1
|
Wang N, Shen X, Huang H, Zhao R, Jiwa H, Li Z, Li P, Ye J, Zhou Q. The bidirectional effects of APPswe on the osteogenic differentiation of MSCs in bone homeostasis by regulating Notch signaling. Genes Dis 2025; 12:101317. [PMID: 40330152 PMCID: PMC12052679 DOI: 10.1016/j.gendis.2024.101317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/02/2024] [Accepted: 04/23/2024] [Indexed: 05/08/2025] Open
Abstract
Amyloid precursor protein (APP), especially Swedish mutant APP (APPswe), is recognized as a significant pathogenic protein in Alzheimer's disease, but limited research has been conducted on the correlation between APPswe and the osteogenic differentiation of mesenchymal stem cells (MSCs). The effects of APPswe and its intracellular and extracellular segments on the osteogenic differentiation of bone morphogenetic protein 2 (BMP2)-induced MSCs were analyzed in this study. Our analysis of an existing database revealed that APP was positively correlated with the osteogenic differentiation of MSCs but negatively correlated with their proliferation and migration. Furthermore, APPswe promoted BMP2-induced osteogenic differentiation of MSCs, while APPswe-C (APPswe without an intracellular segment) had the opposite effect; thus, the intracellular domain of APPswe may be a key factor in promoting the osteogenic differentiation of MSCs. Additionally, both APPswe and APPswe-C inhibited the proliferation and migration of MSCs. Furthermore, the intracellular domain of APPswe inhibited the activity of the Notch pathway by regulating the expression of the Notch intracellular domain to promote the osteogenic differentiation of MSCs. Finally, APPswe-treated primary rat bone marrow MSCs exhibited the most favorable bone repair effect when a GelMA hydrogel loaded with BMP2 was used for in vivo experiments, while APPswe-C had the opposite effect. These findings demonstrate that APPswe promotes the osteogenic differentiation of MSCs by regulating the Notch pathway, but its extracellular segment blocks the self-renewal, proliferation, and migration of MSCs, ultimately leading to a gradual decrease in the storage capacity of MSCs and affecting long-term bone formation.
Collapse
Affiliation(s)
- Nan Wang
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
- Key Laboratory of Clinical Laboratory Diagnostics, Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | | | - Huakun Huang
- Key Laboratory of Clinical Laboratory Diagnostics, Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Runhan Zhao
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Habu Jiwa
- Key Laboratory of Clinical Laboratory Diagnostics, Ministry of Education, Chongqing Medical University, Chongqing 400016, China
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Zongxin Li
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Pei Li
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Jixing Ye
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Qiang Zhou
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| |
Collapse
|
2
|
Coronel R, Bernabeu-Zornoza A, Palmer C, González-Sastre R, Rosca A, Mateos-Martínez P, López-Alonso V, Liste I. Amyloid Precursor Protein (APP) Regulates Gliogenesis and Neurogenesis of Human Neural Stem Cells by Several Signaling Pathways. Int J Mol Sci 2023; 24:12964. [PMID: 37629148 PMCID: PMC10455174 DOI: 10.3390/ijms241612964] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Numerous studies have focused on the pathophysiological role of amyloid precursor protein (APP) because the proteolytic processing of APP to β-amyloid (Aβ) peptide is a central event in Alzheimer's disease (AD). However, many authors consider that alterations in the physiological functions of APP are likely to play a key role in AD. Previous studies in our laboratory revealed that APP plays an important role in the differentiation of human neural stem cells (hNSCs), favoring glial differentiation (gliogenesis) and preventing their differentiation toward a neuronal phenotype (neurogenesis). In the present study, we have evaluated the effects of APP overexpression in hNSCs at a global gene level by a transcriptomic analysis using the massive RNA sequencing (RNA-seq) technology. Specifically, we have focused on differentially expressed genes that are related to neuronal and glial differentiation processes, as well as on groups of differentially expressed genes associated with different signaling pathways, in order to find a possible interaction between them and APP. Our data indicate a differential expression in genes related to Notch, Wnt, PI3K-AKT, and JAK-STAT signaling, among others. Knowledge of APP biological functions, as well as the possible signaling pathways that could be related to this protein, are essential to advance our understanding of AD.
Collapse
Affiliation(s)
- Raquel Coronel
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain; (A.B.-Z.); (C.P.); (R.G.-S.); (A.R.); (P.M.-M.)
- Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain
| | - Adela Bernabeu-Zornoza
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain; (A.B.-Z.); (C.P.); (R.G.-S.); (A.R.); (P.M.-M.)
| | - Charlotte Palmer
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain; (A.B.-Z.); (C.P.); (R.G.-S.); (A.R.); (P.M.-M.)
| | - Rosa González-Sastre
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain; (A.B.-Z.); (C.P.); (R.G.-S.); (A.R.); (P.M.-M.)
- Unidad de Biología Computacional, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain;
| | - Andreea Rosca
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain; (A.B.-Z.); (C.P.); (R.G.-S.); (A.R.); (P.M.-M.)
| | - Patricia Mateos-Martínez
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain; (A.B.-Z.); (C.P.); (R.G.-S.); (A.R.); (P.M.-M.)
| | - Victoria López-Alonso
- Unidad de Biología Computacional, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain;
| | - Isabel Liste
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain; (A.B.-Z.); (C.P.); (R.G.-S.); (A.R.); (P.M.-M.)
| |
Collapse
|
3
|
Bing J, Sun J, Zhao R, Sun L, Xi C, Liu J, Zhang X, Zeng S. The effects of Wnt, BMP, and Notch signaling pathways on cell proliferation and neural differentiation in a song control nucleus (HVC) of Lonchura striata. Dev Neurobiol 2023; 83:157-166. [PMID: 37433016 DOI: 10.1002/dneu.22920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/06/2023] [Accepted: 06/24/2023] [Indexed: 07/13/2023]
Abstract
There is obvious sexual dimorphism in the song control system of songbirds. In the higher vocal center (HVC), cell proliferation and neuronal differentiation contribute to the net addition of neurons. However, the mechanism underlying these changes is unclear. Given that Wnt, Bmp, and Notch pathways are involved in cell proliferation and neuronal differentiation, no reports are available to study the role of the three pathways in the song control system. To address the issue, we studied cell proliferation in the ventricle zone overlying the developing HVC and neural differentiation within the HVC of Bengalese finches (Lonchura striata) at posthatching day 15 when HVC progenitor cells are generated on a large scale and differentiate into neurons, after Wnt and Bmp pathways were activated by using a pharmacological agonist (LiCl) or Bmp4, respectively, and the Notch pathway was inhibited by an inhibitor (N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester), DAPT). The results indicated that both cell proliferation and neural differentiation toward HVC neurons increased significantly after activation of the Wnt signaling pathway or inhibition of the Notch signaling pathway. Although cell proliferation was increased, neural differentiation was inhibited after treatment with Bmp4. There was obvious synergetic enhancement in the number of proliferating cells after the coregulation of two or three signaling pathways. In addition, synergetic enhancement was also found in the Wnt and Notch pathways in neural differentiation toward neurons within HVC. These results suggest that the three signaling pathways are involved in cell proliferation and neural differentiation of HVC.
Collapse
Affiliation(s)
- Jie Bing
- Beijing, Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Jing Sun
- Beijing, Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Rui Zhao
- Beijing, Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Lina Sun
- Beijing, Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Chao Xi
- Beijing, Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Jin Liu
- Beijing, Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Xinwen Zhang
- Hainan, Institute of Science and Technology, Haikou, China
- College of Life Sciences, Hainan Normal University, Haikou, China
| | - Shaoju Zeng
- Beijing, Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| |
Collapse
|
4
|
Valerio LSA, Carrick FR, Bedoya L, Sreerama S, Sugaya K. Neural Differentiation of Induced Pluripotent Stem Cells for a Xenogeneic Material-Free 3D Neurological Disease Model Neurulation from Pluripotent Cells Using a Human Hydrogel. Curr Issues Mol Biol 2023; 45:4574-4588. [PMID: 37367039 DOI: 10.3390/cimb45060290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/14/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Alzheimer's Disease (AD) is characterized by synapse and neuronal loss and the accumulation of neurofibrillary tangles and Amyloid β plaques. Despite significant research efforts to understand the late stages of the disease, its etiology remains largely unknown. This is in part because of the imprecise AD models in current use. In addition, little attention has been paid to neural stem cells (NSC), which are the cells responsible for the development and maintenance of brain tissue during an individual's lifespan. Thus, an in vitro 3D human brain tissue model using induced pluripotent stem (iPS) cell-derived neural cells in human physiological conditions may be an excellent alternative to standard models to investigate AD pathology. Following the differentiation process mimicking development, iPS cells can be turned into NSCs and, ultimately, neural cells. During differentiation, the traditionally used xenogeneic products may alter the cells' physiology and prevent accurate disease pathology modeling. Hence, establishing a xenogeneic material-free cell culture and differentiation protocol is essential. This study investigated the differentiation of iPS cells to neural cells using a novel extracellular matrix derived from human platelet lysates (PL Matrix). We compared the stemness properties and differentiation efficacies of iPS cells in a PL matrix against those in a conventional 3D scaffold made of an oncogenic murine-matrix. Using well-defined conditions without xenogeneic material, we successfully expanded and differentiated iPS cells into NSCs via dual-SMAD inhibition, which regulates the BMP and TGF signaling cascades in a manner closer to human conditions. This in vitro, 3D, xenogeneic-free scaffold will enhance the quality of disease modeling for neurodegenerative disease research, and the knowledge produced could be used in developing more effective translational medicine.
