1
|
Ahmed U, Pfannstiel J, Stressler T, Eisele T. Purification and characterization of a fungal aspartic peptidase from Trichoderma reesei and its application for food and animal feed protein hydrolyses. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5190-5199. [PMID: 35289936 DOI: 10.1002/jsfa.11871] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Various neutral and alkaline peptidases are commercially available for use in protein hydrolysis under neutral to alkaline conditions. However, the hydrolysis of proteins under acidic conditions by applying fungal aspartic peptidases (FAPs) has not been investigated in depth so far. The aim of this study, thus, was to purify a FAP from the commercial enzyme preparation, ROHALASE® BXL, determine its biochemical characteristics, and investigate its application for the hydrolysis of food and animal feed proteins under acidic conditions. RESULTS A Trichoderma reesei derived FAP, with an apparent molecular mass of 45.8 kDa (sodium dodecyl sulfate-polyacrylamide gel electrophoresis; SDS-PAGE) was purified 13.8-fold with a yield of 37% from ROHALASE® BXL. The FAP was identified as an aspartate protease (UniProt ID: G0R8T0) by inhibition and nano-LC-ESI-MS/MS studies. The FAP showed the highest activity at 50°C and pH 4.0. Monovalent cations, organic solvents, and reducing agents were tolerated well by the FAP. The FAP underwent an apparent competitive product inhibition by soy protein hydrolysate and whey protein hydrolysate with apparent Ki -values of 1.75 and 30.2 mg*mL-1 , respectively. The FAP showed promising results in food (soy protein isolate and whey protein isolate) and animal feed protein hydrolyses. For the latter, an increase in the soluble protein content of 109% was noted after 30 min. CONCLUSION Our results demonstrate the applicability of fungal aspartic endopeptidases in the food and animal feed industry. Efficient protein hydrolysis of industrially relevant substrates such as acidic whey or animal feed proteins could be conducted by applying fungal aspartic peptidases. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Uzair Ahmed
- Hochschule Offenburg, Fakultät Maschinenbau und Verfahrenstechnik, Offenburg, Germany
| | - Jens Pfannstiel
- Mass Spectrometry Unit, Universität Hohenheim, Stuttgart, Germany
| | | | - Thomas Eisele
- Hochschule Offenburg, Fakultät Maschinenbau und Verfahrenstechnik, Offenburg, Germany
| |
Collapse
|
2
|
McMillan HM, Kuehn MJ. The extracellular vesicle generation paradox: a bacterial point of view. EMBO J 2021; 40:e108174. [PMID: 34636061 PMCID: PMC8561641 DOI: 10.15252/embj.2021108174] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/29/2021] [Accepted: 07/28/2021] [Indexed: 12/23/2022] Open
Abstract
All bacteria produce secreted vesicles that carry out a variety of important biological functions. These extracellular vesicles can improve adaptation and survival by relieving bacterial stress and eliminating toxic compounds, as well as by facilitating membrane remodeling and ameliorating inhospitable environments. However, vesicle production comes with a price. It is energetically costly and, in the case of colonizing pathogens, it elicits host immune responses, which reduce bacterial viability. This raises an interesting paradox regarding why bacteria produce vesicles and begs the question as to whether the benefits of producing vesicles outweigh their costs. In this review, we discuss the various advantages and disadvantages associated with Gram-negative and Gram-positive bacterial vesicle production and offer perspective on the ultimate score. We also highlight questions needed to advance the field in determining the role for vesicles in bacterial survival, interkingdom communication, and virulence.
