1
|
Dillingham CM, Cormaty H, Morgan EC, Tak AI, Esgdaille DE, Boutz PL, Sridharan R. KDM3A and KDM3B Maintain Naïve Pluripotency Through the Regulation of Alternative Splicing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.31.543088. [PMID: 37398291 PMCID: PMC10312572 DOI: 10.1101/2023.05.31.543088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Histone modifying enzymes play a central role in maintaining cell identity by establishing a conducive chromatin environment for lineage specific transcription factor activity. Pluripotent embryonic stem cell (ESC) identity is characterized by a lower abundance of gene repression associated histone modifications that enables rapid response to differentiation cues. The KDM3 family of histone demethylases removes the repressive histone H3 lysine 9 dimethylation (H3K9me2). Here we uncover a surprising role for the KDM3 proteins in the maintenance of the pluripotent state through post-transcriptional regulation. We find that KDM3A and KDM3B interact with RNA processing factors such as EFTUD2 and PRMT5. Acute selective degradation of the endogenous KDM3A and KDM3B proteins resulted in altered splicing independent of H3K9me2 status or catalytic activity. These splicing changes partially resemble the splicing pattern of the more blastocyst-like ground state of pluripotency and occurred in important chromatin and transcription factors such as Dnmt3b, Tbx3 and Tcf12. Our findings reveal non-canonical roles of histone demethylating enzymes in splicing to regulate cell identity.
Collapse
Affiliation(s)
- Caleb M Dillingham
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53792, USA
- Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Harshini Cormaty
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53792, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Ellen C Morgan
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - Andrew I Tak
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53792, USA
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Dakarai E Esgdaille
- Department of Biochemistry and Biophysics, Center for RNA Biology, Wilmot Cancer Center, University of Rochester School of Medicine and Dentistry
| | - Paul L Boutz
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry
| | - Rupa Sridharan
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53792, USA
| |
Collapse
|
2
|
Asano N, Imatani A, Takeuchi A, Saito M, Jin XY, Hatta W, Uno K, Koike T, Masamune A. Role of T-box transcription factor 3 in gastric cancers. World J Gastrointest Pathophysiol 2023; 14:12-20. [PMID: 37035275 PMCID: PMC10074946 DOI: 10.4291/wjgp.v14.i2.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/22/2023] [Accepted: 03/10/2023] [Indexed: 03/21/2023] Open
Abstract
The expression of T-box transcription factor 3 (TBX3) has been identified in various cancers, including gastric cancers. Its role in breast cancers and melanomas has been intensively studied, and its contribution to the progression of cancers through suppressing senescence and promoting epithelial-mesenchymal transition has been reported. Recent reports on the role of TBX3 in gastric cancers have implied its involvement in gastric carcinogenesis. Considering its pivotal role in the initiation and progression of cancers, TBX3 could be a promising therapeutic target for gastric cancers.
Collapse
Affiliation(s)
- Naoki Asano
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Akira Imatani
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Akio Takeuchi
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Masashi Saito
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Xiao-Yi Jin
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Waku Hatta
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Kaname Uno
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Tomoyuki Koike
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| |
Collapse
|
3
|
Wang X, Ping C, Tan P, Sun C, Liu G, Liu T, Yang S, Si Y, Zhao L, Hu Y, Jia Y, Wang X, Zhang M, Wang F, Wang D, Yu J, Ma Y, Huang Y. hnRNPLL controls pluripotency exit of embryonic stem cells by modulating alternative splicing of Tbx3 and Bptf. EMBO J 2021; 40:e104729. [PMID: 33349972 PMCID: PMC7883296 DOI: 10.15252/embj.2020104729] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 11/09/2022] Open
Abstract
The regulatory circuitry underlying embryonic stem (ES) cell self-renewal is well defined, but how this circuitry is disintegrated to enable lineage specification is unclear. RNA-binding proteins (RBPs) have essential roles in RNA-mediated gene regulation, and preliminary data suggest that they might regulate ES cell fate. By combining bioinformatic analyses with functional screening, we identified seven RBPs played important roles for the exit from pluripotency of ES cells. We characterized hnRNPLL, which mainly functions as a global regulator of alternative splicing in ES cells. Specifically, hnRNPLL promotes multiple ES cell-preferred exon skipping events during the onset of ES cell differentiation. hnRNPLL depletion thus leads to sustained expression of ES cell-preferred isoforms, resulting in a differentiation deficiency that causes developmental defects and growth impairment in hnRNPLL-KO mice. In particular, hnRNPLL-mediated alternative splicing of two transcription factors, Bptf and Tbx3, is important for pluripotency exit. These data uncover the critical role of RBPs in pluripotency exit and suggest the application of targeting RBPs in controlling ES cell fate.
