
- School of Medicine, University of Colorado, Aurora, CO 80045; Department of Medicine, Division of Medical Oncology, University of Colorado, Aurora, CO 80045
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado, Aurora, CO 80045; School of Medicine, University of Colorado, Aurora, CO 80045
| | - Biniam Adane
- School of Medicine, University of Colorado, Aurora, CO 80045; Department of Medicine, Division of Hematology, University of Colorado, Aurora, CO 80045
| | - Andrii I Rozhok
- Department of Biochemistry and Molecular Genetics, University of Colorado, Aurora, CO 80045; School of Medicine, University of Colorado, Aurora, CO 80045
| | - Amit Kumar
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado, Aurora, CO 80045
| | - Vijay Kumar
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado, Aurora, CO 80045
| | - Daniel A Pollyea
- School of Medicine, University of Colorado, Aurora, CO 80045; Department of Medicine, Division of Hematology, University of Colorado, Aurora, CO 80045
| | - Michael F Wempe
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado, Aurora, CO 80045
| | - Craig T Jordan
- School of Medicine, University of Colorado, Aurora, CO 80045; Department of Medicine, Division of Hematology, University of Colorado, Aurora, CO 80045
| | - Natalie J Serkova
- School of Medicine, University of Colorado, Aurora, CO 80045; Department of Anesthesiology, University of Colorado, Aurora, CO 80045; Department of Radiology, University of Colorado, Aurora, CO 80045
| | - Aik Choon Tan
- School of Medicine, University of Colorado, Aurora, CO 80045; Department of Medicine, Division of Medical Oncology, University of Colorado, Aurora, CO 80045; Cancer Biology Program, University of Colorado, Aurora, CO 80045
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado, Aurora, CO 80045; School of Medicine, University of Colorado, Aurora, CO 80045
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics, University of Colorado, Aurora, CO 80045; School of Medicine, University of Colorado, Aurora, CO 80045; Integrated Department of Immunology, University of Colorado, Aurora, CO 80045; Cancer Biology Program, University of Colorado, Aurora, CO 80045; Department of Pediatrics, Section of Hematology, Oncology, and Bone Marrow Transplantation, University of Colorado, Aurora, CO 80045
| |
Collapse
|
21
|
De Cicco M, Rahim MSA, Dames SA. Regulation of the Target of Rapamycin and Other Phosphatidylinositol 3-Kinase-Related Kinases by Membrane Targeting. MEMBRANES 2015; 5:553-75. [PMID: 26426064 PMCID: PMC4703999 DOI: 10.3390/membranes5040553] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 09/24/2015] [Indexed: 01/05/2023]
Abstract
Phosphatidylinositol 3-kinase-related kinases (PIKKs) play vital roles in the regulation of cell growth, proliferation, survival, and consequently metabolism, as well as in the cellular response to stresses such as ionizing radiation or redox changes. In humans six family members are known to date, namely mammalian/mechanistic target of rapamycin (mTOR), ataxia-telangiectasia mutated (ATM), ataxia- and Rad3-related (ATR), DNA-dependent protein kinase catalytic subunit (DNA-PKcs), suppressor of morphogenesis in genitalia-1 (SMG-1), and transformation/transcription domain-associated protein (TRRAP). All fulfill rather diverse functions and most of them have been detected in different cellular compartments including various cellular membranes. It has been suggested that the regulation of the localization of signaling proteins allows for generating a locally specific output. Moreover, spatial partitioning is expected to improve the reliability of biochemical signaling. Since these assumptions may also be true for the regulation of PIKK function, the current knowledge about the regulation of the localization of PIKKs at different cellular (membrane) compartments by a network of interactions is reviewed. Membrane targeting can involve direct lipid-/membrane interactions as well as interactions with membrane-anchored regulatory proteins, such as, for example, small GTPases, or a combination of both.