Collapse
Affiliation(s)
- Hannah M McMillan
- Department of Molecular Genetics and MicrobiologyDuke UniversityDurhamNCUSA
| | - Meta J Kuehn
- Department of BiochemistryDuke UniversityDurhamNCUSA
| |
Collapse
|
3
|
Kirykowicz AM, Woodward JD. Shotgun EM of mycobacterial protein complexes during stationary phase stress. Curr Res Struct Biol 2020; 2:204-212. [PMID: 34235480 PMCID: PMC8244302 DOI: 10.1016/j.crstbi.2020.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 10/27/2022] Open
Abstract
There is little structural information about the protein complexes conferring resistance in Mycobacterium tuberculosis (Mtb) to anti-microbial oxygen and nitrogen radicals in the phagolysosome. Here, we expose the model Mycobacterium, Mycobacterium smegmatis, to simulated oxidative-stress conditions and apply a shotgun EM method for the structural detection of the resulting protein assemblies. We identified: glutamine synthetase I, essential for Mtb virulence; bacterioferritin A, critical for Mtb iron regulation; aspartyl aminopeptidase M18, a protease; and encapsulin, which produces a cage-like structure to enclose cargo proteins. After further investigation, we found that encapsulin carries dye-decolourising peroxidase, a protein antioxidant, as its primary cargo under the conditions tested.
Collapse
Affiliation(s)
- Angela M. Kirykowicz
- Department of Biochemistry, University of Cambridge, Sanger Building, Tennis Court Road, Cambridge, CB2 1GA, UK
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Anzio Road, Observatory, 7925, Cape Town, South Africa
| | - Jeremy D. Woodward
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Anzio Road, Observatory, 7925, Cape Town, South Africa
- Structural Biology Research Unit, University of Cape Town, South Africa
| |
Collapse
|
4
|
P1' Residue-Oriented Virtual Screening for Potent and Selective Phosphinic (Dehydro) Dipeptide Inhibitors of Metallo-Aminopeptidases. Biomolecules 2020; 10:biom10040659. [PMID: 32344658 PMCID: PMC7225938 DOI: 10.3390/biom10040659] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 01/01/2023] Open
Abstract
Designing side chain substituents complementary to enzyme binding pockets is of great importance in the construction of potent and selective phosphinic dipeptide inhibitors of metallo-aminopeptidases. Proper structure selection makes inhibitor construction more economic, as the development process typically consists of multiple iterative preparation/bioassay steps. On the basis of these principles, using noncomplex computation and modeling methodologies, we comprehensively screened 900 commercial precursors of the P1′ residues of phosphinic dipeptide and dehydrodipeptide analogs to identify the most promising ligands of 52 metallo-dependent aminopeptidases with known crystal structures. The results revealed several nonproteinogenic residues with an improved energy of binding compared with the best known inhibitors. The data are discussed taking into account the selectivity and stereochemical implications of the enzymes. Using this approach, we were able to identify nontrivial structural elements substituting the recognized phosphinic peptidomimetic scaffold of metallo-aminopeptidase inhibitors.
Collapse
|
5
|
Dutoit R, Van Gompel T, Brandt N, Van Elder D, Van Dyck J, Sobott F, Droogmans L. How metal cofactors drive dimer-dodecamer transition of the M42 aminopeptidase TmPep1050 of Thermotoga maritima. J Biol Chem 2019; 294:17777-17789. [PMID: 31611236 DOI: 10.1074/jbc.ra119.009281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/24/2019] [Indexed: 11/06/2022] Open
Abstract
The M42 aminopeptidases are dinuclear aminopeptidases displaying a peculiar tetrahedron-shaped structure with 12 subunits. Their quaternary structure results from the self-assembly of six dimers controlled by their divalent metal ion cofactors. The oligomeric-state transition remains debated despite the structural characterization of several archaeal M42 aminopeptidases. The main bottleneck is the lack of dimer structures, hindering the understanding of structural changes occurring during the oligomerization process. We present the first dimer structure of an M42 aminopeptidase, TmPep1050 of Thermotoga maritima, along with the dodecamer structure. The comparison of both structures has allowed us to describe how the metal ion cofactors modulate the active-site fold and, subsequently, affect the interaction interface between dimers. A mutational study shows that the M1 site strictly controls dodecamer formation. The dodecamer structure of TmPep1050 also reveals that a part of the dimerization domain delimits the catalytic pocket and could participate in substrate binding.