Collapse
Affiliation(s)
- Xue Wang
- State Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
- Department of Medical GeneticsInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Changyun Ping
- State Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
- Key Laboratory of RNA Regulation and HematopoiesisDepartment of Biochemistry and Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
- Present address:
Department of PathologyHenan Provincial People's HospitalPeople's Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Puwen Tan
- Department of BioinformaticsSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Chenguang Sun
- State Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
- Key Laboratory of RNA Regulation and HematopoiesisDepartment of Biochemistry and Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Guang Liu
- State Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
- Department of Medical GeneticsInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Tao Liu
- State Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
- Department of Obstetrics and GynecologyThe Third Affiliated Hospital of Chongqing Medical University (General Hospital)ChongqingChina
| | - Shuchun Yang
- State Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
- Department of Medical GeneticsInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Yanmin Si
- State Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
- Key Laboratory of RNA Regulation and HematopoiesisDepartment of Biochemistry and Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Lijun Zhao
- State Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
- Key Laboratory of RNA Regulation and HematopoiesisDepartment of Biochemistry and Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Yongfei Hu
- Department of BioinformaticsSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Yuyan Jia
- State Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
- Department of Medical GeneticsInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Xiaoshuang Wang
- State Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
- Key Laboratory of RNA Regulation and HematopoiesisDepartment of Biochemistry and Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Meili Zhang
- State Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
- Department of Medical GeneticsInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Fang Wang
- State Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
- Key Laboratory of RNA Regulation and HematopoiesisDepartment of Biochemistry and Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Dong Wang
- Department of BioinformaticsSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
- Dermatology HospitalSouthern Medical UniversityGuangzhouChina
- Center for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Jia Yu
- State Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
- Key Laboratory of RNA Regulation and HematopoiesisDepartment of Biochemistry and Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Yanni Ma
- State Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
- Key Laboratory of RNA Regulation and HematopoiesisDepartment of Biochemistry and Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Yue Huang
- State Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
- Department of Medical GeneticsInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
| |
Collapse
|
4
|
Gao J, Petraki S, Sun X, Brooks LA, Lynch TJ, Hsieh CL, Elteriefi R, Lorenzana Z, Punj V, Engelhardt JF, Parekh KR, Ryan AL. Derivation of induced pluripotent stem cells from ferret somatic cells. Am J Physiol Lung Cell Mol Physiol 2020; 318:L671-L683. [PMID: 32073882 PMCID: PMC7191474 DOI: 10.1152/ajplung.00456.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/15/2020] [Accepted: 01/29/2020] [Indexed: 02/06/2023] Open
Abstract
Ferrets are an attractive mammalian model for several diseases, especially those affecting the lungs, liver, brain, and kidneys. Many chronic human diseases have been difficult to model in rodents due to differences in size and cellular anatomy. This is particularly the case for the lung, where ferrets provide an attractive mammalian model of both acute and chronic lung diseases, such as influenza, cystic fibrosis, A1A emphysema, and obliterative bronchiolitis, closely recapitulating disease pathogenesis, as it occurs in humans. As such, ferrets have the potential to be a valuable preclinical model for the evaluation of cell-based therapies for lung regeneration and, likely, for other tissues. Induced pluripotent stem cells (iPSCs) provide a great option for provision of enough autologous cells to make patient-specific cell therapies a reality. Unfortunately, they have not been successfully created from ferrets. In this study, we demonstrate the generation of ferret iPSCs that reflect the primed pluripotent state of human iPSCs. Ferret fetal fibroblasts were reprogrammed and acquired core features of pluripotency, having the capacity for self-renewal, multilineage differentiation, and a high-level expression of the core pluripotency genes and pathways at both the transcriptional and protein level. In conclusion, we have generated ferret pluripotent stem cells that provide an opportunity for advancing our capacity to evaluate autologous cell engraftment in ferrets.