Collapse
Affiliation(s)
- Maristella De Cicco
- Department of Chemistry, Biomolecular NMR Spectroscopy, Technische Universität München, Lichtenbergstr. 4, Garching 85747, Germany.
| | - Munirah S Abd Rahim
- Department of Chemistry, Biomolecular NMR Spectroscopy, Technische Universität München, Lichtenbergstr. 4, Garching 85747, Germany.
| | - Sonja A Dames
- Department of Chemistry, Biomolecular NMR Spectroscopy, Technische Universität München, Lichtenbergstr. 4, Garching 85747, Germany.
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, Neuherberg 85764, Germany.
| |
Collapse
|
22
|
Resseguie EA, Staversky RJ, Brookes PS, O'Reilly MA. Hyperoxia activates ATM independent from mitochondrial ROS and dysfunction. Redox Biol 2015; 5:176-185. [PMID: 25967673 PMCID: PMC4430709 DOI: 10.1016/j.redox.2015.04.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 04/25/2015] [Indexed: 01/12/2023] Open
Abstract
High levels of oxygen (hyperoxia) are often used to treat individuals with respiratory distress, yet prolonged hyperoxia causes mitochondrial dysfunction and excessive reactive oxygen species (ROS) that can damage molecules such as DNA. Ataxia telangiectasia mutated (ATM) kinase is activated by nuclear DNA double strand breaks and delays hyperoxia-induced cell death through downstream targets p53 and p21. Evidence for its role in regulating mitochondrial function is emerging, yet it has not been determined if mitochondrial dysfunction or ROS activates ATM. Because ATM maintains mitochondrial homeostasis, we hypothesized that hyperoxia induces both mitochondrial dysfunction and ROS that activate ATM. In A549 lung epithelial cells, hyperoxia decreased mitochondrial respiratory reserve capacity at 12h and basal respiration by 48 h. ROS were significantly increased at 24h, yet mitochondrial DNA double strand breaks were not detected. ATM was not required for activating p53 when mitochondrial respiration was inhibited by chronic exposure to antimycin A. Also, ATM was not further activated by mitochondrial ROS, which were enhanced by depleting manganese superoxide dismutase (SOD2). In contrast, ATM dampened the accumulation of mitochondrial ROS during exposure to hyperoxia. Our findings suggest that hyperoxia-induced mitochondrial dysfunction and ROS do not activate ATM. ATM more likely carries out its canonical response to nuclear DNA damage and may function to attenuate mitochondrial ROS that contribute to oxygen toxicity.
Collapse
Affiliation(s)
- Emily A Resseguie
- Department of Environmental Medicine, University of Rochester, Rochester, NY 14642, USA
| | - Rhonda J Staversky
- Department of Pediatrics, University of Rochester, Rochester, NY 14642, USA
| | - Paul S Brookes
- Department of Anesthesiology, University of Rochester, Rochester, NY 14642, USA
| | - Michael A O'Reilly
- Department of Environmental Medicine, University of Rochester, Rochester, NY 14642, USA; Department of Pediatrics, University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|
23
|
Liemburg-Apers DC, Willems PHGM, Koopman WJH, Grefte S. Interactions between mitochondrial reactive oxygen species and cellular glucose metabolism. Arch Toxicol 2015; 89:1209-26. [PMID: 26047665 PMCID: PMC4508370 DOI: 10.1007/s00204-015-1520-y] [Citation(s) in RCA: 269] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 04/27/2015] [Indexed: 12/20/2022]
Abstract
Mitochondrial reactive oxygen species (ROS) production and detoxification are tightly balanced. Shifting this balance enables ROS to activate intracellular signaling and/or induce cellular damage and cell death. Increased mitochondrial ROS production is observed in a number of pathological conditions characterized by mitochondrial dysfunction. One important hallmark of these diseases is enhanced glycolytic activity and low or impaired oxidative phosphorylation. This suggests that ROS is involved in glycolysis (dys)regulation and vice versa. Here we focus on the bidirectional link between ROS and the regulation of glucose metabolism. To this end, we provide a basic introduction into mitochondrial energy metabolism, ROS generation and redox homeostasis. Next, we discuss the interactions between cellular glucose metabolism and ROS. ROS-stimulated cellular glucose uptake can stimulate both ROS production and scavenging. When glucose-stimulated ROS production, leading to further glucose uptake, is not adequately counterbalanced by (glucose-stimulated) ROS scavenging systems, a toxic cycle is triggered, ultimately leading to cell death. Here we inventoried the various cellular regulatory mechanisms and negative feedback loops that prevent this cycle from occurring. It is concluded that more insight in these processes is required to understand why they are (un)able to prevent excessive ROS production during various pathological conditions in humans.
