1
|
Sun J, Gui Y, Zhou S, Zheng XL. Unlocking the secrets of aging: Epigenetic reader BRD4 as the target to combatting aging-related diseases. J Adv Res 2024; 63:207-218. [PMID: 37956861 PMCID: PMC11379999 DOI: 10.1016/j.jare.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Aging, a complex and profound journey, leads us through a labyrinth of physiological and pathological transformations, rendering us increasingly susceptible to aging-related diseases. Emerging investigations have unveiled the function of bromodomain containing protein 4 (BRD4) in manipulating the aging process and driving the emergence and progression of aging-related diseases. AIM OF REVIEW This review aims to offer a comprehensive outline of BRD4's functions involved in the aging process, and potential mechanisms through which BRD4 governs the initiation and progression of various aging-related diseases. KEY SCIENTIFIC CONCEPTS OF REVIEW BRD4 has a fundamental role in regulating the cell cycle, apoptosis, cellular senescence, the senescence-associated secretory phenotype (SASP), senolysis, autophagy, and mitochondrial function, which are involved in the aging process. Several studies have indicated that BRD4 governs the initiation and progression of various aging-related diseases, including Alzheimer's disease, ischemic cerebrovascular diseases, hypertension, atherosclerosis, heart failure, aging-related pulmonary fibrosis, and intervertebral disc degeneration (IVDD). Thus, the evidence from this review supports that BRD4 could be a promising target for managing various aging-related diseases, while further investigation is warranted to gain a thorough understanding of BRD4's role in these diseases.
Collapse
Affiliation(s)
- Jiaxing Sun
- Departments of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, AB, Canada; Department of Cardiology, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Yu Gui
- Departments of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, AB, Canada
| | - Shenghua Zhou
- Department of Cardiology, the Second Xiangya Hospital of Central South University, Changsha, China.
| | - Xi-Long Zheng
- Departments of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, AB, Canada.
| |
Collapse
|
2
|
Liu Y, Park J, Lim S, Duan R, Lee DY, Choi D, Choi DK, Rhie B, Cho SY, Ryu H, Ahn SH. Tho2-mediated escort of Nrd1 regulates the expression of aging-related genes. Aging Cell 2024; 23:e14203. [PMID: 38769776 PMCID: PMC11320360 DOI: 10.1111/acel.14203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 05/22/2024] Open
Abstract
The relationship between aging and RNA biogenesis and trafficking is attracting growing interest, yet the precise mechanisms are unknown. The THO complex is crucial for mRNA cotranscriptional maturation and export. Herein, we report that the THO complex is closely linked to the regulation of lifespan. Deficiencies in Hpr1 and Tho2, components of the THO complex, reduced replicative lifespan (RLS) and are linked to a novel Sir2-independent RLS control pathway. Although transcript sequestration in hpr1Δ or tho2Δ mutants was countered by exosome component Rrp6, loss of this failed to mitigate RLS defects in hpr1Δ. However, RLS impairment in hpr1Δ or tho2Δ was counteracted by the additional expression of Nrd1-specific mutants that interacted with Rrp6. This effect relied on the interaction of Nrd1, a transcriptional regulator of aging-related genes, including ribosome biogenesis or RNA metabolism genes, with RNA polymerase II. Nrd1 overexpression reduced RLS in a Tho2-dependent pathway. Intriguingly, Tho2 deletion mirrored Nrd1 overexpression effects by inducing arbitrary Nrd1 chromatin binding. Furthermore, our genome-wide ChIP-seq analysis revealed an increase in the recruitment of Nrd1 to translation-associated genes, known to be related to aging, upon Tho2 loss. Taken together, these findings underscore the importance of Tho2-mediated Nrd1 escorting in the regulation of lifespan pathway through transcriptional regulation of aging-related genes.
Collapse
Affiliation(s)
- Yan Liu
- Department of Molecular and Life Science, College of Science and Convergence TechnologyHanyang UniversityAnsanRepublic of Korea
| | - Jeong‐Min Park
- KNU LAMP Research Center, KNU Institute of Basic Sciences, School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, College of Natural SciencesKyungpook National UniversityDaeguRepublic of Korea
| | - Suji Lim
- Department of Molecular and Life Science, College of Science and Convergence TechnologyHanyang UniversityAnsanRepublic of Korea
| | - Ruxin Duan
- Department of Molecular and Life Science, College of Science and Convergence TechnologyHanyang UniversityAnsanRepublic of Korea
| | - Do Yoon Lee
- KNU LAMP Research Center, KNU Institute of Basic Sciences, School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, College of Natural SciencesKyungpook National UniversityDaeguRepublic of Korea
| | - Dahee Choi
- KNU LAMP Research Center, KNU Institute of Basic Sciences, School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, College of Natural SciencesKyungpook National UniversityDaeguRepublic of Korea
| | - Dong Kyu Choi
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, College of Natural SciencesKyungpook National UniversityDaeguRepublic of Korea
| | - Byung‐Ho Rhie
- Department of Molecular and Life Science, College of Science and Convergence TechnologyHanyang UniversityAnsanRepublic of Korea
| | - Soo Young Cho
- Department of Molecular and Life Science, College of Science and Convergence TechnologyHanyang UniversityAnsanRepublic of Korea
| | - Hong‐Yeoul Ryu
- KNU LAMP Research Center, KNU Institute of Basic Sciences, School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, College of Natural SciencesKyungpook National UniversityDaeguRepublic of Korea
| | - Seong Hoon Ahn
- Department of Molecular and Life Science, College of Science and Convergence TechnologyHanyang UniversityAnsanRepublic of Korea
| |
Collapse
|
3
|
Rezaeian AH, Dang F, Wei W. The circadian clock, aging and its implications in cancer. Neoplasia 2023; 41:100904. [PMID: 37148656 PMCID: PMC10192918 DOI: 10.1016/j.neo.2023.100904] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/28/2023] [Indexed: 05/08/2023]
Abstract
Circadian clock orchestrates the intergenic biochemical, physiological and behavioral changes to form an approximate 24h oscillation through the transcription-translation feedback loop (TTFL). Mechanistically, a heterodimer of transcriptional activator formed by BMAL1 and CLOCK, governs the expression of its transcriptional repressors, CRY, PER and REV-ERBα/β proteins, thereby controlling more than 50 % of protein encoding genes in human. There is also increasing evidence showing that tumor microenvironment can disrupt specific clock gene functions to facilitate tumorigenesis. Although there is great progress in understanding the molecular mechanisms of the circadian clock, aging and cancer, elucidating their complex relationships among these processes remains challenging. Herein, the optimization of the chronochemotherapy regimen has not been justified yet for treatment of cancer. Here, we discuss the hypothesis of relocalization of chromatin modifiers (RCM) along with function(s) of the circadian rhythm on aging and carcinogenesis. We will also introduce the function of the chromatin remodeling as a new avenue for rejuvenation of competent tissues to combat aging and cancer.