Collapse
Affiliation(s)
- Luis Sebastian Alexis Valerio
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
- Institute for Scientific Research and Technology Services (INDICASAT), City of Knowledge 0801, Panama
- Department of Biotechnology, Acharya Nagarjuna University, Guntur 522510, India
| | - Frederick Robert Carrick
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
- MGH Institute of Health Professions, Boston, MA 02129, USA
- Centre for Mental Health Research in Association, University of Cambridge, Cambridge CB2 1TN, UK
- Department of Neurology, Carrick Institute, Cape Canaveral, FL 32920, USA
| | - Lina Bedoya
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Sandeep Sreerama
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Kiminobu Sugaya
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
- Institute for Scientific Research and Technology Services (INDICASAT), City of Knowledge 0801, Panama
- Department of Biotechnology, Acharya Nagarjuna University, Guntur 522510, India
| |
Collapse
|
5
|
Elsworthy RJ, Hill EJ, Dunleavy C, Aldred S. The role of ADAM10 in astrocytes: Implications for Alzheimer's disease. Front Aging Neurosci 2022; 14:1056507. [PMID: 36533182 PMCID: PMC9748279 DOI: 10.3389/fnagi.2022.1056507] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/14/2022] [Indexed: 01/27/2025] Open
Abstract
Much of the early research into AD relies on a neuron-centric view of the brain, however, evidence of multiple altered cellular interactions between glial cells and the vasculature early in AD has been demonstrated. As such, alterations in astrocyte function are widely recognized a contributing factor in the pathogenesis of AD. The processes by which astrocytes may be involved in AD make them an interesting target for therapeutic intervention, but in order for this to be most effective, there is a need for the specific mechanisms involving astrocyte dysfunction to be investigated. "α disintegrin and metalloproteinase" 10 (ADAM10) is capable of proteolytic cleavage of the amyloid precursor protein which prevents amyloid-β generation. As such ADAM10 has been identified as an interesting enzyme in AD pathology. ADAM10 is also known to play a role in a significant number of cellular processes, most notable in notch signaling and in inflammatory processes. There is a growing research base for the involvement of ADAM10 in regulating astrocytic function, primarily from an immune perspective. This review aims to bring together available evidence for ADAM10 activity in astrocytes, and how this relates to AD pathology.
Collapse
Affiliation(s)
- Richard J. Elsworthy
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| | - Eric J. Hill
- School of Biosciences, Aston University, Birmingham, United Kingdom
| | - Connor Dunleavy
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Sarah Aldred
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
6
|
Neural Stem Cells Secretome Increased Neurogenesis and Behavioral Performance and the Activation of Wnt/β-Catenin Signaling Pathway in Mouse Model of Alzheimer’s Disease. Neuromolecular Med 2022; 24:424-436. [DOI: 10.1007/s12017-022-08708-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 03/02/2022] [Indexed: 01/13/2023]
|
7
|
Reinitz F, Chen EY, Nicolis di Robilant B, Chuluun B, Antony J, Jones RC, Gubbi N, Lee K, Ho WHD, Kolluru SS, Qian D, Adorno M, Piltti K, Anderson A, Monje M, Heller HC, Quake SR, Clarke MF. Inhibiting USP16 rescues stem cell aging and memory in an Alzheimer's model. eLife 2022; 11:66037. [PMID: 35311644 PMCID: PMC9122497 DOI: 10.7554/elife.66037] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/17/2022] [Indexed: 11/23/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disease observed with aging that represents the most common form of dementia. To date, therapies targeting end-stage disease plaques, tangles, or inflammation have limited efficacy. Therefore, we set out to identify a potential earlier targetable phenotype. Utilizing a mouse model of AD and human fetal cells harboring mutant amyloid precursor protein, we show cell intrinsic neural precursor cell (NPC) dysfunction precedes widespread inflammation and amyloid plaque pathology, making it the earliest defect in the evolution of the disease. We demonstrate that reversing impaired NPC self-renewal via genetic reduction of USP16, a histone modifier and critical physiological antagonist of the Polycomb Repressor Complex 1, can prevent downstream cognitive defects and decrease astrogliosis in vivo. Reduction of USP16 led to decreased expression of senescence gene Cdkn2a and mitigated aberrant regulation of the Bone Morphogenetic Signaling (BMP) pathway, a previously unknown function of USP16. Thus, we reveal USP16 as a novel target in an AD model that can both ameliorate the NPC defect and rescue memory and learning through its regulation of both Cdkn2a and BMP signaling.