Collapse
Affiliation(s)
- Jinghui Gao
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, California
| | - Sophia Petraki
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, California
| | - Xingshen Sun
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa
| | - Leonard A Brooks
- Division of Cardiothoracic Surgery, University of Iowa, Iowa City, Iowa
| | - Thomas J Lynch
- Division of Cardiothoracic Surgery, University of Iowa, Iowa City, Iowa
| | - Chih-Lin Hsieh
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - Reem Elteriefi
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, California
| | - Zareeb Lorenzana
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, California
| | - Vasu Punj
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, California
| | - John F Engelhardt
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa
| | - Kalpaj R Parekh
- Division of Cardiothoracic Surgery, University of Iowa, Iowa City, Iowa
| | - Amy L Ryan
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, California
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
5
|
The c-Myc/AKT1/TBX3 Axis Is Important to Target in the Treatment of Embryonal Rhabdomyosarcoma. Cancers (Basel) 2020; 12:cancers12020501. [PMID: 32098189 PMCID: PMC7072582 DOI: 10.3390/cancers12020501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 02/06/2023] Open
Abstract
Rhabdomyosarcoma is a highly aggressive malignant cancer that arises from skeletal muscle progenitor cells and is the third most common solid tumour in children. Despite significant advances, rhabdomyosarcoma still presents a therapeutic challenge, and while targeted therapy has shown promise, there are limited options because the molecular drivers of rhabdomyosarcoma are poorly understood. We previously reported that the T-box transcription factor 3 (TBX3), which has been identified as a druggable target in many cancers, is overexpressed in rhabdomyosarcoma patient samples and cell lines. To identify new molecular therapeutic targets to treat rhabdomyosarcoma, this study investigates the potential oncogenic role(s) for TBX3 and the factors responsible for upregulating it in this cancer. To this end, rhabdomyosarcoma cell culture models in which TBX3 was either stably knocked down or overexpressed were established and the impact on key hallmarks of cancer were examined using growth curves, soft agar and scratch motility assays, as well as tumour-forming ability in nude mice. Our data show that TBX3 promotes substrate-dependent and -independent proliferation, migration and tumour formation. We further reveal that TBX3 is upregulated by c-Myc transcriptionally and AKT1 post-translationally. This study identifies c-Myc/AKT1/TBX3 as an important axis that could be targeted for the treatment of rhabdomyosarcoma.
Collapse
|
6
|
Khan SF, Damerell V, Omar R, Du Toit M, Khan M, Maranyane HM, Mlaza M, Bleloch J, Bellis C, Sahm BDB, Peres J, ArulJothi KN, Prince S. The roles and regulation of TBX3 in development and disease. Gene 2020; 726:144223. [PMID: 31669645 PMCID: PMC7108957 DOI: 10.1016/j.gene.2019.144223] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 12/18/2022]
Abstract
TBX3, a member of the ancient and evolutionary conserved T-box transcription factor family, is a critical developmental regulator of several structures including the heart, mammary glands, limbs and lungs. Indeed, mutations in the human TBX3 lead to ulnar mammary syndrome which is characterized by several clinical malformations including hypoplasia of the mammary and apocrine glands, defects of the upper limb, areola, dental structures, heart and genitalia. In contrast, TBX3 has no known function in adult tissues but is frequently overexpressed in a wide range of epithelial and mesenchymal derived cancers. This overexpression greatly impacts several hallmarks of cancer including bypass of senescence, apoptosis and anoikis, promotion of proliferation, tumour formation, angiogenesis, invasion and metastatic capabilities as well as cancer stem cell expansion. The debilitating consequences of having too little or too much TBX3 suggest that its expression levels need to be tightly regulated. While we have a reasonable understanding of the mutations that result in low levels of functional TBX3 during development, very little is known about the factors responsible for the overexpression of TBX3 in cancer. Furthermore, given the plethora of oncogenic processes that TBX3 impacts, it must be regulating several target genes but to date only a few have been identified and characterised. Interestingly, while there is compelling evidence to support oncogenic roles for TBX3, a few studies have indicated that it may also have tumour suppressor functions in certain contexts. Together, the diverse functional elasticity of TBX3 in development and cancer is thought to involve, in part, the protein partners that it interacts with and this area of research has recently received some attention. This review provides an insight into the significance of TBX3 in development and cancer and identifies research gaps that need to be explored to shed more light on this transcription factor.