Collapse
Affiliation(s)
- Abdol-Hossein Rezaeian
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.
| | - Fabin Dang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
4
|
Yang JH, Hayano M, Griffin PT, Amorim JA, Bonkowski MS, Apostolides JK, Salfati EL, Blanchette M, Munding EM, Bhakta M, Chew YC, Guo W, Yang X, Maybury-Lewis S, Tian X, Ross JM, Coppotelli G, Meer MV, Rogers-Hammond R, Vera DL, Lu YR, Pippin JW, Creswell ML, Dou Z, Xu C, Mitchell SJ, Das A, O'Connell BL, Thakur S, Kane AE, Su Q, Mohri Y, Nishimura EK, Schaevitz L, Garg N, Balta AM, Rego MA, Gregory-Ksander M, Jakobs TC, Zhong L, Wakimoto H, El Andari J, Grimm D, Mostoslavsky R, Wagers AJ, Tsubota K, Bonasera SJ, Palmeira CM, Seidman JG, Seidman CE, Wolf NS, Kreiling JA, Sedivy JM, Murphy GF, Green RE, Garcia BA, Berger SL, Oberdoerffer P, Shankland SJ, Gladyshev VN, Ksander BR, Pfenning AR, Rajman LA, Sinclair DA. Loss of epigenetic information as a cause of mammalian aging. Cell 2023; 186:305-326.e27. [PMID: 36638792 PMCID: PMC10166133 DOI: 10.1016/j.cell.2022.12.027] [Citation(s) in RCA: 311] [Impact Index Per Article: 155.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 08/09/2022] [Accepted: 12/15/2022] [Indexed: 01/13/2023]
Abstract
All living things experience an increase in entropy, manifested as a loss of genetic and epigenetic information. In yeast, epigenetic information is lost over time due to the relocalization of chromatin-modifying proteins to DNA breaks, causing cells to lose their identity, a hallmark of yeast aging. Using a system called "ICE" (inducible changes to the epigenome), we find that the act of faithful DNA repair advances aging at physiological, cognitive, and molecular levels, including erosion of the epigenetic landscape, cellular exdifferentiation, senescence, and advancement of the DNA methylation clock, which can be reversed by OSK-mediated rejuvenation. These data are consistent with the information theory of aging, which states that a loss of epigenetic information is a reversible cause of aging.
Collapse
Affiliation(s)
- Jae-Hyun Yang
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA.
| | - Motoshi Hayano
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA; Department of Ophthalmology, Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Patrick T Griffin
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA
| | - João A Amorim
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA; IIIUC-Institute of Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Michael S Bonkowski
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA
| | - John K Apostolides
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Elias L Salfati
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA
| | | | | | - Mital Bhakta
- Cantata/Dovetail Genomics, Scotts Valley, CA, USA
| | | | - Wei Guo
- Zymo Research Corporation, Irvine, CA, USA
| | | | - Sun Maybury-Lewis
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA
| | - Xiao Tian
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA
| | - Jaime M Ross
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA
| | - Giuseppe Coppotelli
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA
| | - Margarita V Meer
- Department of Medicine, Brigham and Women's Hospital, HMS, Boston, MA, USA
| | - Ryan Rogers-Hammond
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA
| | - Daniel L Vera
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA
| | - Yuancheng Ryan Lu
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA
| | - Jeffrey W Pippin
- Division of Nephrology, University of Washington, Seattle, WA, USA
| | - Michael L Creswell
- Division of Nephrology, University of Washington, Seattle, WA, USA; Georgetown University School of Medicine, Washington, DC, USA
| | - Zhixun Dou
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Caiyue Xu
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Abhirup Das
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA; Department of Pharmacology, UNSW, Sydney, NSW, Australia
| | | | - Sachin Thakur
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA
| | - Alice E Kane
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA
| | - Qiao Su
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Yasuaki Mohri
- Department of Stem Cell Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Emi K Nishimura
- Department of Stem Cell Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Neha Garg
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA
| | - Ana-Maria Balta
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA
| | - Meghan A Rego
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA
| | | | - Tatjana C Jakobs
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, HMS, Boston, MA, USA
| | - Lei Zhong
- The Massachusetts General Hospital Cancer Center, HMS, Boston, MA, USA
| | | | - Jihad El Andari
- Department of Infectious Diseases/Virology, Section Viral Vector Technologies, Medical Faculty, University of Heidelberg, BioQuant, Heidelberg, Germany
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Section Viral Vector Technologies, Medical Faculty, University of Heidelberg, BioQuant, Heidelberg, Germany
| | - Raul Mostoslavsky
- The Massachusetts General Hospital Cancer Center, HMS, Boston, MA, USA
| | - Amy J Wagers
- Paul F. Glenn Center for Biology of Aging Research, Harvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; Joslin Diabetes Center, Boston, MA, USA
| | - Kazuo Tsubota
- Department of Ophthalmology, Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Stephen J Bonasera
- Division of Geriatrics, University of Nebraska Medical Center, Durham Research Center II, Omaha, NE, USA
| | - Carlos M Palmeira
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | | | | | - Norman S Wolf
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Jill A Kreiling
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - John M Sedivy
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - George F Murphy
- Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Richard E Green
- Department of Biomolecular Engineering, UCSC, Santa Cruz, CA, USA
| | - Benjamin A Garcia
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Shelley L Berger
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Vadim N Gladyshev
- Department of Medicine, Brigham and Women's Hospital, HMS, Boston, MA, USA
| | - Bruce R Ksander
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, HMS, Boston, MA, USA
| | - Andreas R Pfenning
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Luis A Rajman
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA
| | - David A Sinclair
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA.