Collapse
Affiliation(s)
- Felicia Reinitz
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, United States
| | - Elizabeth Y Chen
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, United States
| | - Benedetta Nicolis di Robilant
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, United States
| | | | - Jane Antony
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, United States
| | - Robert C Jones
- Department of Bioengineering, Stanford University, Stanford, United States
| | - Neha Gubbi
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, United States
| | - Karen Lee
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, United States
| | - William Hai Dang Ho
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, United States
| | - Sai Saroja Kolluru
- Department of Bioengineering, Stanford University, Stanford, United States
| | - Dalong Qian
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, United States
| | - Maddalena Adorno
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, United States
| | - Katja Piltti
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, United States
| | - Aileen Anderson
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, United States
| | - Michelle Monje
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, United States
| | - H Craig Heller
- Department of Biology, Stanford University, Stanford, United States
| | - Stephen R Quake
- Department of Bioengineering, Stanford University, Stanford, United States
| | - Michael F Clarke
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
8
|
BMP4 overexpression induces the upregulation of APP/Tau and memory deficits in Alzheimer's disease. Cell Death Discov 2021; 7:51. [PMID: 33723239 PMCID: PMC7961014 DOI: 10.1038/s41420-021-00435-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/19/2021] [Accepted: 02/13/2021] [Indexed: 12/31/2022] Open
Abstract
Alzheimer's disease (AD) is a chronic progressive degenerative disease of the nervous system. Its pathogenesis is complex and is related to the abnormal expression of the amyloid β (Aβ), APP, and Tau proteins. Evidence has demonstrated that bone morphogenetic protein 4 (BMP4) is highly expressed in transgenic mouse models of AD and that endogenous levels of BMP4 mainly affect hippocampal function. To determine whether BMP4 participates in AD development, transgenic mice were constructed that overexpress BMP4 under the control of the neuron-specific enolase (NSE) promoter. We also performed MTT, FACS, transfection, TUNEL, and Western blotting assays to define the role of BMP4 in cells. We found that middle-aged BMP4 transgenic mice exhibited impaired memory via the Morris water maze experiment. Moreover, their hippocampal tissues exhibited high expression levels of AD-related proteins, including APP, Aβ, PSEN-1, Tau, P-Tau (Thr181), and P-Tau (Thr231). Furthermore, in multiple cell lines, the overexpression of BMP4 increased the expression of AD-related proteins, whereas the downregulation of BMP4 demonstrated opposing effects. Consistent with these results, BMP4 modulation affected cell apoptosis via the regulation of BAX and Bcl-2 expression in cells. Our findings indicate that BMP4 overexpression might be a potential factor to induce AD.