Collapse
Affiliation(s)
- Dania C. Liemburg-Apers
- />Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center (RUMC), P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Peter H. G. M. Willems
- />Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center (RUMC), P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Werner J. H. Koopman
- />Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center (RUMC), P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Sander Grefte
- />Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center (RUMC), P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
- />Department of Human and Animal Physiology, Wageningen University, P.O. Box 338, 6700 AH Wageningen, The Netherlands
| |
Collapse
|
24
|
Kobayashi J, Saito Y, Okui M, Miwa N, Komatsu K. Increased oxidative stress in AOA3 cells disturbs ATM-dependent DNA damage responses. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 782:42-50. [PMID: 25868131 DOI: 10.1016/j.mrgentox.2015.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 03/15/2015] [Accepted: 03/17/2015] [Indexed: 12/29/2022]
Abstract
Ataxia telangiectasia (AT) is caused by a mutation in the ataxia-telangiectasia-mutated (ATM) gene; the condition is associated with hyper-radiosensitivity, abnormal cell-cycle checkpoints, and genomic instability. AT patients also show cerebellar ataxia, possibly due to reactive oxygen species (ROS) sensitivity in neural cells. The ATM protein is a key regulator of the DNA damage response. Recently, several AT-like disorders have been reported. The genes responsible for them are predicted to encode proteins that interact with ATM in the DNA-damage response. Ataxia with oculomotor apraxia types 1-3 (AOA1, 2, and 3) result in a neurodegenerative and cellular phenotype similar to AT; however, the basis of this phenotypic similarity is unclear. Here, we show that the cells of AOA3 patients display aberrant ATM-dependent phosphorylation and apoptosis following γ-irradiation. The ATM-dependent response to H2O2 treatment was abrogated in AOA3 cells. Furthermore, AOA3 cells had reduced ATM activity. Our results suggest that the attenuated ATM-related response is caused by an increase in endogenous ROS in AOA3 cells. Pretreatment of cells with pyocyanin, which induces endogenous ROS production, abolished the ATM-dependent response. Moreover, AOA3 cells had decreased homologous recombination (HR) activity, and pyocyanin pretreatment reduced HR activity in HeLa cells. These results indicate that excess endogenous ROS represses the ATM-dependent cellular response and HR repair in AOA3 cells. Since the ATM-dependent cell-cycle checkpoint is an important block to carcinogenesis, such inactivation of ATM may lead to tumorigenesis as well as neurodegeneration.
Collapse
Affiliation(s)
- Junya Kobayashi
- Department of Genome Repair Dynamics, Radiation Biology Center, Kyoto University, Kyoto 606-8501, Japan.