| |
Collapse
|
5
|
Chou KY, Lee JY, Kim KB, Kim E, Lee HS, Ryu HY. Histone modification in Saccharomyces cerevisiae: A review of the current status. Comput Struct Biotechnol J 2023; 21:1843-1850. [PMID: 36915383 PMCID: PMC10006725 DOI: 10.1016/j.csbj.2023.02.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 02/26/2023] Open
Abstract
The budding yeast Saccharomyces cerevisiae is a well-characterized and popular model system for investigating histone modifications and the inheritance of chromatin states. The data obtained from this model organism have provided essential and critical information for understanding the complexity of epigenetic interactions and regulation in eukaryotes. Recent advances in biotechnology have facilitated the detection and quantitation of protein post-translational modification (PTM), including acetylation, methylation, phosphorylation, ubiquitylation, sumoylation, and acylation, and led to the identification of several novel modification sites in histones. Determining the cellular function of these new histone markers is essential for understanding epigenetic mechanisms and their impact on various biological processes. In this review, we describe recent advances and current views on histone modifications and their effects on chromatin dynamics in S. cerevisiae.
Collapse
Key Words
- AdoMet, S-adenosylmethionine
- CAF-1, chromatin assembly factor-1
- CTD, C-terminal domain
- DSB, double-strand break
- E Glu, glutamic acid
- HAT, histone acetyltransferase
- HDAC, histone deacetylase
- Histone acetylation
- Histone acylation
- Histone methylation
- Histone phosphorylation
- Histone sumoylation
- Histone ubiquitylation
- JMJC, Jumonji C
- K Lys, lysine
- PTM, post-translational modification
- R Arg, arginine
- S, serine
- SAGA, Spt-Ada-Gcn5 acetyltransferase
- STUbL, SUMO-targeted ubiquitin ligase
- SUMO, small ubiquitin-like modifier
- T, threonine
- Y, tyrosine
Collapse
Affiliation(s)
- Kwon Young Chou
- School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jun-Yeong Lee
- BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kee-Beom Kim
- BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Eunjeong Kim
- BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyun-Shik Lee
- BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hong-Yeoul Ryu
- BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
6
|
Lim S, Liu Y, Rhie BH, Kim C, Ryu HY, Ahn SH. Sus1 maintains a normal lifespan through regulation of TREX-2 complex-mediated mRNA export. Aging (Albany NY) 2022; 14:4990-5012. [PMID: 35771153 PMCID: PMC9271307 DOI: 10.18632/aging.204146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/14/2022] [Indexed: 11/29/2022]
Abstract
Eukaryotic gene expression requires multiple cellular events, including transcription and RNA processing and transport. Sus1, a common subunit in both the Spt-Ada-Gcn5 acetyltransferase (SAGA) and transcription and export complex-2 (TREX-2) complexes, is a key factor in coupling transcription activation to mRNA nuclear export. Here, we report that the SAGA DUB module and TREX-2 distinctly regulate yeast replicative lifespan in a Sir2-dependent and -independent manner, respectively. The growth and lifespan impaired by SUS1 loss depend on TREX-2 but not on the SAGA DUB module. Notably, an increased dose of the mRNA export factors Mex67 and Dbp5 rescues the growth defect, shortened lifespan, and nuclear accumulation of poly(A)+ RNA in sus1Δ cells, suggesting that boosting the mRNA export process restores the mRNA transport defect and the growth and lifespan damage in sus1Δ cells. Moreover, Sus1 is required for the proper association of Mex67 and Dbp5 with the nuclear rim. Together, these data indicate that Sus1 links transcription and mRNA nuclear export to the lifespan control pathway, suggesting that prevention of an abnormal accumulation of nuclear RNA is necessary for maintenance of a normal lifespan.
