1
|
Yao L, Cai X, Yang S, Song Y, Xing L, Li G, Cui Z, Chen J. A single-cell landscape of the regenerating spinal cord of zebrafish. Neural Regen Res 2026; 21:780-789. [PMID: 40326988 DOI: 10.4103/nrr.nrr-d-24-01163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 03/03/2025] [Indexed: 05/07/2025] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202602000-00046/figure1/v/2025-05-05T160104Z/r/image-tiff Unlike mammals, zebrafish possess a remarkable ability to regenerate their spinal cord after injury, making them an ideal vertebrate model for studying regeneration. While previous research has identified key cell types involved in this process, the underlying molecular and cellular mechanisms remain largely unexplored. In this study, we used single-cell RNA sequencing to profile distinct cell populations at different stages of spinal cord injury in zebrafish. Our analysis revealed that multiple subpopulations of neurons showed persistent activation of genes associated with axonal regeneration post injury, while molecular signals promoting growth cone collapse were inhibited. Radial glial cells exhibited significant proliferation and differentiation potential post injury, indicating their intrinsic roles in promoting neurogenesis and axonal regeneration, respectively. Additionally, we found that inflammatory factors rapidly decreased in the early stages following spinal cord injury, creating a microenvironment permissive for tissue repair and regeneration. Furthermore, oligodendrocytes lost maturity markers while exhibiting increased proliferation following injury. These findings demonstrated that the rapid and orderly regulation of inflammation, as well as the efficient proliferation and redifferentiation of new neurons and glial cells, enabled zebrafish to reconstruct the spinal cord. This research provides new insights into the cellular transitions and molecular programs that drive spinal cord regeneration, offering promising avenues for future research and therapeutic strategies.
Collapse
Affiliation(s)
- Lei Yao
- Department of Anesthesiology, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu Province, China
| | - Xinyi Cai
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu Province, China
| | - Saishuai Yang
- Department of Anesthesiology, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu Province, China
| | - Yixing Song
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu Province, China
| | - Lingyan Xing
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu Province, China
| | - Guicai Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu Province, China
| | - Zhiming Cui
- Department of Spine Surgery, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu Province, China
- Research Institute for Spine and Spinal Cord Disease of Nantong University, Nantong, Jiangsu Province, China
| | - Jiajia Chen
- Department of Spine Surgery, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu Province, China
- Research Institute for Spine and Spinal Cord Disease of Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
2
|
Dhar A, Moinuddin FM, Zamanian CA, Sharar AD, Dominari A, Graepel S, Windebank AJ, Bydon M. SOX Genes in Spinal Cord Injury: Redefining Neural Stem Cell Regeneration Strategies. Mol Neurobiol 2025:10.1007/s12035-025-04882-w. [PMID: 40156684 DOI: 10.1007/s12035-025-04882-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 03/21/2025] [Indexed: 04/01/2025]
Abstract
The study design is literature review. The sex-determining region Y gene (SRY)-related high mobility group box (HMG)-box (SOX) gene family has primarily been associated with neural development and sex determination and is a key component of human embryonic development. Recent studies on zebrafish models have demonstrated that the unique ability of the latter for central nervous tissue (CNS) repair following injury is largely mediated by SOX genes. Given that efforts aimed at the structural regeneration and functional restoration of neural tissue still represent a major therapeutic challenge in patients suffering CNS injury, these findings have initiated a discussion regarding the development of novel therapeutic strategies for SCI focusing on neural tissue regeneration. Spinal cord injury (SCI), in particular, represents a field that could greatly benefit from studies related to the function of the SOX genes. Neuro-informatics Laboratory, Mayo Clinic, Rochester, MN. A literature review was conducted, with a focus on SOX gene that has been described in the experimental studies of SCI. In this review, the existing evidence linking the SOX gene family to the pathophysiology of SCI is summarized, and future research steps regarding the potential implications of the SOX genes in neurological recovery following SCI are discussed, especially focusing on highlighting potential therapeutic targets. The potential implications of the latter could play a crucial role in future efforts to advance the treatment approaches to SCI.
Collapse
Affiliation(s)
- Ashis Dhar
- Mayo Clinic Neuro-Informatics Laboratory, Department of Neurosurgery, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN, USA
| | - F M Moinuddin
- Mayo Clinic Neuro-Informatics Laboratory, Department of Neurosurgery, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN, USA
| | - Cameron A Zamanian
- Mayo Clinic Neuro-Informatics Laboratory, Department of Neurosurgery, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN, USA
| | - Ahnaf Dil Sharar
- Mayo Clinic Neuro-Informatics Laboratory, Department of Neurosurgery, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN, USA
| | - Asimina Dominari
- Mayo Clinic Neuro-Informatics Laboratory, Department of Neurosurgery, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN, USA
| | - Stephen Graepel
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Mohamad Bydon
- Mayo Clinic Neuro-Informatics Laboratory, Department of Neurosurgery, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
3
|
Janeckova L, Knotek T, Kriska J, Hermanova Z, Kirdajova D, Kubovciak J, Berkova L, Tureckova J, Camacho Garcia S, Galuskova K, Kolar M, Anderova M, Korinek V. Astrocyte-like subpopulation of NG2 glia in the adult mouse cortex exhibits characteristics of neural progenitor cells. Glia 2024; 72:245-273. [PMID: 37772368 DOI: 10.1002/glia.24471] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/30/2023]
Abstract
Glial cells expressing neuron-glial antigen 2 (NG2), also known as oligodendrocyte progenitor cells (OPCs), play a critical role in maintaining brain health. However, their ability to differentiate after ischemic injury is poorly understood. The aim of this study was to investigate the properties and functions of NG2 glia in the ischemic brain. Using transgenic mice, we selectively labeled NG2-expressing cells and their progeny in both healthy brain and after focal cerebral ischemia (FCI). Using single-cell RNA sequencing, we classified the labeled glial cells into five distinct subpopulations based on their gene expression patterns. Additionally, we examined the membrane properties of these cells using the patch-clamp technique. Of the identified subpopulations, three were identified as OPCs, whereas the fourth subpopulation had characteristics indicative of cells likely to develop into oligodendrocytes. The fifth subpopulation of NG2 glia showed astrocytic markers and had similarities to neural progenitor cells. Interestingly, this subpopulation was present in both healthy and post-ischemic tissue; however, its gene expression profile changed after ischemia, with increased numbers of genes related to neurogenesis. Immunohistochemical analysis confirmed the temporal expression of neurogenic genes and showed an increased presence of NG2 cells positive for Purkinje cell protein-4 at the periphery of the ischemic lesion 12 days after FCI, as well as NeuN-positive NG2 cells 28 and 60 days after injury. These results suggest the potential development of neuron-like cells arising from NG2 glia in the ischemic tissue. Our study provides insights into the plasticity of NG2 glia and their capacity for neurogenesis after stroke.