| | - Yuichiro Saito
- Department of Genome Repair Dynamics, Radiation Biology Center, Kyoto University, Kyoto 606-8501, Japan
| | - Michiyo Okui
- Biomedical Engineering Center, Toin University of Yokohama, Yokohama 225-8503, Japan
| | - Noriko Miwa
- Department of Genome Repair Dynamics, Radiation Biology Center, Kyoto University, Kyoto 606-8501, Japan
| | - Kenshi Komatsu
- Department of Genome Repair Dynamics, Radiation Biology Center, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
25
|
Systematic analysis of time-series gene expression data on tumor cell-selective apoptotic responses to HDAC inhibitors. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2014; 2014:867289. [PMID: 25371703 PMCID: PMC4211306 DOI: 10.1155/2014/867289] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 08/07/2014] [Indexed: 01/20/2023]
Abstract
SAHA (suberoylanilide hydroxamic acid or vorinostat) is the first nonselective histone deacetylase (HDAC) inhibitor approved by the US Food and Drug Administration (FDA). SAHA affects histone acetylation in chromatin and a variety of nonhistone substrates, thus influencing many cellular processes. In particularly, SAHA induces selective apoptosis of tumor cells, although the mechanism is not well understood. A series of microarray experiments was recently conducted to investigate tumor cell-selective proapoptotic transcriptional responses induced by SAHA. Based on that gene expression time series, we propose a novel framework for detailed analysis of the mechanism of tumor cell apoptosis selectively induced by SAHA. Our analyses indicated that SAHA selectively disrupted the DNA damage response, cell cycle, p53 expression, and mitochondrial integrity of tumor samples to induce selective tumor cell apoptosis. Our results suggest a possible regulation network. Our research extends the existing research.
Collapse
|
26
|
Kalifa L, Gewandter JS, Staversky RJ, Sia EA, Brookes PS, O'Reilly MA. DNA double-strand breaks activate ATM independent of mitochondrial dysfunction in A549 cells. Free Radic Biol Med 2014; 75:30-9. [PMID: 25048973 PMCID: PMC4171189 DOI: 10.1016/j.freeradbiomed.2014.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 07/07/2014] [Accepted: 07/08/2014] [Indexed: 10/25/2022]
Abstract
Excessive nuclear or mitochondrial DNA damage can lead to mitochondrial dysfunction, decreased energy production, and increased generation of reactive oxygen species (ROS). Although numerous cell signaling pathways are activated when cells are injured, the ataxia telangiectasia mutant (ATM) protein has emerged as a major regulator of the response to both mitochondrial dysfunction and nuclear DNA double-strand breaks (DSBs). Because mitochondrial dysfunction is often a response to excessive DNA damage, it has been difficult to determine whether nuclear and/or mitochondrial DNA DSBs activate ATM independent of mitochondrial dysfunction. In this study, mitochondrial and nuclear DNA DSBs were generated in the A549 human lung adenocarcinoma cell line by infecting with retroviruses expressing the restriction endonuclease PstI fused to a mitochondrial targeting sequence (MTS) or nuclear localization sequence (NLS) and a hemagglutinin antigen epitope tag (HA). Expression of MTS-PstI-HA or NLS-PstI-HA activated the DNA damage response defined by phosphorylation of ATM, the tumor suppressor protein p53 (TP53), KRAB-associated protein (KAP)-1, and structural maintenance of chromosomes (SMC)-1. Phosphorylated ATM and SMC1 were detected in nuclear fractions, whereas phosphorylated TP53 and KAP1 were detected in both mitochondrial and nuclear fractions. PstI also enhanced expression of the cyclin-dependent kinase inhibitor p21 and inhibited cell growth. This response to DNA damage occurred in the absence of detectable mitochondrial dysfunction and excess production of ROS. These findings reveal that DNA DSBs are sufficient to activate ATM independent of mitochondrial dysfunction and suggest that the activated form of ATM and some of its substrates are restricted to the nuclear compartment, regardless of the site of DNA damage.