Collapse
Affiliation(s)
- Suji Lim
- Department of Molecular and Life Science, College of Science and Convergence Technology, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Yan Liu
- Department of Molecular and Life Science, College of Science and Convergence Technology, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Byung-Ho Rhie
- Department of Molecular and Life Science, College of Science and Convergence Technology, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Chun Kim
- Department of Molecular and Life Science, College of Science and Convergence Technology, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Hong-Yeoul Ryu
- BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Seong Hoon Ahn
- Department of Molecular and Life Science, College of Science and Convergence Technology, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| |
Collapse
|
7
|
Park HS, Lee J, Lee HS, Ahn SH, Ryu HY. Nuclear mRNA Export and Aging. Int J Mol Sci 2022; 23:5451. [PMID: 35628261 PMCID: PMC9142925 DOI: 10.3390/ijms23105451] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 02/04/2023] Open
Abstract
The relationship between transcription and aging is one that has been studied intensively and experimentally with diverse attempts. However, the impact of the nuclear mRNA export on the aging process following its transcription is still poorly understood, although the nuclear events after transcription are coupled closely with the transcription pathway because the essential factors required for mRNA transport, namely TREX, TREX-2, and nuclear pore complex (NPC), physically and functionally interact with various transcription factors, including the activator/repressor and pre-mRNA processing factors. Dysregulation of the mediating factors for mRNA export from the nucleus generally leads to the aberrant accumulation of nuclear mRNA and further impairment in the vegetative growth and normal lifespan and the pathogenesis of neurodegenerative diseases. The optimal stoichiometry and density of NPC are destroyed during the process of cellular aging, and their damage triggers a defect of function in the nuclear permeability barrier. This review describes recent findings regarding the role of the nuclear mRNA export in cellular aging and age-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Hyun-Sun Park
- Department of Biochemistry, Inje University College of Medicine, Busan 50834, Korea;
| | - Jongbok Lee
- Department of Biological and Chemical Engineering, Hongik University, 2639, Sejong-ro, Jochiwon-eup, Sejong-si 30016, Korea;
| | - Hyun-Shik Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Korea;
| | - Seong Hoon Ahn
- Department of Molecular and Life Science, College of Science and Convergence Technology, ERICA Campus, Hanyang University, Ansan 15588, Korea
| | - Hong-Yeoul Ryu
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Korea;
| |
Collapse
|
8
|
Separovich RJ, Wilkins MR. Ready, SET, Go: Post-translational regulation of the histone lysine methylation network in budding yeast. J Biol Chem 2021; 297:100939. [PMID: 34224729 PMCID: PMC8329514 DOI: 10.1016/j.jbc.2021.100939] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/25/2021] [Accepted: 07/01/2021] [Indexed: 11/21/2022] Open
Abstract
Histone lysine methylation is a key epigenetic modification that regulates eukaryotic transcription. Here, we comprehensively review the function and regulation of the histone methylation network in the budding yeast and model eukaryote, Saccharomyces cerevisiae. First, we outline the lysine methylation sites that are found on histone proteins in yeast (H3K4me1/2/3, H3K36me1/2/3, H3K79me1/2/3, and H4K5/8/12me1) and discuss their biological and cellular roles. Next, we detail the reduced but evolutionarily conserved suite of methyltransferase (Set1p, Set2p, Dot1p, and Set5p) and demethylase (Jhd1p, Jhd2p, Rph1p, and Gis1p) enzymes that are known to control histone lysine methylation in budding yeast cells. Specifically, we illustrate the domain architecture of the methylation enzymes and highlight the structural features that are required for their respective functions and molecular interactions. Finally, we discuss the prevalence of post-translational modifications on yeast histone methylation enzymes and how phosphorylation, acetylation, and ubiquitination in particular are emerging as key regulators of enzyme function. We note that it will be possible to completely connect the histone methylation network to the cell's signaling system, given that all methylation sites and cognate enzymes are known, most phosphosites on the enzymes are known, and the mapping of kinases to phosphosites is tractable owing to the modest set of protein kinases in yeast. Moving forward, we expect that the rich variety of post-translational modifications that decorates the histone methylation machinery will explain many of the unresolved questions surrounding the function and dynamics of this intricate epigenetic network.
Collapse
Affiliation(s)
- Ryan J Separovich
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Marc R Wilkins
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
9
|
Lim S, Ahn H, Duan R, Liu Y, Ryu HY, Ahn SH. The Spt7 subunit of the SAGA complex is required for the regulation of lifespan in both dividing and nondividing yeast cells. Mech Ageing Dev 2021; 196:111480. [PMID: 33831401 DOI: 10.1016/j.mad.2021.111480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/23/2021] [Accepted: 03/31/2021] [Indexed: 11/30/2022]
Abstract
Spt7 belongs to the suppressor of Ty (SPT) module of the Spt-Ada-Gcn5-acetyltransferase (SAGA) complex and is known as the yeast ortholog of human STAF65γ. Spt7 lacks intrinsic enzymatic activity but is responsible for the integrity and proper assembly of the SAGA complex. Here, we determined the role of the SAGA Spt7 subunit in cellular aging. We found that Spt7 was indispensable for a normal lifespan in both dividing and nondividing yeast cells. In the quiescent state of cells, Spt7 was required for the control of overall mRNA levels. In mitotically active cells, deletion of the SPT module had little effect on the recombination rate within heterochromatic ribosomal DNA (rDNA) loci, but loss of Spt7 profoundly elevated the plasmid-based DNA recombination frequency. Consistently, loss of Spt7 increased spontaneous Rad52 foci by approximately two-fold upon entry into S phase. These results provide evidence that Spt7 contributes to the regulation of the normal replicative lifespan (RLS) and chronological lifespan (CLS), possibly by controlling the DNA recombination rate and overall mRNA expression. We propose that the regulation of SAGA complex integrity by Spt7 might be involved in the conserved regulatory pathway for lifespan regulation in eukaryotes.
Collapse
Affiliation(s)
- Suji Lim
- Department of Molecular and Life Science, College of Science and Convergence Technology, Hanyang University ERICA Campus, Ansan 15588, Republic of Korea
| | - Hyojeong Ahn
- Department of Molecular and Life Science, College of Science and Convergence Technology, Hanyang University ERICA Campus, Ansan 15588, Republic of Korea
| | - Ruxin Duan
- Department of Molecular and Life Science, College of Science and Convergence Technology, Hanyang University ERICA Campus, Ansan 15588, Republic of Korea
| | - Yan Liu
- Department of Molecular and Life Science, College of Science and Convergence Technology, Hanyang University ERICA Campus, Ansan 15588, Republic of Korea
| | - Hong-Yeoul Ryu
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of National Sciences, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Seong Hoon Ahn
- Department of Molecular and Life Science, College of Science and Convergence Technology, Hanyang University ERICA Campus, Ansan 15588, Republic of Korea.