Collapse
Affiliation(s)
- Lucie Janeckova
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tomas Knotek
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jan Kriska
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Zuzana Hermanova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Denisa Kirdajova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Kubovciak
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Linda Berkova
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jana Tureckova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Sara Camacho Garcia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Katerina Galuskova
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michal Kolar
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Miroslava Anderova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Vladimir Korinek
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
4
|
Masi M, Biundo F, Fiou A, Racchi M, Pascale A, Buoso E. The Labyrinthine Landscape of APP Processing: State of the Art and Possible Novel Soluble APP-Related Molecular Players in Traumatic Brain Injury and Neurodegeneration. Int J Mol Sci 2023; 24:ijms24076639. [PMID: 37047617 PMCID: PMC10095589 DOI: 10.3390/ijms24076639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Amyloid Precursor Protein (APP) and its cleavage processes have been widely investigated in the past, in particular in the context of Alzheimer’s Disease (AD). Evidence of an increased expression of APP and its amyloidogenic-related cleavage enzymes, β-secretase 1 (BACE1) and γ-secretase, at the hit axon terminals following Traumatic Brain Injury (TBI), firstly suggested a correlation between TBI and AD. Indeed, mild and severe TBI have been recognised as influential risk factors for different neurodegenerative diseases, including AD. In the present work, we describe the state of the art of APP proteolytic processing, underlining the different roles of its cleavage fragments in both physiological and pathological contexts. Considering the neuroprotective role of the soluble APP alpha (sAPPα) fragment, we hypothesised that sAPPα could modulate the expression of genes of interest for AD and TBI. Hence, we present preliminary experiments addressing sAPPα-mediated regulation of BACE1, Isthmin 2 (ISM2), Tetraspanin-3 (TSPAN3) and the Vascular Endothelial Growth Factor (VEGFA), each discussed from a biological and pharmacological point of view in AD and TBI. We finally propose a neuroprotective interaction network, in which the Receptor for Activated C Kinase 1 (RACK1) and the signalling cascade of PKCβII/nELAV/VEGF play hub roles, suggesting that vasculogenic-targeting therapies could be a feasible approach for vascular-related brain injuries typical of AD and TBI.
Collapse
Affiliation(s)
- Mirco Masi
- Computational and Chemical Biology, Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy
| | - Fabrizio Biundo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - André Fiou
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy
| | - Marco Racchi
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy
| | - Erica Buoso
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
5
|
Zhai Y, Ye SY, Wang QS, Xiong RP, Fu SY, Du H, Xu YW, Peng Y, Huang ZZ, Yang N, Zhao Y, Ning YL, Li P, Zhou YG. Overexpressed ski efficiently promotes neurorestoration, increases neuronal regeneration, and reduces astrogliosis after traumatic brain injury. Gene Ther 2023; 30:75-87. [PMID: 35132206 DOI: 10.1038/s41434-022-00320-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 12/31/2021] [Accepted: 01/20/2022] [Indexed: 11/09/2022]
Abstract
Traumatic brain injury (TBI) survivors suffer from long-term disability and neuropsychiatric sequelae due to irreparable brain tissue destruction. However, there are still few efficient therapies to promote neurorestoration in damaged brain tissue. This study aimed to investigate whether the pro-oncogenic gene ski can promote neurorestoration after TBI. We established a ski-overexpressing experimental TBI mouse model using adenovirus-mediated overexpression through immediate injection after injury. Hematoxylin-eosin staining, MRI-based 3D lesion volume reconstruction, neurobehavioral tests, and analyses of neuronal regeneration and astrogliosis were used to assess neurorestorative efficiency. The effects of ski overexpression on the proliferation of cultured immature neurons and astrocytes were evaluated using imaging flow cytometry. The Ski protein level increased in the perilesional region at 3 days post injury. ski overexpression further elevated Ski protein levels up to 14 days post injury. Lesion volume was attenuated by approximately 36-55% after ski overexpression, with better neurobehavioral recovery, more newborn immature and mature neurons, and less astrogliosis in the perilesional region. Imaging flow cytometry results showed that ski overexpression elevated the proliferation rate of immature neurons and reduced the proliferation rate of astrocytes. These results show that ski can be considered a novel neurorestoration-related gene that effectively promotes neurorestoration, facilitates neuronal regeneration, and reduces astrogliosis after TBI.
Collapse
Affiliation(s)
- Yu Zhai
- The Molecular Biology Centre, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, People's Republic of China
| | - Shi-Yang Ye
- The Molecular Biology Centre, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, People's Republic of China
| | - Qiu-Shi Wang
- The Molecular Biology Centre, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, People's Republic of China.,Department of Pathology, Research Institute of Surgery and Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China
| | - Ren-Ping Xiong
- The Molecular Biology Centre, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, People's Republic of China
| | - Sheng-Yu Fu
- The Molecular Biology Centre, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, People's Republic of China
| | - Hao Du
- The Molecular Biology Centre, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, People's Republic of China
| | - Ya-Wei Xu
- The Molecular Biology Centre, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, People's Republic of China
| | - Yan Peng
- The Molecular Biology Centre, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, People's Republic of China
| | - Zhi-Zhong Huang
- The Molecular Biology Centre, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, People's Republic of China
| | - Nan Yang
- The Molecular Biology Centre, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, People's Republic of China
| | - Yan Zhao
- The Molecular Biology Centre, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, People's Republic of China
| | - Ya-Lei Ning
- The Molecular Biology Centre, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, People's Republic of China
| | - Ping Li
- The Molecular Biology Centre, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, People's Republic of China.
| | - Yuan-Guo Zhou
- The Molecular Biology Centre, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, People's Republic of China.