Collapse
Affiliation(s)
- Saif F Khan
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Victoria Damerell
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Rehana Omar
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Michelle Du Toit
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Mohsin Khan
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Hapiloe Mabaruti Maranyane
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Mihlali Mlaza
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Jenna Bleloch
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Claire Bellis
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Bianca D B Sahm
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa; Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, SP 11030-400, Brazil
| | - Jade Peres
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - K N ArulJothi
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Sharon Prince
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa.
| |
Collapse
|
7
|
Krstic M, Kolendowski B, Cecchini MJ, Postenka CO, Hassan HM, Andrews J, MacMillan CD, Williams KC, Leong HS, Brackstone M, Torchia J, Chambers AF, Tuck AB. TBX3 promotes progression of pre-invasive breast cancer cells by inducing EMT and directly up-regulating SLUG. J Pathol 2019; 248:191-203. [PMID: 30697731 PMCID: PMC6593675 DOI: 10.1002/path.5245] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/22/2019] [Accepted: 01/25/2019] [Indexed: 12/12/2022]
Abstract
The acquisition of cellular invasiveness by breast epithelial cells and subsequent transition from ductal carcinoma in situ (DCIS) to invasive breast cancer is a critical step in breast cancer progression. Little is known about the molecular dynamics governing this transition. We have previously shown that overexpression of the transcriptional regulator TBX3 in DCIS‐like cells increases survival, growth, and invasiveness. To explore this mechanism further and assess direct transcriptional targets of TBX3 in a high‐resolution, isoform‐specific context, we conducted genome‐wide chromatin‐immunoprecipitation (ChIP) arrays coupled with transcriptomic analysis. We show that TBX3 regulates several epithelial–mesenchymal transition (EMT)‐related genes, including SLUG and TWIST1. Importantly, we demonstrate that TBX3 is a direct regulator of SLUG expression, and SLUG expression is required for TBX3‐induced migration and invasion. Assessing TBX3 by immunohistochemistry in early‐stage (stage 0 and stage I) breast cancers revealed high expression in low‐grade lesions. Within a second independent early‐stage non‐high‐grade cohort, we observed an association between TBX3 level in the DCIS and size of the invasive focus. Additionally, there was a positive correlation between TBX3 and SLUG, and TBX3 and TWIST1 in the invasive carcinoma. Pathway analysis revealed altered expression of several proteases and their inhibitors, consistent with the ability to degrade basement membrane in vivo. These findings strongly suggest the involvement of TBX3 in the promotion of invasiveness and progression of early‐stage pre‐invasive breast cancer to invasive carcinoma through the low‐grade molecular pathway. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Milica Krstic
- Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,The Pamela Greenaway-Kohlmeier Translational Breast Cancer Research Unit, London Regional Cancer Program, London Health Sciences Centre, London, ON, Canada.,Department of Pathology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Bart Kolendowski
- Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,The Pamela Greenaway-Kohlmeier Translational Breast Cancer Research Unit, London Regional Cancer Program, London Health Sciences Centre, London, ON, Canada.,Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Mary & John Knight Translational Ovarian Cancer Research Unit, London Regional Cancer Program, London Health Sciences Centre, London, ON, Canada
| | - Matthew J Cecchini
- Department of Pathology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Carl O Postenka
- Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,The Pamela Greenaway-Kohlmeier Translational Breast Cancer Research Unit, London Regional Cancer Program, London Health Sciences Centre, London, ON, Canada
| | - Haider M Hassan
- Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Joseph Andrews
- Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,The Pamela Greenaway-Kohlmeier Translational Breast Cancer Research Unit, London Regional Cancer Program, London Health Sciences Centre, London, ON, Canada