| |
Collapse
|
10
|
Kaczmarek Michaels K, Mohd Mostafa S, Ruiz Capella J, Moore CL. Regulation of alternative polyadenylation in the yeast Saccharomyces cerevisiae by histone H3K4 and H3K36 methyltransferases. Nucleic Acids Res 2020; 48:5407-5425. [PMID: 32356874 PMCID: PMC7261179 DOI: 10.1093/nar/gkaa292] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/10/2020] [Accepted: 04/17/2020] [Indexed: 12/17/2022] Open
Abstract
Adjusting DNA structure via epigenetic modifications, and altering polyadenylation (pA) sites at which precursor mRNA is cleaved and polyadenylated, allows cells to quickly respond to environmental stress. Since polyadenylation occurs co-transcriptionally, and specific patterns of nucleosome positioning and chromatin modifications correlate with pA site usage, epigenetic factors potentially affect alternative polyadenylation (APA). We report that the histone H3K4 methyltransferase Set1, and the histone H3K36 methyltransferase Set2, control choice of pA site in Saccharomyces cerevisiae, a powerful model for studying evolutionarily conserved eukaryotic processes. Deletion of SET1 or SET2 causes an increase in serine-2 phosphorylation within the C-terminal domain of RNA polymerase II (RNAP II) and in the recruitment of the cleavage/polyadenylation complex, both of which could cause the observed switch in pA site usage. Chemical inhibition of TOR signaling, which causes nutritional stress, results in Set1- and Set2-dependent APA. In addition, Set1 and Set2 decrease efficiency of using single pA sites, and control nucleosome occupancy around pA sites. Overall, our study suggests that the methyltransferases Set1 and Set2 regulate APA induced by nutritional stress, affect the RNAP II C-terminal domain phosphorylation at Ser2, and control recruitment of the 3′ end processing machinery to the vicinity of pA sites.
Collapse
Affiliation(s)
- Katarzyna Kaczmarek Michaels
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | - Salwa Mohd Mostafa
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA.,Tufts University Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | - Julia Ruiz Capella
- Department of Biotechnology, Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid 28223, Spain
| | - Claire L Moore
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA.,Tufts University Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| |
Collapse
|
11
|
Parkhitko AA, Jouandin P, Mohr SE, Perrimon N. Methionine metabolism and methyltransferases in the regulation of aging and lifespan extension across species. Aging Cell 2019; 18:e13034. [PMID: 31460700 PMCID: PMC6826121 DOI: 10.1111/acel.13034] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/11/2019] [Accepted: 08/08/2019] [Indexed: 12/20/2022] Open
Abstract
Methionine restriction (MetR) extends lifespan across different species and exerts beneficial effects on metabolic health and inflammatory responses. In contrast, certain cancer cells exhibit methionine auxotrophy that can be exploited for therapeutic treatment, as decreasing dietary methionine selectively suppresses tumor growth. Thus, MetR represents an intervention that can extend lifespan with a complementary effect of delaying tumor growth. Beyond its function in protein synthesis, methionine feeds into complex metabolic pathways including the methionine cycle, the transsulfuration pathway, and polyamine biosynthesis. Manipulation of each of these branches extends lifespan; however, the interplay between MetR and these branches during regulation of lifespan is not well understood. In addition, a potential mechanism linking the activity of methionine metabolism and lifespan is regulation of production of the methyl donor S-adenosylmethionine, which, after transferring its methyl group, is converted to S-adenosylhomocysteine. Methylation regulates a wide range of processes, including those thought to be responsible for lifespan extension by MetR. Although the exact mechanisms of lifespan extension by MetR or methionine metabolism reprogramming are unknown, it may act via reducing the rate of translation, modifying gene expression, inducing a hormetic response, modulating autophagy, or inducing mitochondrial function, antioxidant defense, or other metabolic processes. Here, we review the mechanisms of lifespan extension by MetR and different branches of methionine metabolism in different species and the potential for exploiting the regulation of methyltransferases to delay aging.
Collapse
Affiliation(s)
- Andrey A. Parkhitko
- Department of GeneticsBlavatnik InstituteHarvard Medical SchoolBostonMassachusetts
| | - Patrick Jouandin
- Department of GeneticsBlavatnik InstituteHarvard Medical SchoolBostonMassachusetts
| | - Stephanie E. Mohr
- Department of GeneticsBlavatnik InstituteHarvard Medical SchoolBostonMassachusetts
| | - Norbert Perrimon
- Department of GeneticsBlavatnik InstituteHarvard Medical SchoolBostonMassachusetts
- Howard Hughes Medical InstituteBostonMassachusetts
| |
Collapse
|
12
|
Gopalakrishnan R, Marr SK, Kingston RE, Winston F. A conserved genetic interaction between Spt6 and Set2 regulates H3K36 methylation. Nucleic Acids Res 2019; 47:3888-3903. [PMID: 30793188 PMCID: PMC6486648 DOI: 10.1093/nar/gkz119] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 02/05/2019] [Accepted: 02/13/2019] [Indexed: 12/28/2022] Open
Abstract
The transcription elongation factor Spt6 and the H3K36 methyltransferase Set2 are both required for H3K36 methylation and transcriptional fidelity in Saccharomyces cerevisiae. However, the nature of the requirement for Spt6 has remained elusive. By selecting for suppressors of a transcriptional defect in an spt6 mutant, we have isolated several highly clustered, dominant SET2 mutations (SET2sup mutations) in a region encoding a proposed autoinhibitory domain. SET2sup mutations suppress the H3K36 methylation defect in the spt6 mutant, as well as in other mutants that impair H3K36 methylation. We also show that SET2sup mutations overcome the requirement for certain Set2 domains for H3K36 methylation. In vivo, SET2sup mutants have elevated levels of H3K36 methylation and the purified Set2sup mutant protein has greater enzymatic activityin vitro. ChIP-seq studies demonstrate that the H3K36 methylation defect in the spt6 mutant, as well as its suppression by a SET2sup mutation, occurs at a step following the recruitment of Set2 to chromatin. Other experiments show that a similar genetic relationship between Spt6 and Set2 exists in Schizosaccharomyces pombe. Taken together, our results suggest a conserved mechanism by which the Set2 autoinhibitory domain requires multiple Set2 interactions to ensure that H3K36 methylation occurs specifically on actively transcribed chromatin.