| |
Collapse
|
6
|
Cunningham C, Viskontas M, Janowicz K, Sani Y, Håkansson M, Heidari A, Huang W, Bo X. The potential of gene therapies for spinal cord injury repair: a systematic review and meta-analysis of pre-clinical studies. Neural Regen Res 2023; 18:299-305. [PMID: 35900407 PMCID: PMC9396485 DOI: 10.4103/1673-5374.347941] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Currently, there is no cure for traumatic spinal cord injury but one therapeutic approach showing promise is gene therapy. In this systematic review and meta-analysis, we aim to assess the efficacy of gene therapies in pre-clinical models of spinal cord injury and the risk of bias. In this meta-analysis, registered at PROSPERO (Registration ID: CRD42020185008), we identified relevant controlled in vivo studies published in English by searching the PubMed, Web of Science, and Embase databases. No restrictions of the year of publication were applied and the last literature search was conducted on August 3, 2020. We then conducted a random-effects meta-analysis using the restricted maximum likelihood estimator. A total of 71 studies met our inclusion criteria and were included in the systematic review. Our results showed that overall, gene therapies were associated with improvements in locomotor score (standardized mean difference [SMD]: 2.07, 95% confidence interval [CI]:1.68–2.47, Tau2 = 2.13, I2 = 83.6%) and axonal regrowth (SMD: 2.78, 95%CI: 1.92–3.65, Tau2 = 4.13, I2 = 85.5%). There was significant asymmetry in the funnel plots of both outcome measures indicating the presence of publication bias. We used a modified CAMARADES (Collaborative Approach to Meta-Analysis and Review of Animal Data in Experimental Studies) checklist to assess the risk of bias, finding that the median score was 4 (IQR:3–5). In particular, reports of allocation concealment and sample size calculations were lacking. In conclusion, gene therapies are showing promise as therapies for spinal cord injury repair, but there is no consensus on which gene or genes should be targeted.
Collapse
|
7
|
Wang Y, Yuan H. Research progress of endogenous neural stem cells in spinal cord injury. IBRAIN 2022; 8:199-209. [PMID: 37786888 PMCID: PMC10529172 DOI: 10.1002/ibra.12048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 05/06/2022] [Accepted: 05/17/2022] [Indexed: 10/04/2023]
Abstract
Spinal cord injury (SCI) is a severe disabling disease, which mainly manifests as impairments of sensory and motor functions, sexual function, bladder and intestinal functions, respiratory and cardiac functions below the injury plane. In addition, the condition has a profound effect on the mental health of patients, which often results in severe sequelae. Some patients may be paraplegic for life or even die, which places a huge burden on the family and society. There is still no effective treatment for SCI. Studies have confirmed that endogenous neural stem cells (ENSCs), as multipotent neural stem cells, which are located in the ependymal region of the central canal of the adult mammalian spinal cord, are activated after SCI and then differentiate into various nerve cells to promote endogenous repair and regeneration. However, the central canal of the spinal cord is often occluded to varying degrees in adults, and residual ependymal cells cannot be activated and do not proliferate after SCI. Besides, the destruction of the microenvironment after SCI is also an important factor that affects the proliferation and differentiation of ENSCs and spinal cord repair. Therefore, this review describes the role of ENSCs in SCI, in terms of the origin, transformation, treatment, and influencing factors, to provide new ideas for clinical treatment of SCI.
Collapse
Affiliation(s)
- Ya‐Ting Wang
- Department of AnesthesiologySouthwest Medical UniversityLuzhouSichuanChina
| | - Hao Yuan
- Institute of NeuroscienceKunming Medical UniversityKunmingYunnanChina
| |
Collapse
|
8
|
Lai BQ, Zeng X, Han WT, Che MT, Ding Y, Li G, Zeng YS. Stem cell-derived neuronal relay strategies and functional electrical stimulation for treatment of spinal cord injury. Biomaterials 2021; 279:121211. [PMID: 34710795 DOI: 10.1016/j.biomaterials.2021.121211] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 10/09/2021] [Accepted: 10/20/2021] [Indexed: 01/06/2023]
Abstract
The inability of adult mammals to recover function lost after severe spinal cord injury (SCI) has been known for millennia and is mainly attributed to a failure of brain-derived nerve fiber regeneration across the lesion. Potential approaches to re-establishing locomotor function rely on neuronal relays to reconnect the segregated neural networks of the spinal cord. Intense research over the past 30 years has focused on endogenous and exogenous neuronal relays, but progress has been slow and the results often controversial. Treatments with stem cell-derived neuronal relays alone or together with functional electrical stimulation offer the possibility of improved repair of neuronal networks. In this review, we focus on approaches to recovery of motor function in paralyzed patients after severe SCI based on novel therapies such as implantation of stem cell-derived neuronal relays and functional electrical stimulation. Recent research progress offers hope that SCI patients will one day be able to recover motor function and sensory perception.
Collapse
Affiliation(s)
- Bi-Qin Lai
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Xiang Zeng
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Wei-Tao Han
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ming-Tian Che
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Ying Ding
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ge Li
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Yuan-Shan Zeng
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China; Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China; Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, 510120, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan, School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
9
|
Rodríguez-Barrera R, Rivas-González M, García-Sánchez J, Mojica-Torres D, Ibarra A. Neurogenesis after Spinal Cord Injury: State of the Art. Cells 2021; 10:cells10061499. [PMID: 34203611 PMCID: PMC8232196 DOI: 10.3390/cells10061499] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/24/2021] [Accepted: 06/08/2021] [Indexed: 01/06/2023] Open
Abstract
Neurogenesis in the adult state is the process of new neuron formation. This relatively infrequent phenomenon comprises four stages: cell proliferation, cell migration, differentiation, and the integration of these cells into an existing circuit. Recent reports suggest that neurogenesis can be found in different regions of the Central Nervous System (CNS), including the spinal cord (SC). This process can be observed in physiological settings; however, it is more evident in pathological conditions. After spinal cord injury (SCI), the activation of microglial cells and certain cytokines have shown to exert different modulatory effects depending on the presence of inflammation and on the specific region of the injury site. In these conditions, microglial cells and cytokines are considered to play an important role in the regulation of neurogenesis after SCI. The purpose of this article is to present an overview on neural progenitor cells and neurogenic and non-neurogenic zones as well as the cellular and molecular regulation of neurogenesis. Additionally, we will briefly describe the recent advances in the knowledge of neurogenesis after SCI.