| | - Connor D MacMillan
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Karla C Williams
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Hon S Leong
- Departments of Urology, Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Muriel Brackstone
- Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Joseph Torchia
- Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,The Pamela Greenaway-Kohlmeier Translational Breast Cancer Research Unit, London Regional Cancer Program, London Health Sciences Centre, London, ON, Canada.,Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Ann F Chambers
- Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,The Pamela Greenaway-Kohlmeier Translational Breast Cancer Research Unit, London Regional Cancer Program, London Health Sciences Centre, London, ON, Canada.,Department of Pathology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Alan B Tuck
- Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,The Pamela Greenaway-Kohlmeier Translational Breast Cancer Research Unit, London Regional Cancer Program, London Health Sciences Centre, London, ON, Canada.,Department of Pathology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
8
|
The special stemness functions of Tbx3 in stem cells and cancer development. Semin Cancer Biol 2018; 57:105-110. [PMID: 30268432 DOI: 10.1016/j.semcancer.2018.09.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/13/2018] [Accepted: 09/26/2018] [Indexed: 12/15/2022]
Abstract
The T-box factors belong to an ancient protein family, which comprises a cluster of evolutionarily-conserved transcription factors that regulate gene expression and that are crucial to embryonic development. T-box transcription factor 3 (Tbx3) is a member of this family, is expressed in some tissues, and is a key regulator in many critical organs, including the heart, mammary gland, and limbs. Overexpression of Tbx3 is associated with a number of cancers, including head and neck squamous cell carcinoma, gastric, breast, ovary, cervical, pancreatic, bladder and liver cancers, as well as melanoma. Tbx3 promotes tumor development by modulating cell proliferation, tumor formation, metastasis, cell survival and drug resistance. Moreover, there is strong evidence that Tbx3 regulates stem cell maintenance by controlling stem cell self-renewal and differentiation. Verification of the upstream regulatory factors and potential molecular mechanism of Tbx3, being able to explain the function of Tbx3 in carcinogenic effects and stem cell maintenance, will make a valuable contribution to stem cell and cancer research. This review provides an insight into the current research on Tbx3 and explores the significance of Tbx3 in stem cells and tumorigenesis.
Collapse
|
9
|
Ke M, He Q, Hong D, Li O, Zhu M, Ou WB, He Y, Wu Y. Leukemia inhibitory factor regulates marmoset induced pluripotent stem cell proliferation via a PI3K/Akt‑dependent Tbx‑3 activation pathway. Int J Mol Med 2018; 42:131-140. [PMID: 29620145 PMCID: PMC5979829 DOI: 10.3892/ijmm.2018.3610] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 03/28/2018] [Indexed: 01/22/2023] Open
Abstract
Leukemia inhibitory factor (LIF) is the most pleiotropic cytokine of the interleukin-6 family, and is widely used to establish and maintain pluripotent stem cells, particularly mouse pluripotent stem cells. However, no reports have fully elucidated the application of LIF in marmoset induced pluripotent stem cell (iPSC) culture, particularly the underlying mechanisms. To demonstrate the feasibility of the application of LIF to marmoset iPSCs, the present study assessed these cells in the presence of LIF. Cell proliferation was measured using MTT assay, cell apoptosis was determined by flow cytometric analysis of fluorescein isothiocyanate Annexin V staining and the differentially expressed genes were analysed using Digital Gene Expression (DGE) analysis. The altered expression of pluripotency-associated genes was confirmed by reverse transcription-quantitative polymerase chain reaction and western blot analysis. Furthermore, following treatment with LY294002, cell proliferation was measured by MTT assay and protein levels were confirmed by western blot analysis. The results showed that LIF significantly promoted the number of proliferating cells, but had no effect on apoptosis. Digital Gene Expression analysis was used to examine the differentially expressed genes of marmoset iPSCs in the presence of LIF. The results showed that the