Collapse
Affiliation(s)
| | - Sharon K Marr
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Robert E Kingston
- Department of Genetics, Harvard Medical School, Boston, MA, USA 02115.,Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Fred Winston
- Department of Genetics, Harvard Medical School, Boston, MA, USA 02115
| |
Collapse
|
13
|
Li Y, Hu Y, Zhu Z, Zhao K, Liu G, Wang L, Qu Y, Zhao J, Qin Y. Normal transcription of cellulolytic enzyme genes relies on the balance between the methylation of H3K36 and H3K4 in Penicillium oxalicum. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:198. [PMID: 31452679 PMCID: PMC6700826 DOI: 10.1186/s13068-019-1539-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 08/06/2019] [Indexed: 05/26/2023]
Abstract
BACKGROUND Enzymatic hydrolysis of lignocellulose by fungi is a key step in global carbon cycle and biomass utilization. Cellulolytic enzyme production is tightly controlled at a transcriptional level. Here, we investigated the roles of different histone lysine methylation modifications in regulating cellulolytic enzyme gene expression, as histone lysine methylation is an important process of chromatin regulation associated with gene transcription. RESULTS PoSet1 and PoSet2 in Penicillium oxalicum, orthologs of Set1 and Set2 in budding yeast, were associated with the methylation of histone H3 lysine 4 (H3K4) and lysine 36 (H3K36). Cellulolytic enzyme production was extensively upregulated by the disruption of PoSet2, but was significantly downregulated by the disruption of PoSet1. We revealed that the activation of cellulolytic enzyme genes was accompanied by the increase of H3K4me3 signal, as well as the decrease of H3K36me1 and H3K36me3 signal on specific gene loci. The repression of cellulolytic enzyme genes was accompanied by the absence of global H3K4me1 and H3K4me2. An increase in the H3K4me3 signal by Poset2 disruption was eliminated by the further disruption of Poset1 and accompanied by the repressed cellulolytic enzyme genes. The active or repressed genes were not always associated with transcription factors. CONCLUSION H3K4 methylation is an active marker of cellulolytic enzyme production, whereas H3K36 methylation is a marker of repression. A crosstalk occurs between H3K36 and H3K4 methylation, and PoSet2 negatively regulates cellulolytic enzyme production by antagonizing the PoSet1-H3K4me3 pathway. The balance of H3K4 and H3K36 methylation is required for the normal transcription of cellulolytic enzyme genes. These results extend our previous understanding that cellulolytic enzyme gene transcription is primarily controlled by transcription factors.
Collapse
Affiliation(s)
- Yanan Li
- National Glycoengineering Research Center, Shandong University, Qingdao, 266237 China
- State Key Lab of Microbial Technology, Shandong University, Qingdao, 266237 China
| | - Yueyan Hu
- National Glycoengineering Research Center, Shandong University, Qingdao, 266237 China
- State Key Lab of Microbial Technology, Shandong University, Qingdao, 266237 China
| | - Zhu Zhu
- National Glycoengineering Research Center, Shandong University, Qingdao, 266237 China
- State Key Lab of Microbial Technology, Shandong University, Qingdao, 266237 China
| | - Kaili Zhao
- National Glycoengineering Research Center, Shandong University, Qingdao, 266237 China
- State Key Lab of Microbial Technology, Shandong University, Qingdao, 266237 China
| | - Guodong Liu
- National Glycoengineering Research Center, Shandong University, Qingdao, 266237 China
- State Key Lab of Microbial Technology, Shandong University, Qingdao, 266237 China
| | - Lushan Wang
- National Glycoengineering Research Center, Shandong University, Qingdao, 266237 China
| | - Yinbo Qu
- National Glycoengineering Research Center, Shandong University, Qingdao, 266237 China
- State Key Lab of Microbial Technology, Shandong University, Qingdao, 266237 China
| | - Jian Zhao
- National Glycoengineering Research Center, Shandong University, Qingdao, 266237 China
| | - Yuqi Qin
- National Glycoengineering Research Center, Shandong University, Qingdao, 266237 China
- State Key Lab of Microbial Technology, Shandong University, Qingdao, 266237 China
| |
Collapse
|
14
|
Molina-Serrano D, Kyriakou D, Kirmizis A. Histone Modifications as an Intersection Between Diet and Longevity. Front Genet 2019; 10:192. [PMID: 30915107 PMCID: PMC6422915 DOI: 10.3389/fgene.2019.00192] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/22/2019] [Indexed: 12/12/2022] Open
Abstract
Histone modifications are key epigenetic regulators that control chromatin structure and gene transcription, thereby impacting on various important cellular phenotypes. Over the past decade, a growing number of studies have indicated that changes in various histone modifications have a significant influence on the aging process. Furthermore, it has been revealed that the abundance and localization of histone modifications are responsive to various environmental stimuli, such as diet, which can also affect gene expression and lifespan. This supports the notion that histone modifications can serve as a main cellular platform for signal integration. Hence, in this review we focus on the role of histone modifications during aging, report the data indicating that diet affects histone modification levels and explore the idea that histone modifications may function as an intersection through which diet regulates lifespan. A greater understanding of the epigenetic mechanisms that link environmental signals to longevity may provide new strategies for therapeutic intervention in age-related diseases and for promoting healthy aging.
Collapse
Affiliation(s)
- Diego Molina-Serrano
- UMR 6290, Centre National de la Recherche Scientifique, Rennes, France
- Institute of Genetics and Development of Rennes (IGDR), Université de Rennes 1, Rennes, France
| | - Dimitris Kyriakou
- Efevre Tech Ltd., Larnaca, Cyprus
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Antonis Kirmizis
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
15
|
Ryu HY, Duan R, Ahn SH. Yeast symmetric arginine methyltransferase Hsl7 has a repressive role in transcription. Res Microbiol 2019; 170:222-229. [PMID: 30660775 DOI: 10.1016/j.resmic.2019.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/29/2018] [Accepted: 01/09/2019] [Indexed: 12/17/2022]
Abstract
Protein arginine methylation, an evolutionarily conserved post-translational modification, serves critical cellular functions by transferring a methyl group to a variety of substrates, including histones and some transcription factors. In budding yeast, Hsl7 (histone synthetic lethal 7) displays type II PRMT (protein arginine methyltransferase) activity by generating symmetric dimethylarginine residues on histone H2A in vitro. However, identification of the in vivo substrate of Hsl7 and how it contributes to important cellular processes remain largely unexplored. In the present study, we show that Hsl7 has a repressive role in transcription. We found that Hsl7 is responsible for in vivo symmetric dimethylation of histone H4 arginine 3 (H4R3me2s) in a transcriptionally repressed state. Tandem affinity purification further demonstrated that Hsl7 physically interacts with histone deacetylase Rpd3, and both similarly repress transcription. Our results suggest that H4R3me2s generation by the type II PRMT Hsl7 is required for transcriptional repression, possibly in cooperation with histone deacetylation by Rpd3.