Collapse
|
10
|
Chen P, Wang C, Lin D, Li B, Ye S, Qu J, Wang W. Identification of Slc6a19os and SOX11 as Two Novel Essential Genes in Neuropathic Pain Using Integrated Bioinformatic Analysis and Experimental Verification. Front Neurosci 2021; 15:627945. [PMID: 33584192 PMCID: PMC7876402 DOI: 10.3389/fnins.2021.627945] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/04/2021] [Indexed: 12/25/2022] Open
Abstract
The aim of this study was to identify critical genes associated with neuropathic pain. We also used the competing endogenous RNA (ceRNA) hypothesis to identify related long non-coding RNAs (lncRNAs) and messenger RNAs (miRNAs) with potential regulatory roles. We downloaded GSE107180 from the Gene Expression Omnibus database, screened differentially expressed genes (DEGs) using R software, performed comprehensive bioinformatic analyses, and validated the expression of lncRNA Slc6a19os, miR-125a-5p, miR-125b-5p, miR-351-5p, and Sox11 by qRT-PCR and Western blots. We identified 620 DEGs in spared nerve injury (SNI) mice compared with sham (control) mice, including 309 mRNAs and 311 non-coding RNAs. The up-regulated mRNAs were enriched primarily in several inflammation-related GO biological processes and KEGG signaling pathways. A ceRNA network was constructed that included 82 mRNAs, 4 miRNAs, and 2 lnRNAs. An ingenuity pathway analysis (IPA)-based interaction network for mRNAs differentially expressed in the ceRNA identified several biological processes, including "cellular development, connective tissue development and function, tissue development." Compared with sham mice, lncRNA Slc6a19os and Sox11 expression were significantly up-regulated in dorsal root ganglion (DRG) samples from SNI mice detected using qRT-PCR and Western blots (P < 0.05). MiR-125a-5p, miR-125b-5p, and miR-351-5p expression were down-regulated in DRG samples from SNI mice detected using qRT-PCR (P < 0.05). We concluded that Sox11 and lncRNA Slc6a19os were novel essential genes in the pathogenesis and progression of neuropathic pain and speculated that these two genes were regulated by miR-125a-5p, miR-125b-5p, and miR-351-5p.
Collapse
Affiliation(s)
- Peng Chen
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Chen Wang
- First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dongsheng Lin
- First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bing Li
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Shuai Ye
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Jinglian Qu
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Wenjing Wang
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
11
|
Miao Q, Hill MC, Chen F, Mo Q, Ku AT, Ramos C, Sock E, Lefebvre V, Nguyen H. SOX11 and SOX4 drive the reactivation of an embryonic gene program during murine wound repair. Nat Commun 2019; 10:4042. [PMID: 31492871 PMCID: PMC6731344 DOI: 10.1038/s41467-019-11880-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 08/08/2019] [Indexed: 01/08/2023] Open
Abstract
Tissue injury induces changes in cellular identity, but the underlying molecular mechanisms remain obscure. Here, we show that upon damage in a mouse model, epidermal cells at the wound edge convert to an embryonic-like state, altering particularly the cytoskeletal/extracellular matrix (ECM) components and differentiation program. We show that SOX11 and its closest relative SOX4 dictate embryonic epidermal state, regulating genes involved in epidermal development as well as cytoskeletal/ECM organization. Correspondingly, postnatal induction of SOX11 represses epidermal terminal differentiation while deficiency of Sox11 and Sox4 accelerates differentiation and dramatically impairs cell motility and re-epithelialization. Amongst the embryonic genes reactivated at the wound edge, we identify fascin actin-bundling protein 1 (FSCN1) as a critical direct target of SOX11 and SOX4 regulating cell migration. Our study identifies the reactivated embryonic gene program during wound repair and demonstrates that SOX11 and SOX4 play a central role in this process.
Collapse
Affiliation(s)
- Qi Miao
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, 1 Baylor Plaza, BCM 505, Houston, TX, 77030, USA.
- Center for Cell and Gene Therapy, Baylor College of Medicine, 1 Baylor Plaza, BCM 505, Houston, TX, 77030, USA.
| | - Matthew C Hill
- Program in Developmental Biology, Baylor College of Medicine, 1 Baylor Plaza, BCM 505, Houston, TX, 77030, USA
| | - Fengju Chen
- Dan L. Duncan Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, BCM 505, Houston, TX, 77030, USA
| | - Qianxing Mo
- Dan L. Duncan Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, BCM 505, Houston, TX, 77030, USA
- Department of Biostatistics & Bioinformatics, H. Lee Moffitt Cancer Center, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA
| | - Amy T Ku
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, 1 Baylor Plaza, BCM 505, Houston, TX, 77030, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, 1 Baylor Plaza, BCM 505, Houston, TX, 77030, USA
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, 1 Baylor Plaza, BCM 505, Houston, TX, 77030, USA
| | - Carlos Ramos
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, 1 Baylor Plaza, BCM 505, Houston, TX, 77030, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, 1 Baylor Plaza, BCM 505, Houston, TX, 77030, USA
| | - Elisabeth Sock
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstrasse 17, 91054, Erlangen, Germany
| | - Véronique Lefebvre
- Department of Surgery/Division of Orthopedic Surgery, Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Hoang Nguyen
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, 1 Baylor Plaza, BCM 505, Houston, TX, 77030, USA.
- Center for Cell and Gene Therapy, Baylor College of Medicine, 1 Baylor Plaza, BCM 505, Houston, TX, 77030, USA.
- Program in Developmental Biology, Baylor College of Medicine, 1 Baylor Plaza, BCM 505, Houston, TX, 77030, USA.
- Dan L. Duncan Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, BCM 505, Houston, TX, 77030, USA.
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, 1 Baylor Plaza, BCM 505, Houston, TX, 77030, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, BCM 505, Houston, TX, 77030, USA.