pluripotency-associated transcription factor-encoding gene T-box 3 (Tbx-3) was activated by LIF. Notably, LIF increased the levels of phosphorylated (p-)AKT and Tbx-3 in the marmoset iPSCs. Furthermore, pretreatment with LY294002, an inhibitor of phosphoinositide 3-kinase (PI3K), significantly impaired the LIF-induced upregulation of p-AKT and Tbx-3 in the marmoset iPSCs, suggesting that the PI3K/Akt signaling pathway is involved in this regulation. Taken together, the results suggested that LIF is effective in maintaining marmoset iPSCs in cultures, which is associated with the activation of Tbx-3 through regulation of the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Minxia Ke
- Department of Biochemistry and Molecular Biology, College of Life Science, Zhejiang Sci‑Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Quan He
- Department of Biochemistry and Molecular Biology, College of Life Science, Zhejiang Sci‑Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Danping Hong
- Department of Biochemistry and Molecular Biology, College of Life Science, Zhejiang Sci‑Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Ouyang Li
- Department of Biochemistry and Molecular Biology, College of Life Science, Zhejiang Sci‑Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Mengyi Zhu
- Department of Biochemistry and Molecular Biology, College of Life Science, Zhejiang Sci‑Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Wen-Bin Ou
- Department of Biochemistry and Molecular Biology, College of Life Science, Zhejiang Sci‑Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Yulong He
- Department of Biochemistry and Molecular Biology, College of Life Science, Zhejiang Sci‑Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Yuehong Wu
- Department of Biochemistry and Molecular Biology, College of Life Science, Zhejiang Sci‑Tech University, Hangzhou, Zhejiang 310018, P.R. China
| |
Collapse
|
10
|
Deb A, Sarkar A, Ghosh Z. Dissecting the variation in transcriptional circuits between naive and primed pluripotent states. FEBS Lett 2017. [DOI: 10.1002/1873-3468.12732] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Aritra Deb
- Bioinformatics Centre; Bose Institute; Kolkata India
| | | | - Zhumur Ghosh
- Bioinformatics Centre; Bose Institute; Kolkata India
| |
Collapse
|
11
|
Zhao H, Han Z, Liu X, Gu J, Tang F, Wei G, Jin Y. The chromatin remodeler Chd4 maintains embryonic stem cell identity by controlling pluripotency- and differentiation-associated genes. J Biol Chem 2017; 292:8507-8519. [PMID: 28298436 DOI: 10.1074/jbc.m116.770248] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/13/2017] [Indexed: 12/23/2022] Open
Abstract
The unique properties of embryonic stem cells (ESCs), including unlimited self-renewal and pluripotent differentiation potential, are sustained by integrated genetic and epigenetic networks composed of transcriptional factors and epigenetic modulators. However, the molecular mechanisms underlying the function of these regulators are not fully elucidated. Chromodomain helicase DNA-binding protein 4 (Chd4), an ATPase subunit of the nucleosome remodeling and deacetylase (NuRD) complex, is highly expressed in ESCs. However, its function in ESC regulation remains elusive. Here we report that Chd4 is required for the maintenance of ESC self-renewal. RNAi-mediated silencing of Chd4 disrupted self-renewal and up-regulated lineage commitment-associated genes under self-renewal culture conditions. During ESC differentiation in embryoid body formation, we observed significantly stronger induction of differentiation-associated genes in Chd4-deficient cells. The phenotype was different from that caused by the deletion of Mbd3, another subunit of the NuRD complex. Transcriptomic analyses revealed that Chd4 secured ESC identity by controlling the expression of subsets of pluripotency- and differentiation-associated genes. Importantly, Chd4 repressed the transcription of T box protein 3 (Tbx3), a transcription factor with important functions in ESC fate determination. Tbx3 knockdown partially rescued aberrant activation of differentiation-associated genes, especially of endoderm-associated genes, induced by Chd4 depletion. Moreover, we identified an interaction of Chd4 with the histone variant H2A.Z. This variant stabilized Chd4 by inhibiting Chd4 protein degradation through the ubiquitin-proteasome pathway. Collectively, this study identifies the Chd4-Tbx3 axis in controlling ESC fate and a role of H2A.Z in maintaining the stability of Chd4 proteins.