Collapse
Affiliation(s)
- Raphaël Dutoit
- Laboratory of Microbiology, Department of Molecular Biology, Université Libre de Bruxelles, rue des Professeurs Jeener et Brachet 12, B6041 Charleroi, Belgium .,Labiris Institut de Recherche, avenue Emile Gryzon 1, B1070 Brussels, Belgium
| | - Tom Van Gompel
- Biomolecular and Analytical Mass Spectrometry, Department of Chemistry, Universiteit van Antwerpen, Groenenborgerlaan 171, B2020 Antwerpen, Belgium
| | - Nathalie Brandt
- Labiris Institut de Recherche, avenue Emile Gryzon 1, B1070 Brussels, Belgium
| | - Dany Van Elder
- Laboratory of Microbiology, Department of Molecular Biology, Université Libre de Bruxelles, rue des Professeurs Jeener et Brachet 12, B6041 Charleroi, Belgium
| | - Jeroen Van Dyck
- Biomolecular and Analytical Mass Spectrometry, Department of Chemistry, Universiteit van Antwerpen, Groenenborgerlaan 171, B2020 Antwerpen, Belgium
| | - Frank Sobott
- Biomolecular and Analytical Mass Spectrometry, Department of Chemistry, Universiteit van Antwerpen, Groenenborgerlaan 171, B2020 Antwerpen, Belgium.,Astbury Centre for Structural and Molecular Biology, University of Leeds, LS2 9JT Leeds, United Kingdom
| | - Louis Droogmans
- Laboratory of Microbiology, Department of Molecular Biology, Université Libre de Bruxelles, rue des Professeurs Jeener et Brachet 12, B6041 Charleroi, Belgium
| |
Collapse
|
6
|
Khrustalev VV, Khrustaleva TA, Poboinev VV, Karchevskaya CI, Shablovskaya EA, Terechova TG. Cobalt(ii) cation binding by proteins. Metallomics 2019; 11:1743-1752. [DOI: 10.1039/c9mt00205g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a set of non-homologous proteins (238) that could bind the cobalt(ii) cations was selected from all the available Protein Data Bank structures with Co2+ cations.
Collapse
Affiliation(s)
| | - Tatyana Aleksandrovna Khrustaleva
- Biochemical Group of the Multidisciplinary Diagnostic Laboratory
- Institute of Physiology of the National Academy of Sciences of Belarus
- Minsk, Academicheskaya, 28
- Belarus
| | | | | | | | | |
Collapse
|
7
|
Characterization of a Glycyl-Specific TET Aminopeptidase Complex from Pyrococcus horikoshii. J Bacteriol 2018; 200:JB.00059-18. [PMID: 29866801 DOI: 10.1128/jb.00059-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/29/2018] [Indexed: 01/03/2023] Open
Abstract
The TET peptidases are large self-compartmentalized complexes that form dodecameric particles. These metallopeptidases, members of the M42 family, are widely distributed in prokaryotes. Three different versions of TET complexes, with different substrate specificities, were found to coexist in the cytosol of the hyperthermophilic archaeon Pyrococcus horikoshii In the present work, we identified a novel type of TET complex that we named PhTET4. The recombinant PhTET4 enzyme was found to self-assemble as a tetrahedral edifice similar to other TET complexes. We determined PhTET4 substrate specificity using a broad range of monoacyl chromogenic and fluorogenic compounds. High-performance liquid chromatographic peptide degradation assays were also performed. These experiments demonstrated that PhTET4 is a strict glycyl aminopeptidase, devoid of amidolytic activity toward other types of amino acids. The catalytic efficiency of PhTET4 was studied under various conditions. The protein was found to be a hyperthermophilic alkaline aminopeptidase. Interestingly, unlike other peptidases from the same family, it was activated only by nickel ions.IMPORTANCE We describe here the first known peptidase displaying exclusive activity toward N-terminal glycine residues. This work indicates a specific role for intracellular glycyl peptidases in deep sea hyperthermophilic archaeal metabolism. These observations also provide critical evidence for the use of these archaeal extremozymes for biotechnological applications.