| |
Collapse
|
12
|
Fang M, Fan S, Yao X, Liu N, Gao J, Wang Z, Xu T, Xian X, Li W. Transfection of Sox11 plasmid alleviates ventilator-induced lung injury via Sox11 and FAK. Biochem Biophys Res Commun 2019; 512:182-188. [PMID: 30879763 DOI: 10.1016/j.bbrc.2019.03.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 03/08/2019] [Indexed: 12/15/2022]
Abstract
Background Ventilator-induced lung injury (VILI) is the most common complication in the mechanical ventilation in clinic. The pathogenesis of VILI has not been well understood. The SRY related High Mobility Group box group-F family member 11(Sox11) is a protein associated with lung development. The focal adhesion kinase(FAK) is a cytoplasmic tyrosine kinase and is regulated by Sox11. The present study, therefore, was undertaken to explore the potential role of Sox11 and FAK in VILI. Methods High volume mechanical ventilation(HMV) was used to establish mouse VILI model under anesthesia. The lung injury was evaluated by analyzing the lung weight, bronchoalveolar lavage fluid, histopathological changes and apoptosis of the lung. The Sox11 and FAK expressions in the lung were investigated by real-time qPCR, western blot and immunohistochemistry analysis. Results HMV induced VILI simultaneously companied with decreased expressions of Sox11 and FAK in alveolar epithelial and interstitial cells either in gene and protein levels. Transfection of Sox11 plasmid significantly upregulated expressions of Sox11 and FAK in gene and protein levels in the lung and particularly effectively alleviated VILI. Furthermore, FAK antagonism by PF562271(FAK antagonist) blocked the alleviating effect of Sox11 plasmid transfection on the VILI. Conclusion The dysregulation in the Sox11 and FAK after HMV play an important role in the pathogenesis of VILI, and facilitating the activity of Sox11and FAK might be an effective target and potential option in the prevention and treatment of VILI in clinic.
Collapse
Affiliation(s)
- Mingxing Fang
- Department of Pathophysiology, Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China; Department of Intensive Care Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shujuan Fan
- Department of Pathophysiology, Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
| | - Xiaoguang Yao
- Department of Pathophysiology, Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China; College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Na Liu
- Department of Emergency, The Forth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Junxia Gao
- Department of Pathophysiology, Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
| | - Zhiyong Wang
- Department of Intensive Care Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Tieling Xu
- Department of Emergency, Hebei General Hospital, Shijiazhuang, China
| | - Xiaohui Xian
- Department of Pathophysiology, Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
| | - Wenbin Li
- Department of Pathophysiology, Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
13
|
Majer A, Medina SJ, Sorensen D, Martin MJ, Frost KL, Phillipson C, Manguiat K, Booth SA. The cell type resolved mouse transcriptome in neuron-enriched brain tissues from the hippocampus and cerebellum during prion disease. Sci Rep 2019; 9:1099. [PMID: 30705335 PMCID: PMC6355796 DOI: 10.1038/s41598-018-37715-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 12/12/2018] [Indexed: 01/10/2023] Open
Abstract
Multiple cell types and complex connection networks are an intrinsic feature of brain tissue. In this study we used expression profiling of specific microscopic regions of heterogeneous tissue sections isolated by laser capture microdissection (LCM) to determine insights into the molecular basis of brain pathology in prion disease. Temporal profiles in two mouse models of prion disease, bovine spongiform encephalopathy (BSE) and a mouse-adapted strain of scrapie (RML) were performed in microdissected regions of the CA1 hippocampus and granular layer of the cerebellum which are both enriched in neuronal cell bodies. We noted that during clinical disease the number of activated microglia and astrocytes that occur in these areas are increased, thereby likely diluting the neuronal gene expression signature. We performed a comparative analysis with gene expression profiles determined from isolated populations of neurons, microglia and astrocytes to identify transcripts that are enriched in each of these cell types. Although the incubation periods of these two models are quite different, over 300 days for BSE and ~160 days for RML scrapie, these regional microdissections revealed broadly similar profiles. Microglial and astrocyte-enriched genes contributed a profound inflammatory profile consisting of inflammatory cytokines, genes related to phagocytosis, proteolysis and genes coding for extracellular matrix proteins. CA1 pyramidal neurons displayed a net upregulation of transcription factors and stress induced genes at pre-clinical stages of disease while all tissues showed profound decrease of overlapping genes related to neuronal function, in particular transcripts related to neuronal communication including glutamate receptors, phosphatase subunits and numerous synapse-related markers. Of note, we found a small number of genes expressed in neurons that were upregulated during clinical disease including, COX6A2, FZD9, RXRG and SOX11, that may be biomarkers of neurodegeneration.
Collapse
Affiliation(s)
- Anna Majer
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Canadian Science Centre for Human and Animal Health, Public Health Agency of Canada, Winnipeg, Manitoba, Canada.,Viral Diseases, National Microbiology Laboratory, Canadian Science Centre for Human and Animal Health, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Sarah J Medina
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Canadian Science Centre for Human and Animal Health, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Debra Sorensen
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Canadian Science Centre for Human and Animal Health, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Matthew J Martin
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Canadian Science Centre for Human and Animal Health, Public Health Agency of Canada, Winnipeg, Manitoba, Canada.,Department of Medical Microbiology and Infectious Diseases, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kathy L Frost
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Canadian Science Centre for Human and Animal Health, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Clark Phillipson
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Canadian Science Centre for Human and Animal Health, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Kathy Manguiat
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Canadian Science Centre for Human and Animal Health, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Stephanie A Booth
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Canadian Science Centre for Human and Animal Health, Public Health Agency of Canada, Winnipeg, Manitoba, Canada. .,Department of Medical Microbiology and Infectious Diseases, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
14
|
Chen L, Li J, Zhang YH, Feng K, Wang S, Zhang Y, Huang T, Kong X, Cai YD. Identification of gene expression signatures across different types of neural stem cells with the Monte-Carlo feature selection method. J Cell Biochem 2017; 119:3394-3403. [PMID: 29130544 DOI: 10.1002/jcb.26507] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 11/09/2017] [Indexed: 02/03/2023]
Abstract
Adult neural stem cells (NSCs) are a group of multi-potent, self-renewing progenitor cells that contribute to the generation of new neurons and oligodendrocytes. Three subtypes of NSCs can be isolated based on the stages of the NSC lineage, including quiescent neural stem cells (qNSCs), activated neural stem cells (aNSCs) and neural progenitor cells (NPCs). Although it is widely accepted that these three groups of NSCs play different roles in the development of the nervous system, their molecular signatures are poorly understood. In this study, we applied the Monte-Carlo Feature Selection (MCFS) method to identify the gene expression signatures, which can yield a Matthews correlation coefficient (MCC) value of 0.918 with a support vector machine evaluated by ten-fold cross-validation. In addition, some classification rules yielded by the MCFS program for distinguishing above three subtypes were reported. Our results not only demonstrate a high classification capacity and subtype-specific gene expression patterns but also quantitatively reflect the pattern of the gene expression levels across the NSC lineage, providing insight into deciphering the molecular basis of NSC differentiation.