Collapse
Affiliation(s)
- Haixin Zhao
- Key Laboratory of Stem Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai JiaoTong University School of Medicine, 320 Yueyang Road, Shanghai 200031, China; University of the Chinese Academy of Sciences
| | - Zhijun Han
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xinyuan Liu
- Key Laboratory of Stem Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai JiaoTong University School of Medicine, 320 Yueyang Road, Shanghai 200031, China
| | - Junjie Gu
- Laboratory of Molecular Developmental Biology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Fan Tang
- Laboratory of Molecular Developmental Biology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Gang Wei
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ying Jin
- Key Laboratory of Stem Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai JiaoTong University School of Medicine, 320 Yueyang Road, Shanghai 200031, China; Laboratory of Molecular Developmental Biology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
12
|
Willmer T, Cooper A, Peres J, Omar R, Prince S. The T-Box transcription factor 3 in development and cancer. Biosci Trends 2017; 11:254-266. [DOI: 10.5582/bst.2017.01043] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Tarryn Willmer
- Department of Human Biology, Faculty of Health Sciences, Anzio Road, University of Cape Town
| | - Aretha Cooper
- Department of Human Biology, Faculty of Health Sciences, Anzio Road, University of Cape Town
| | - Jade Peres
- Department of Human Biology, Faculty of Health Sciences, Anzio Road, University of Cape Town
| | - Rehana Omar
- Department of Human Biology, Faculty of Health Sciences, Anzio Road, University of Cape Town
| | - Sharon Prince
- Department of Human Biology, Faculty of Health Sciences, Anzio Road, University of Cape Town
| |
Collapse
|
13
|
Fischer K, Pflugfelder GO. Putative Breast Cancer Driver Mutations in TBX3 Cause Impaired Transcriptional Repression. Front Oncol 2015; 5:244. [PMID: 26579496 PMCID: PMC4625211 DOI: 10.3389/fonc.2015.00244] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 10/14/2015] [Indexed: 12/17/2022] Open
Abstract
The closely related T-box transcription factors TBX2 and TBX3 are frequently overexpressed in melanoma and various types of human cancers, in particular, breast cancer. The overexpression of TBX2 and TBX3 can have several cellular effects, among them suppression of senescence, promotion of epithelial-mesenchymal transition, and invasive cell motility. In contrast, loss of function of TBX3 and most other human T-box genes causes developmental haploinsufficiency syndromes. Stephens and colleagues (1), by exome sequencing of breast tumor samples, identified five different mutations in TBX3, all affecting the DNA-binding T-domain. One in-frame deletion of a single amino acid, p.N212delN, was observed twice. Due to the clustering of these mutations to the T-domain and for statistical reasons, TBX3 was inferred to be a driver gene in breast cancer. Since mutations in the T-domain generally cause loss of function and because the tumorigenic action of TBX3 has generally been attributed to overexpression, we determined whether the putative driver mutations had loss- or gain-of-function properties. We tested two in-frame deletions, one missense, and one frameshift mutant protein for DNA-binding in vitro, and for target gene repression in cell culture. In addition, we performed an in silico analysis of somatic TBX mutations in breast cancer, collected in The Cancer Genome Atlas (TCGA). Both the experimental and the in silico analysis indicate that the observed mutations predominantly cause loss of TBX3 function.
Collapse
|
14
|
Shen J, Lu J, Sui L, Wang D, Yin M, Hoffmann I, Legler A, Pflugfelder GO. The orthologous Tbx transcription factors Omb and TBX2 induce epithelial cell migration and extrusion in vivo without involvement of matrix metalloproteinases. Oncotarget 2015; 5:11998-2015. [PMID: 25344916 PMCID: PMC4322970 DOI: 10.18632/oncotarget.2426] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 09/02/2014] [Indexed: 01/06/2023] Open
Abstract
The transcription factors TBX2 and TBX3 are overexpressed in various human cancers. Here, we investigated the effect of overexpressing the orthologous Tbx genes Drosophila optomotor-blind (omb) and human TBX2 in the epithelium of the Drosophila wing imaginal disc and observed two types of cell motility. Omb/TBX2 overexpressing cells could move within the plane of the epithelium. Invasive cells migrated long-distance as single cells retaining or regaining normal cell shape and apico-basal polarity in spite of attenuated apical DE-cadherin concentration. Inappropriate levels of DE-cadherin were sufficient to drive cell migration in the wing disc epithelium. Omb/TBX2 overexpression and reduced DE-cadherin-dependent adhesion caused the formation of actin-rich lateral cell protrusions. Omb/TBX2 overexpressing cells could also delaminate basally, penetratingthe basal lamina, however, without degradation of extracellular matrix. Expression of Timp, an inhibitor of matrix metalloproteases, blocked neither intraepithelial motility nor basal extrusion. Our results reveal an MMP-independent mechanism of cell invasion and suggest a conserved role of Tbx2-related proteins in cell invasion and metastasis-related processes.