Collapse
Affiliation(s)
- Hong-Yeoul Ryu
- Department of Molecular and Life Science, College of Science and Convergence Technology, Hanyang University, Ansan, Republic of Korea
| | - Ruxin Duan
- Department of Molecular and Life Science, College of Science and Convergence Technology, Hanyang University, Ansan, Republic of Korea
| | - Seong Hoon Ahn
- Department of Molecular and Life Science, College of Science and Convergence Technology, Hanyang University, Ansan, Republic of Korea.
| |
Collapse
|
16
|
Adamkova K, Yi YJ, Petr J, Zalmanova T, Hoskova K, Jelinkova P, Moravec J, Kralickova M, Sutovsky M, Sutovsky P, Nevoral J. SIRT1-dependent modulation of methylation and acetylation of histone H3 on lysine 9 (H3K9) in the zygotic pronuclei improves porcine embryo development. J Anim Sci Biotechnol 2017; 8:83. [PMID: 29118980 PMCID: PMC5664433 DOI: 10.1186/s40104-017-0214-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 09/25/2017] [Indexed: 12/31/2022] Open
Abstract
Background The histone code is an established epigenetic regulator of early embryonic development in mammals. The lysine residue K9 of histone H3 (H3K9) is a prime target of SIRT1, a member of NAD+-dependent histone deacetylase family of enzymes targeting both histone and non-histone substrates. At present, little is known about SIRT1-modulation of H3K9 in zygotic pronuclei and its association with the success of preimplantation embryo development. Therefore, we evaluated the effect of SIRT1 activity on H3K9 methylation and acetylation in porcine zygotes and the significance of H3K9 modifications for early embryonic development. Results Our results show that SIRT1 activators resveratrol and BML-278 increased H3K9 methylation and suppressed H3K9 acetylation in both the paternal and maternal pronucleus. Inversely, SIRT1 inhibitors nicotinamide and sirtinol suppressed methylation and increased acetylation of pronuclear H3K9. Evaluation of early embryonic development confirmed positive effect of selective SIRT1 activation on blastocyst formation rate (5.2 ± 2.9% versus 32.9 ± 8.1% in vehicle control and BML-278 group, respectively; P ≤ 0.05). Stimulation of SIRT1 activity coincided with fluorometric signal intensity of ooplasmic ubiquitin ligase MDM2, a known substrate of SIRT1 and known limiting factor of epigenome remodeling. Conclusions We conclude that SIRT1 modulates zygotic histone code, obviously through direct deacetylation and via non-histone targets resulting in increased H3K9me3. These changes in zygotes lead to more successful pre-implantation embryonic development and, indeed, the specific SIRT1 activation due to BML-278 is beneficial for in vitro embryo production and blastocyst achievement.
Collapse
Affiliation(s)
- Katerina Adamkova
- Department of Veterinary Sciences, Faculty of Agriculture, Food and Natural Resources, Czech University of Life Sciences Prague, 6-Suchdol, Prague, Czech Republic
| | - Young-Joo Yi
- Division of Biotechnology, Safety, Environment and Life Science Institute, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan, 54596 South Korea
| | - Jaroslav Petr
- Institute of Animal Science, 10-Uhrineves, Prague, Czech Republic
| | - Tereza Zalmanova
- Department of Veterinary Sciences, Faculty of Agriculture, Food and Natural Resources, Czech University of Life Sciences Prague, 6-Suchdol, Prague, Czech Republic.,Institute of Animal Science, 10-Uhrineves, Prague, Czech Republic
| | - Kristyna Hoskova
- Department of Veterinary Sciences, Faculty of Agriculture, Food and Natural Resources, Czech University of Life Sciences Prague, 6-Suchdol, Prague, Czech Republic.,Institute of Animal Science, 10-Uhrineves, Prague, Czech Republic
| | - Pavla Jelinkova
- Department of Veterinary Sciences, Faculty of Agriculture, Food and Natural Resources, Czech University of Life Sciences Prague, 6-Suchdol, Prague, Czech Republic
| | - Jiri Moravec
- Proteomic Laboratory, Biomedical Center of Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Milena Kralickova
- Laboratory of Reproductive Medicine of Biomedical Center, Charles University, Pilsen, Czech Republic.,Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Miriam Sutovsky
- Division of Animal Science, University of Missouri, Columbia, MO USA
| | - Peter Sutovsky
- Division of Animal Science, University of Missouri, Columbia, MO USA.,Departments of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO USA
| | - Jan Nevoral
- Department of Veterinary Sciences, Faculty of Agriculture, Food and Natural Resources, Czech University of Life Sciences Prague, 6-Suchdol, Prague, Czech Republic.,Laboratory of Reproductive Medicine of Biomedical Center, Charles University, Pilsen, Czech Republic.,Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| |
Collapse
|
17
|
Mitochondrial control through nutritionally regulated global histone H3 lysine-4 demethylation. Sci Rep 2016; 6:37942. [PMID: 27897198 PMCID: PMC5126570 DOI: 10.1038/srep37942] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 11/02/2016] [Indexed: 12/13/2022] Open
Abstract
Histone demethylation by Jumonji-family proteins is coupled with the decarboxylation of α-ketoglutarate (αKG) to yield succinate, prompting hypotheses that their activities are responsive to levels of these metabolites in the cell. Consistent with this paradigm we show here that the Saccharomyces cerevisiae Jumonji demethylase Jhd2 opposes the accumulation of H3K4me3 in fermenting cells only when they are nutritionally manipulated to contain an elevated αKG/succinate ratio. We also find that Jhd2 opposes H3K4me3 in respiratory cells that do not exhibit such an elevated αKG/succinate ratio. While jhd2∆ caused only limited gene expression defects in fermenting cells, transcript profiling and physiological measurements show that JHD2 restricts mitochondrial respiratory capacity in cells grown in non-fermentable carbon in an H3K4me-dependent manner. In association with these phenotypes, we find that JHD2 limits yeast proliferative capacity under physiologically challenging conditions as measured by both replicative lifespan and colony growth on non-fermentable carbon. JHD2’s impact on nutrient response may reflect an ancestral role of its gene family in mediating mitochondrial regulation.