Collapse
Affiliation(s)
- Lidza Kalifa
- Department of Environmental Medicine, The University of Rochester, Rochester, NY 14642, USA
| | - Jennifer S Gewandter
- Department of Anesthesiology, The University of Rochester, Rochester, NY 14642, USA
| | - Rhonda J Staversky
- Department of Pediatrics, The University of Rochester, Rochester, NY 14642, USA
| | - Elaine A Sia
- Department of Biology, The University of Rochester, Rochester, NY 14642, USA
| | - Paul S Brookes
- Department of Anesthesiology, The University of Rochester, Rochester, NY 14642, USA
| | - Michael A O'Reilly
- Department of Pediatrics, The University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|
27
|
AS-2, a novel inhibitor of p53-dependent apoptosis, prevents apoptotic mitochondrial dysfunction in a transcription-independent manner and protects mice from a lethal dose of ionizing radiation. Biochem Biophys Res Commun 2014; 450:1498-504. [PMID: 25026551 DOI: 10.1016/j.bbrc.2014.07.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 07/05/2014] [Indexed: 11/20/2022]
Abstract
In a previous study, we reported that some tetradentate zinc(II) chelators inhibit p53 through the denaturation of its zinc-requiring structure but a chelator, Bispicen, a potent inhibitor of in vitro apoptosis, failed to show any efficient radioprotective effect against irradiated mice because the toxicity of the chelator to mice. The unsuitability of using tetradentate chelators as radioprotectors prompted us to undertake a more extensive search for p53-inhibiting agents that are weaker zinc(II) chelators and therefore less toxic. Here, we show that an 8-hydroxyquinoline (8HQ) derivative, AS-2, suppresses p53-dependent apoptosis through a transcription-independent mechanism. A mechanistic study using cells with different p53 characteristics revealed that the suppressive effect of AS-2 on apoptosis is specifically mediated through p53. In addition, AS-2 was less effective in preventing p53-mediated transcription-dependent events than pifithrin-μ (PFTμ), an inhibitor of transcription-independent apoptosis by p53. Fluorescence visualization of the extranuclear distribution of AS-2 also supports that it is ineffective on the transcription-dependent pathway. Further investigations revealed that AS-2 suppressed mitochondrial apoptotic events, such as the mitochondrial release of intermembrane proteins and the loss of mitochondrial membrane potential, although AS-2 resulted in an increase in the mitochondrial translocation of p53 as opposed to the decrease of cytosolic p53, and did not affect the apoptotic interaction of p53 with Bcl-2. AS-2 also protected mice that had been exposed to a lethal dose of ionizing radiation. Our findings indicate that some types of bidentate 8HQ chelators could serve as radioprotectors with no substantial toxicity in vivo.
Collapse
|
28
|
Pagano G, Shyamsunder P, Verma RS, Lyakhovich A. Damaged mitochondria in Fanconi anemia - an isolated event or a general phenomenon? Oncoscience 2014; 1:287-95. [PMID: 25594021 PMCID: PMC4278298 DOI: 10.18632/oncoscience.29] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 04/20/2014] [Indexed: 12/21/2022] Open
Abstract
Fanconi anemia (FA) is known as an inherited bone marrow failure syndrome associated with cancer predisposition and susceptibility to a number of DNA damaging stimuli, along with a number of clinical features such as upper limb malformations, increased diabetes incidence and typical anomalies in skin pigmentation. The proteins encoded by FA-defective genes (FANC proteins) display well-established roles in DNA damage and repair pathways. Moreover, some independent studies have revealed that mitochondrial dysfunction (MDF) is also involved in FA phenotype. Unconfined to FA, we have shown that other syndromes featuring DNA damage and repair (such as ataxia-telangiectasia, AT, and Werner syndrome, WS) display MDF-related phenotypes, along with oxidative stress (OS) that, altogether, may play major roles in these diseases. Experimental and clinical studies are warranted in the prospect of future therapies to be focused on compounds scavenging reactive oxygen species (ROS) as well as protecting mitochondrial functions.
Collapse
Affiliation(s)
- Giovanni Pagano
- Italian National Cancer Institute, G Pascale Foundation, CROM, Mercogliano, AV, Italy
| | - Pavithra Shyamsunder
- Stem Cell and Molecular Biology laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai
| | - Rama S Verma
- Stem Cell and Molecular Biology laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai
| | - Alex Lyakhovich
- Duke-NUS Graduate Medical School, Singapore ; Novosibirsk Institute of Molecular Biology and Biophysics, Russian Federation ; Queen's University Belfast, UK
| |
Collapse
|