Collapse
|
8
|
Ewert J, Glück C, Strasdeit H, Fischer L, Stressler T. Influence of the metal ion on the enzyme activity and kinetics of PepA from Lactobacillus delbrueckii. Enzyme Microb Technol 2018; 110:69-78. [DOI: 10.1016/j.enzmictec.2017.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/13/2017] [Accepted: 10/10/2017] [Indexed: 10/18/2022]
|
9
|
Park SY, Scranton MA, Stajich JE, Yee A, Walling LL. Chlorophyte aspartyl aminopeptidases: Ancient origins, expanded families, new locations, and secondary functions. PLoS One 2017; 12:e0185492. [PMID: 29023459 PMCID: PMC5638241 DOI: 10.1371/journal.pone.0185492] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/13/2017] [Indexed: 11/19/2022] Open
Abstract
M18 aspartyl aminopeptidases (DAPs) are well characterized in microbes and animals with likely functions in peptide processing and vesicle trafficking. In contrast, there is a dearth of knowledge on plant aminopeptidases with a preference for proteins and peptides with N-terminal acidic residues. During evolution of the Plantae, there was an expansion and diversification of the M18 DAPs. After divergence of the ancestral green algae from red and glaucophyte algae, a duplication yielded the DAP1 and DAP2 lineages. Subsequently DAP1 genes were lost in chlorophyte algae. A duplication of DAP2-related genes occurred early in green plant evolution. DAP2 genes were retained in land plants and picoeukaryotic algae and lost in green algae. In contrast, DAP2-like genes persisted in picoeukaryotic and green algae, while this lineage was lost in land plants. Consistent with this evolutionary path, Arabidopsis thaliana has two DAP gene lineages (AtDAP1 and AtDAP2). Similar to animal and yeast DAPs, AtDAP1 is localized to the cytosol or vacuole; while AtDAP2 harbors an N-terminal transit peptide and is chloroplast localized. His6-DAP1 and His6-DAP2 expressed in Escherichia coli were enzymatically active and dodecameric with masses exceeding 600 kDa. His6-DAP1 and His6-DAP2 preferentially hydrolyzed Asp-p-nitroanilide and Glu-p-nitroanilide. AtDAPs are highly conserved metallopeptidases activated by MnCl2 and inhibited by ZnCl2 and divalent ion chelators. The protease inhibitor PMSF inhibited and DTT stimulated both His6-DAP1 and His6-DAP2 activities suggesting a role for thiols in the AtDAP catalytic mechanism. The enzymes had distinct pH and temperature optima, as well as distinct kinetic parameters. Both enzymes had high catalytic efficiencies (kcat/Km) exceeding 1.0 x 107 M-1 sec-1. Using established molecular chaperone assays, AtDAP1 and AtDAP2 prevented thermal denaturation. AtDAP1 also prevented protein aggregation and promoted protein refolding. Collectively, these data indicate that plant DAPs have a complex evolutionary history and have evolved new biochemical features that may enable their role in vivo.