Collapse
Affiliation(s)
- Lei Chen
- Schoolof Life Sciences, Shanghai University, Shanghai, P.R. China.,College of Information Engineering, Shanghai Maritime University, Shanghai, P.R. China
| | - JiaRui Li
- Schoolof Life Sciences, Shanghai University, Shanghai, P.R. China
| | - Yu-Hang Zhang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, P.R. China
| | - KaiYan Feng
- Department of Computer Science, Guangdong AIB Polytechnic, Guangzhou, Guangdong, P.R. China
| | - ShaoPeng Wang
- Schoolof Life Sciences, Shanghai University, Shanghai, P.R. China
| | - YunHua Zhang
- Anhui province key lab of Farmland Ecological Conversation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, P.R. China
| | - Tao Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Xiangyin Kong
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Yu-Dong Cai
- Schoolof Life Sciences, Shanghai University, Shanghai, P.R. China
| |
Collapse
|
15
|
Nguyen T, Mao Y, Sutherland T, Gorrie CA. Neural progenitor cells but not astrocytes respond distally to thoracic spinal cord injury in rat models. Neural Regen Res 2017; 12:1885-1894. [PMID: 29239336 PMCID: PMC5745844 DOI: 10.4103/1673-5374.219051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Traumatic spinal cord injury (SCI) is a detrimental condition that causes loss of sensory and motor function in an individual. Many complex secondary injury cascades occur after SCI and they offer great potential for therapeutic targeting. In this study, we investigated the response of endogenous neural progenitor cells, astrocytes, and microglia to a localized thoracic SCI throughout the neuroaxis. Twenty-five adult female Sprague-Dawley rats underwent mild-contusion thoracic SCI (n = 9), sham surgery (n = 8), or no surgery (n = 8). Spinal cord and brain tissues were fixed and cut at six regions of the neuroaxis. Immunohistochemistry showed increased reactivity of neural progenitor cell marker nestin in the central canal at all levels of the spinal cord. Increased reactivity of astrocyte-specific marker glial fibrillary acidic protein was found only at the lesion epicenter. The number of activated microglia was significantly increased at the lesion site, and activated microglia extended to the lumbar enlargement. Phagocytic microglia and macrophages were significantly increased only at the lesion site. There were no changes in nestin, glial fibrillary acidic protein, microglia and macrophage response in the third ventricle of rats subjected to mild-contusion thoracic SCI compared to the sham surgery or no surgery. These findings indicate that neural progenitor cells, astrocytes and microglia respond differently to a localized SCI, presumably due to differences in inflammatory signaling. These different cellular responses may have implications in the way that neural progenitor cells can be manipulated for neuroregeneration after SCI. This needs to be further investigated.
Collapse
Affiliation(s)
- Tara Nguyen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, New South Wales, Australia
| | - Yilin Mao
- School of Life Sciences, Faculty of Science, University of Technology Sydney, New South Wales, Australia
| | - Theresa Sutherland
- School of Life Sciences, Faculty of Science, University of Technology Sydney, New South Wales, Australia
| | - Catherine Anne Gorrie
- School of Life Sciences, Faculty of Science, University of Technology Sydney, New South Wales, Australia
| |
Collapse
|
16
|
SoxC transcription factors: multifunctional regulators of neurodevelopment. Cell Tissue Res 2017; 371:91-103. [PMID: 29079881 DOI: 10.1007/s00441-017-2708-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/05/2017] [Indexed: 12/19/2022]
Abstract
During development, generation of neurons is coordinated by the sequential activation of gene expression programs by stage- and subtype-specific transcription factor networks. The SoxC group transcription factors, Sox4 and Sox11, have recently emerged as critical components of this network. Initially identified as survival and differentiation factors for neural precursors, SoxC factors have now been linked to a broader array of developmental processes including neuronal subtype specification, migration, dendritogenesis and establishment of neuronal projections, and are now being employed in experimental strategies for neuronal replacement and axonal regeneration in the diseased central nervous system. This review summarizes the current knowledge regarding SoxC factor function in CNS development and disease and their promise for regeneration.
Collapse
|
17
|
Ghibaudi M, Boido M, Vercelli A. Functional integration of complex miRNA networks in central and peripheral lesion and axonal regeneration. Prog Neurobiol 2017; 158:69-93. [PMID: 28779869 DOI: 10.1016/j.pneurobio.2017.07.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 07/24/2017] [Accepted: 07/28/2017] [Indexed: 01/06/2023]
Abstract
New players are emerging in the game of peripheral and central nervous system injury since their physiopathological mechanisms remain partially elusive. These mechanisms are characterized by several molecules whose activation and/or modification following a trauma is often controlled at transcriptional level. In this scenario, microRNAs (miRNAs/miRs) have been identified as main actors in coordinating important molecular pathways in nerve or spinal cord injury (SCI). miRNAs are small non-coding RNAs whose functionality at network level is now emerging as a new level of complexity. Indeed they can act as an organized network to provide a precise control of several biological processes. Here we describe the functional synergy of some miRNAs in case of SCI and peripheral damage. In particular we show how several small RNAs can cooperate in influencing simultaneously the molecular pathways orchestrating axon regeneration, inflammation, apoptosis and remyelination. We report about the networks for which miRNA-target bindings have been experimentally demonstrated or inferred based on target prediction data: in both cases, the connection between one miRNA and its downstream pathway is derived from a validated observation or is predicted from the literature. Hence, we discuss the importance of miRNAs in some pathological processes focusing on their functional structure as participating in a cooperative and/or convergence network.
Collapse
Affiliation(s)
- M Ghibaudi
- Department of Neuroscience "Rita Levi Montalcini", Neuroscience Institute Cavalieri Ottolenghi, University of Torino, Italian Institute of Neuroscience, Italy.