Collapse
Affiliation(s)
- Jie Shen
- Department of Entomology, China Agricultural University, Beijing, China
| | - Juan Lu
- Department of Entomology, China Agricultural University, Beijing, China
| | - Liyuan Sui
- Department of Entomology, China Agricultural University, Beijing, China
| | - Dan Wang
- Department of Entomology, China Agricultural University, Beijing, China
| | - Meizhen Yin
- Key Laboratory of Carbon Fiber and Functional Polymers, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China
| | - Inka Hoffmann
- Institute of Genetics, Johannes Gutenberg-University, Mainz, Germany
| | - Anne Legler
- Institute of Genetics, Johannes Gutenberg-University, Mainz, Germany
| | | |
Collapse
|
15
|
Papaioannou VE. The T-box gene family: emerging roles in development, stem cells and cancer. Development 2014; 141:3819-33. [PMID: 25294936 DOI: 10.1242/dev.104471] [Citation(s) in RCA: 224] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The T-box family of transcription factors exhibits widespread involvement throughout development in all metazoans. T-box proteins are characterized by a DNA-binding motif known as the T-domain that binds DNA in a sequence-specific manner. In humans, mutations in many of the genes within the T-box family result in developmental syndromes, and there is increasing evidence to support a role for these factors in certain cancers. In addition, although early studies focused on the role of T-box factors in early embryogenesis, recent studies in mice have uncovered additional roles in unsuspected places, for example in adult stem cell populations. Here, I provide an overview of the key features of T-box transcription factors and highlight their roles and mechanisms of action during various stages of development and in stem/progenitor cell populations.
Collapse
Affiliation(s)
- Virginia E Papaioannou
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
16
|
Wansleben S, Peres J, Hare S, Goding CR, Prince S. T-box transcription factors in cancer biology. Biochim Biophys Acta Rev Cancer 2014; 1846:380-91. [PMID: 25149433 DOI: 10.1016/j.bbcan.2014.08.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 08/12/2014] [Accepted: 08/14/2014] [Indexed: 01/07/2023]
Abstract
The evolutionarily conserved T-box family of transcription factors have critical and well-established roles in embryonic development. More recently, T-box factors have also gained increasing prominence in the field of cancer biology where a wide range of cancers exhibit deregulated expression of T-box factors that possess tumour suppressor and/or tumour promoter functions. Of these the best characterised is TBX2, whose expression is upregulated in cancers including breast, pancreatic, ovarian, liver, endometrial adenocarcinoma, glioblastomas, gastric, uterine cervical and melanoma. Understanding the role and regulation of TBX2, as well as other T-box factors, in contributing directly to tumour progression, and especially in suppression of senescence and control of invasiveness suggests that targeting TBX2 expression or function alone or in combination with currently available chemotherapeutic agents may represent a therapeutic strategy for cancer.
Collapse
Affiliation(s)
- Sabina Wansleben
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925 Cape Town, South Africa
| | - Jade Peres
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925 Cape Town, South Africa
| | - Shannagh Hare
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925 Cape Town, South Africa
| | - Colin R Goding
- Ludwig Institute for Cancer Research, Oxford University, Old Road Campus, Headington, Oxford OX3 7DQ, UK
| | - Sharon Prince
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925 Cape Town, South Africa.
| |
Collapse
|