Collapse
|
18
|
Abstract
Heterochromatin is the transcriptionally repressed portion of eukaryotic chromatin that maintains a condensed appearance throughout the cell cycle. At sites of ribosomal DNA (rDNA) heterochromatin, epigenetic states contribute to gene silencing and genome stability, which are required for proper chromosome segregation and a normal life span. Here, we focus on recent advances in the epigenetic regulation of rDNA silencing in Saccharomyces cerevisiae and in mammals, including regulation by several histone modifications and several protein components associated with the inner nuclear membrane within the nucleolus. Finally, we discuss the perturbations of rDNA epigenetic pathways in regulating cellular aging and in causing various types of diseases.
Collapse
|
19
|
Fahrenkrog B. Histone modifications as regulators of life and death in Saccharomyces cerevisiae. MICROBIAL CELL 2015; 3:1-13. [PMID: 28357312 PMCID: PMC5354586 DOI: 10.15698/mic2016.01.472] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Apoptosis or programmed cell death is an integrated, genetically controlled
suicide program that not only regulates tissue homeostasis of multicellular
organisms, but also the fate of damaged and aged cells of lower eukaryotes, such
as the yeast Saccharomyces cerevisiae. Recent years have
revealed key apoptosis regulatory proteins in yeast that play similar roles in
mammalian cells. Apoptosis is a process largely defined by characteristic
structural rearrangements in the dying cell that include chromatin condensation
and DNA fragmentation. The mechanism by which chromosomes restructure during
apoptosis is still poorly understood, but it is becoming increasingly clear that
altered epigenetic histone modifications are fundamental parameters that
influence the chromatin state and the nuclear rearrangements within apoptotic
cells. The present review will highlight recent work on the epigenetic
regulation of programmed cell death in budding yeast.
Collapse
Affiliation(s)
- Birthe Fahrenkrog
- Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, Rue Profs. Jeener et Brachet 12; 6041 Charleroi, Belgium
| |
Collapse
|
20
|
Kamei Y, Tai A, Dakeyama S, Yamamoto K, Inoue Y, Kishimoto Y, Ohara H, Mukai Y. Transcription factor genes essential for cell proliferation and replicative lifespan in budding yeast. Biochem Biophys Res Commun 2015; 463:351-6. [PMID: 26022127 DOI: 10.1016/j.bbrc.2015.05.067] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 05/17/2015] [Indexed: 11/18/2022]
Abstract
Many of the lifespan-related genes have been identified in eukaryotes ranging from the yeast to human. However, there is limited information available on the longevity genes that are essential for cell proliferation. Here, we investigated whether the essential genes encoding DNA-binding transcription factors modulated the replicative lifespan of Saccharomyces cerevisiae. Heterozygous diploid knockout strains for FHL1, RAP1, REB1, and MCM1 genes showed significantly short lifespan. (1)H-nuclear magnetic resonance analysis indicated a characteristic metabolic profile in the Δfhl1/FHL1 mutant. These results strongly suggest that FHL1 regulates the transcription of lifespan related metabolic genes. Thus, heterozygous knockout strains could be the potential materials for discovering further novel lifespan genes.
Collapse
Affiliation(s)
- Yuka Kamei
- Department of Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama, Shiga 526-0829, Japan
| | - Akiko Tai
- Department of Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama, Shiga 526-0829, Japan
| | - Shota Dakeyama
- Department of Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama, Shiga 526-0829, Japan
| | - Kaori Yamamoto
- Department of Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama, Shiga 526-0829, Japan
| | - Yamato Inoue
- Department of Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama, Shiga 526-0829, Japan
| | - Yoshifumi Kishimoto
- Department of Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama, Shiga 526-0829, Japan
| | - Hiroya Ohara
- Department of Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama, Shiga 526-0829, Japan
| | - Yukio Mukai
- Department of Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama, Shiga 526-0829, Japan.
| |
Collapse
|
21
|
Parallel profiling of fission yeast deletion mutants for proliferation and for lifespan during long-term quiescence. G3-GENES GENOMES GENETICS 2014; 5:145-55. [PMID: 25452419 PMCID: PMC4291465 DOI: 10.1534/g3.114.014415] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Genetic factors underlying aging are remarkably conserved from yeast to human. The fission yeast Schizosaccharomyces pombe is an emerging genetic model to analyze cellular aging. Chronological lifespan (CLS) has been studied in stationary-phase yeast cells depleted for glucose, which only survive for a few days. Here, we analyzed CLS in quiescent S. pombe cells deprived of nitrogen, which arrest in a differentiated, G0-like state and survive for more than 2 months. We applied parallel mutant phenotyping by barcode sequencing (Bar-seq) to assay pooled haploid deletion mutants as they aged together during long-term quiescence. As expected, mutants with defects in autophagy or quiescence were under-represented or not detected. Lifespan scores could be calculated for 1199 mutants. We focus the discussion on the 48 most long-lived mutants, including both known aging genes in other model systems and genes not previously implicated in aging. Genes encoding membrane proteins were particularly prominent as pro-aging factors. We independently verified the extended CLS in individual assays for 30 selected mutants, showing the efficacy of the screen. We also applied Bar-seq to profile all pooled deletion mutants for proliferation under a standard growth condition. Unlike for stationary-phase cells, no inverse correlation between growth and CLS of quiescent cells was evident. These screens provide a rich resource for further studies, and they suggest that the quiescence model can provide unique, complementary insights into cellular aging.
Collapse
|