| | - M Boido
- Department of Neuroscience "Rita Levi Montalcini", Neuroscience Institute Cavalieri Ottolenghi, University of Torino, Italian Institute of Neuroscience, Italy
| | - A Vercelli
- Department of Neuroscience "Rita Levi Montalcini", Neuroscience Institute Cavalieri Ottolenghi, University of Torino, Italian Institute of Neuroscience, Italy
| |
Collapse
|
18
|
Sutherland TC, Mathews KJ, Mao Y, Nguyen T, Gorrie CA. Differences in the Cellular Response to Acute Spinal Cord Injury between Developing and Mature Rats Highlights the Potential Significance of the Inflammatory Response. Front Cell Neurosci 2017; 10:310. [PMID: 28133446 PMCID: PMC5233684 DOI: 10.3389/fncel.2016.00310] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 12/28/2016] [Indexed: 01/11/2023] Open
Abstract
There exists a trend for a better functional recovery from spinal cord injury (SCI) in younger patients compared to adults, which is also reported for animal studies; however, the reasons for this are yet to be elucidated. The post injury tissue microenvironment is a complex milieu of cells and signals that interact on multiple levels. Inflammation has been shown to play a significant role in this post injury microenvironment. Endogenous neural progenitor cells (NPC), in the ependymal layer of the central canal, have also been shown to respond and migrate to the lesion site. This study used a mild contusion injury model to compare adult (9 week), juvenile (5 week) and infant (P7) Sprague-Dawley rats at 24 h, 1, 2, and 6 weeks post-injury (n = 108). The innate cells of the inflammatory response were examined using counts of ED1/IBA1 labeled cells. This found a decreased inflammatory response in the infants, compared to the adult and juvenile animals, demonstrated by a decreased neutrophil infiltration and macrophage and microglial activation at all 4 time points. Two other prominent cellular contributors to the post-injury microenvironment, the reactive astrocytes, which eventually form the glial scar, and the NPC were quantitated using GFAP and Nestin immunohistochemistry. After SCI in all 3 ages there was an obvious increase in Nestin staining in the ependymal layer, with long basal processes extending into the parenchyma. This was consistent between age groups early post injury then deviated at 2 weeks. The GFAP results also showed stark differences between the mature and infant animals. These results point to significant differences in the inflammatory response between infants and adults that may contribute to the better recovery indicated by other researchers, as well as differences in the overall injury progression and cellular responses. This may have important consequences if we are able to mirror and manipulate this response in patients of all ages; however much greater exploration in this area is required.
Collapse
Affiliation(s)
- Theresa C Sutherland
- Neural Injury Research Unit, School of Medical and Molecular Bioscience, University of Technology Sydney Ultimo, NSW, Australia
| | - Kathryn J Mathews
- Discipline of Biomedical Sciences and Brain and Mind Centre, Sydney Medical School, The University of Sydney Sydney, NSW, Australia
| | - Yilin Mao
- Neural Injury Research Unit, School of Medical and Molecular Bioscience, University of Technology Sydney Ultimo, NSW, Australia
| | - Tara Nguyen
- Neural Injury Research Unit, School of Medical and Molecular Bioscience, University of Technology Sydney Ultimo, NSW, Australia
| | - Catherine A Gorrie
- Neural Injury Research Unit, School of Medical and Molecular Bioscience, University of Technology Sydney Ultimo, NSW, Australia
| |
Collapse
|
19
|
Mao Y, Nguyen T, Sutherland T, Gorrie CA. Endogenous neural progenitor cells in the repair of the injured spinal cord. Neural Regen Res 2016; 11:1075-6. [PMID: 27630686 PMCID: PMC4994445 DOI: 10.4103/1673-5374.187035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Yilin Mao
- Neural Injury Research Unit, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Tara Nguyen
- Neural Injury Research Unit, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Theresa Sutherland
- Neural Injury Research Unit, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Catherine Anne Gorrie
- Neural Injury Research Unit, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
20
|
Mao Y, Mathews K, Gorrie CA. Temporal Response of Endogenous Neural Progenitor Cells Following Injury to the Adult Rat Spinal Cord. Front Cell Neurosci 2016; 10:58. [PMID: 27013972 PMCID: PMC4783397 DOI: 10.3389/fncel.2016.00058] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/25/2016] [Indexed: 11/13/2022] Open
Abstract
A pool of endogenous neural progenitor cells (NPCs) found in the ependymal layer and the sub-ependymal area of the spinal cord are reported to upregulate Nestin in response to traumatic spinal cord injury (SCI). These cells could potentially be manipulated within a critical time period offering an innovative approach to the repair of SCI. However, little is known about the temporal response of endogenous NPCs following SCI. This study used a mild contusion injury in rat spinal cord and immunohistochemistry to determine the temporal response of ependymal NPCs following injury and their correlation to astrocyte activation at the lesion edge. The results from the study demonstrated that Nestin staining intensity at the central canal peaked at 24 h post-injury and then gradually declined over time. Reactive astrocytes double labeled by Nestin and glial fibrillary acidic protein (GFAP) were found at the lesion edge and commenced to form the glial scar from 1 week after injury. We conclude that the critical time period for manipulating endogenous NPCs following a spinal cod injury in rats is between 24 h when Nestin expression in ependymal cells is increased and 1 week when astrocytes are activated in large numbers.
Collapse
Affiliation(s)
- Yilin Mao
- Neural Injury Research Unit, School of Life Sciences, Faculty of Science, University of Technology Sydney Sydney, NSW, Australia
| | - Kathryn Mathews
- Neural Injury Research Unit, School of Life Sciences, Faculty of Science, University of Technology Sydney Sydney, NSW, Australia
| | - Catherine A Gorrie
- Neural Injury Research Unit, School of Life Sciences, Faculty of Science, University of Technology Sydney Sydney, NSW, Australia
| |
Collapse
|
21
|
Chen CH, Sung CS, Huang SY, Feng CW, Hung HC, Yang SN, Chen NF, Tai MH, Wen ZH, Chen WF. The role of the PI3K/Akt/mTOR pathway in glial scar formation following spinal cord injury. Exp Neurol 2016; 278:27-41. [PMID: 26828688 DOI: 10.1016/j.expneurol.2016.01.023] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 01/19/2016] [Accepted: 01/28/2016] [Indexed: 12/18/2022]
Abstract
Several studies suggest that glial scars pose as physical and chemical barriers that limit neurite regeneration after spinal cord injury (SCI). Evidences suggest that the activation of the PI3K/Akt/mTOR signaling pathway is involved in glial scar formation. Therefore, inhibition of the PI3K/Akt/mTOR pathway may beneficially attenuate glial scar formation after SCI. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) negatively regulates the PI3K/Akt/mTOR pathway. Therefore, we hypothesized that the overexpression of PTEN in the spinal cord will have beneficial effects after SCI. In the present study, we intrathecally injected a recombinant adenovirus carrying the pten gene (Ad-PTEN) to cause overexpression of PTEN in rats with contusion injured spinal cords. The results suggest overexpression of PTEN in spinal cord attenuated glial scar formation and led to improved locomotor function after SCI. Overexpression of PTEN following SCI attenuated gliosis, affected chondroitin sulfate proteoglycan expression, and improved axon regeneration into the lesion site. Furthermore, we suggest that the activation of the PI3K/Akt/mTOR pathway in astrocytes at 3 days after SCI may be involved in glial scar formation. Because delayed treatment with Ad-PTEN enhanced motor function recovery more significantly than immediate treatment with Ad-PTEN after SCI, the results suggest that the best strategy to attenuate glial scar formation could be to introduce 3 days after SCI. This study's findings thus have positive implications for patients who are unable to receive immediate medical attention after SCI.