Collapse
Affiliation(s)
- Sang-Youl Park
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California, United States of America
| | - Melissa A. Scranton
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California, United States of America
| | - Jason E. Stajich
- Department of Plant Pathology and Microbiology, Center for Plant Cell Biology, University of California, Riverside, California, United States of America
| | - Ashley Yee
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California, United States of America
| | - Linda L. Walling
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California, United States of America
- * E-mail:
| |
Collapse
|
10
|
Identification and characterization of a thermostable and cobalt-dependent amidase from Burkholderia phytofirmans ZJB-15079 for efficient synthesis of (R)-3,3,3-trifluoro-2-hydroxy-2-methylpropionic acid. Appl Microbiol Biotechnol 2016; 101:1953-1964. [DOI: 10.1007/s00253-016-7921-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/20/2016] [Accepted: 10/05/2016] [Indexed: 10/20/2022]
|
11
|
Characterization of aspartyl aminopeptidase from Toxoplasma gondii. Sci Rep 2016; 6:34448. [PMID: 27678060 PMCID: PMC5039622 DOI: 10.1038/srep34448] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 09/13/2016] [Indexed: 12/14/2022] Open
Abstract
Aminopeptidases have emerged as new promising drug targets for the development of novel anti-parasitic drugs. An aspartyl aminopeptidase-like gene has been identified in the Toxoplasma gondii genome (TgAAP), although its function remains unknown. In this study, we characterized TgAAP and performed functional analysis of the gene product. Firstly, we expressed a functional recombinant TgAAP (rTgAAP) protein in Escherichia coli, and found that it required metal ions for activity and showed a substrate preference for N-terminal acidic amino acids Glu and Asp. Then, we evaluated the function and drug target potential of TgAAP using the CRISPR/Cas9 knockout system. Western blotting demonstrated the deletion of TgAAP in the knockout strain. Indirect immunofluorescence analysis showed that TgAAP was localized in the cytoplasm of the wild-type parasite, but was not expressed in the knockout strain. Phenotype analysis revealed that TgAAP knockout inhibited the attachment/invasion, replication, and substrate-specific activity in T. gondii. Finally, the activity of drug CID 23724194, previously described as targeting Plasmodium and malarial parasite AAP, was tested against rTgAAP and the parasite. Overall, TgAAP knockout affected the growth of T. gondii but did not completely abolish parasite replication and growth. Therefore, TgAAP may comprise a useful adjunct drug target of T. gondii.
Collapse
|
12
|
Colombo M, Girard E, Franzetti B. Tuned by metals: the TET peptidase activity is controlled by 3 metal binding sites. Sci Rep 2016; 6:20876. [PMID: 26853450 PMCID: PMC4745047 DOI: 10.1038/srep20876] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 01/11/2016] [Indexed: 11/09/2022] Open
Abstract
TET aminopeptidases are dodecameric particles shared in the three life domains involved in various biological processes, from carbon source provider in archaea to eye-pressure regulation in humans. Each subunit contains a dinuclear metal site (M1 and M2) responsible for the enzyme catalytic activity. However, the role of each metal ion is still uncharacterized. Noteworthy, while mesophilic TETs are activated by Mn(2+), hyperthermophilic TETs prefers Co(2+). Here, by means of anomalous x-ray crystallography and enzyme kinetics measurements of the TET3 aminopeptidase from the hyperthermophilic organism Pyrococcus furiosus (PfTET3), we show that M2 hosts the catalytic activity of the enzyme, while M1 stabilizes the TET3 quaternary structure and controls the active site flexibility in a temperature dependent manner. A new third metal site (M3) was found in the substrate binding pocket, modulating the PfTET3 substrate preferences. These data show that TET activity is tuned by the molecular interplay among three metal sites.
Collapse
Affiliation(s)
- Matteo Colombo
- CNRS, IBS, F-38027 Grenoble, France.,CEA, DSV, IBS, F-38027 Grenoble, France.,Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027 Grenoble, France
| | - Eric Girard
- CNRS, IBS, F-38027 Grenoble, France.,CEA, DSV, IBS, F-38027 Grenoble, France.,Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027 Grenoble, France
| | - Bruno Franzetti
- CNRS, IBS, F-38027 Grenoble, France.,CEA, DSV, IBS, F-38027 Grenoble, France.,Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027 Grenoble, France
| |
Collapse
|