Collapse
Affiliation(s)
- Chun-Hong Chen
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University and Academia Sinica, Kaohsiung, Taiwan
| | - Chun-Sung Sung
- Department of Anesthesiology, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shi-Ying Huang
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chien-Wei Feng
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University and Academia Sinica, Kaohsiung, Taiwan
| | - Han-Chun Hung
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University and Academia Sinica, Kaohsiung, Taiwan
| | - San-Nan Yang
- I-Shou University, School of Medicine, College of Medicine and Department of Pediatrics, E-DA Hospital, Kaohsiung, Taiwan
| | - Nan-Fu Chen
- Division of Neurosurgery, Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Ming-Hong Tai
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University and Academia Sinica, Kaohsiung, Taiwan; Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan; Center for Neuroscience, National Sun Yat-sen University, Kaohsiung, Taiwan; Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Zhi-Hong Wen
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University and Academia Sinica, Kaohsiung, Taiwan; Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| | - Wu-Fu Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan; Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| |
Collapse
|
22
|
Gao L, Li C, Yang RY, Lian WW, Fang JS, Pang XC, Qin XM, Liu AL, Du GH. Ameliorative effects of baicalein in MPTP-induced mouse model of Parkinson's disease: A microarray study. Pharmacol Biochem Behav 2015; 133:155-63. [PMID: 25895692 DOI: 10.1016/j.pbb.2015.04.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 04/02/2015] [Accepted: 04/12/2015] [Indexed: 01/17/2023]
Abstract
Baicalein, a flavonoid from Scutellaria baicalensis Georgi, has been shown to possess neuroprotective properties. The purpose of this study was to explore the effects of baicalein on motor behavioral deficits and gene expression in N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mice model of Parkinson's disease (PD). The behavioral results showed that baicalein significantly improves the abnormal behaviors in MPTP-induced mice model of PD, as manifested by shortening the total time for climbing down the pole, prolonging the latent periods of rotarod, and increasing the vertical movements. Using cDNA microarray and subsequent bioinformatic analyses, it was found that baicalein significantly promotes the biological processes including neurogenesis, neuroblast proliferation, neurotrophin signaling pathway, walking and locomotor behaviors, and inhibits dopamine metabolic process through regulation of gene expressions. Based on analysis of gene co-expression networks, the results indicated that the regulation of genes such as LIMK1, SNCA and GLRA1 by baicalein might play central roles in the network. Our results provide experimental evidence for the potential use of baicalein in the treatment of PD, and revealed gene expression profiles, biological processes and pathways influenced by baicalein in MPTP-treated mice.
Collapse
Affiliation(s)
- Li Gao
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China; Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, PR China
| | - Chao Li
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Ran-Yao Yang
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Wen-Wen Lian
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Jian-Song Fang
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Xiao-Cong Pang
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, PR China
| | - Ai-Lin Liu
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China; Beijing Key Laboratory of Drug Target Research and Drug Screening, Beijing 100050, PR China.
| | - Guan-Hua Du
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, PR China.
| |
Collapse
|
23
|
Dobrowolski SF, Lyons-Weiler J, Biery A, Spridik K, Vockley G, Kranik E, Skvorak K, Sultana T. Methylome repatterning in a mouse model of Maternal PKU Syndrome. Mol Genet Metab 2014; 113:194-9. [PMID: 25218179 DOI: 10.1016/j.ymgme.2014.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 08/11/2014] [Accepted: 08/11/2014] [Indexed: 12/29/2022]
Abstract
Maternal PKU Syndrome (MPKU) is an embryopathy resulting from in utero phenylalanine (PHE) toxicity secondary to maternal phenylalanine hydroxylase deficient phenylketonuria (PKU). Clinical phenotypes in MPKU include mental retardation, microcephaly, in utero growth restriction, and congenital heart defects. Numerous in utero toxic exposures alter DNA methylation in the fetus. The PAH(enu2) mouse is a model of classical PKU while offspring born of hyperphenylalaninemic dams model MPKU. We investigated offspring of PAH(enu2) dams to determine if altered patterns of DNA methylation occurred in response to in utero PHE exposure. As neurologic deficit is the most prominent MPKU phenotype, methylome patterns were assessed in brain tissue using methylated DNA immunoprecipitation and paired-end sequencing. Brain tissues were assessed in E18.5-19 fetuses of PHE unrestricted PAH(enu2) dams, PHE restricted PAH(enu2) dams, and heterozygous(wt/enu2) control dams. Extensive methylome repatterning was observed in offspring of hyperphenylalaninemic dams while the offspring of PHE restricted dams displayed attenuated methylome repatterning. Methylation within coding regions was dominated by noncoding RNA genes. Differential methylation of promoters targeted protein coding genes. To assess the impact of methylome repatterning on gene expression, brain tissue in experimental and control animals were queried with microarrays assessing expression of microRNAs and protein coding genes. Altered expression of methylome-modified microRNAs and protein coding genes was extensive in offspring of hyperphenylalaninemic dams while minimal changes were observed in offspring of PHE restricted dams. Several genes displaying significantly reduced expression have roles in neurological function or genetic disease with neurological phenotypes. These data indicate in utero PHE toxicity alters DNA methylation in the brain which has downstream impact upon gene expression. Altered gene expression may contribute to pathophysiology of neurologic presentation in MPKU.
Collapse
Affiliation(s)
- S F Dobrowolski
- Department of Pathology, Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - J Lyons-Weiler
- Genomics and Proteomics Core Laboratories, Bioinformatics Core, University of Pittsburgh, 3343 Forbes Avenue, Pittsburgh, PA 15260, USA
| | - A Biery
- Department of Pathology, Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - K Spridik
- Department of Pathology, Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - G Vockley
- Division of Medical Genetics, Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - E Kranik
- Department of Pathology, Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - K Skvorak
- Division of Medical Genetics, Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - T Sultana
- Genomics and Proteomics Core Laboratories, Bioinformatics Core, University of Pittsburgh, 3343 Forbes Avenue, Pittsburgh, PA 15260, USA
| |
Collapse
|