Collapse
|
9
|
Li Puma DD, Piacentini R, Grassi C. Does Impairment of Adult Neurogenesis Contribute to Pathophysiology of Alzheimer's Disease? A Still Open Question. Front Mol Neurosci 2021; 13:578211. [PMID: 33551741 PMCID: PMC7862134 DOI: 10.3389/fnmol.2020.578211] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/15/2020] [Indexed: 12/15/2022] Open
Abstract
Adult hippocampal neurogenesis is a physiological mechanism contributing to hippocampal memory formation. Several studies associated altered hippocampal neurogenesis with aging and Alzheimer's disease (AD). However, whether amyloid-β protein (Aβ)/tau accumulation impairs adult hippocampal neurogenesis and, consequently, the hippocampal circuitry, involved in memory formation, or altered neurogenesis is an epiphenomenon of AD neuropathology contributing negligibly to the AD phenotype, is, especially in humans, still debated. The detrimental effects of Aβ/tau on synaptic function and neuronal viability have been clearly addressed both in in vitro and in vivo experimental models. Until some years ago, studies carried out on in vitro models investigating the action of Aβ/tau on proliferation and differentiation of hippocampal neural stem cells led to contrasting results, mainly due to discrepancies arising from different experimental conditions (e.g., different cellular/animal models, different Aβ and/or tau isoforms, concentrations, and/or aggregation profiles). To date, studies investigating in situ adult hippocampal neurogenesis indicate severe impairment in most of transgenic AD mice; this impairment precedes by several months cognitive dysfunction. Using experimental tools, which only became available in the last few years, research in humans indicated that hippocampal neurogenesis is altered in cognitive declined individuals affected by either mild cognitive impairment or AD as well as in normal cognitive elderly with a significant inverse relationship between the number of newly formed neurons and cognitive impairment. However, despite that such information is available, the question whether impaired neurogenesis contributes to AD pathogenesis or is a mere consequence of Aβ/pTau accumulation is not definitively answered. Herein, we attempted to shed light on this complex and very intriguing topic by reviewing relevant literature on impairment of adult neurogenesis in mouse models of AD and in AD patients analyzing the temporal relationship between the occurrence of altered neurogenesis and the appearance of AD hallmarks and cognitive dysfunctions.
Collapse
Affiliation(s)
- Domenica Donatella Li Puma
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Roberto Piacentini
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
10
|
Perényi H, Szegeczki V, Horváth G, Hinnah B, Tamás A, Radák Z, Ábrahám D, Zákány R, Reglodi D, Juhász T. Physical Activity Protects the Pathological Alterations of Alzheimer's Disease Kidneys via the Activation of PACAP and BMP Signaling Pathways. Front Cell Neurosci 2020; 14:243. [PMID: 32922265 PMCID: PMC7457084 DOI: 10.3389/fncel.2020.00243] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder with typical amyloid beta (Aβ) aggregations. Elimination of the Aβ precursors via the kidneys makes the organ a potential factor in the systemic degeneration leading to AD. Pituitary adenylate cyclase-activating polypeptide (PACAP) exerts neuroprotective effects in AD and plays a protective role in kidney pathologies. Increased physical activity is preventive of the formation of AD, but its detailed mechanism and possible connections with PACAP have not been clarified. In the kidneys of AD mice, the effects of physical activity were investigated by comparing wild-type and AD organs. Aβ plaque formation was reduced in AD kidneys after increased training (TAD). Mechanotransduction elevated PACAP receptor expression in TAD mice and normalized the protein kinase A (PKA)-mediated pathways. BMP4/BMPR1 elevation activated Smad1 expression and normalized collagen type IV in TAD animals. In conclusion, our data suggest that elevated physical activity can prevent the AD-induced pathological changes in the kidneys via, at least in part, the activation of PACAP-BMP signaling crosstalk.
Collapse
Affiliation(s)
- Helga Perényi
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Vince Szegeczki
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gabriella Horváth
- Department of Anatomy, PTE-MTA PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Barbara Hinnah
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Andrea Tamás
- Department of Anatomy, PTE-MTA PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Zsolt Radák
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Dóra Ábrahám
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Róza Zákány
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Dora Reglodi
- Department of Anatomy, PTE-MTA PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Tamás Juhász
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
11
|
Wang J, Tao S, Jin X, Song Y, Zhou W, Lou H, Zhao R, Wang C, Hu F, Yuan H. Calcium Supplement by Tetracycline guided amorphous Calcium Carbonate potentiates Osteoblast promotion for Synergetic Osteoporosis Therapy. Am J Cancer Res 2020; 10:8591-8605. [PMID: 32754265 PMCID: PMC7392017 DOI: 10.7150/thno.45142] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/01/2020] [Indexed: 12/18/2022] Open
Abstract
Background: The calcium supplement is a clinically approved approach for osteoporosis therapy but usually requires a large dosage without targetability and with poor outcome. This modality is not fully explored in current osteoporosis therapy due to the lack of proper calcium supplement carrier. Methods: In this study, we constructed a tetracycline (Tc) modified and simvastatin (Sim) loaded phospholipid-amorphous calcium carbonate (ACC) hybrid nanoparticle (Tc/ACC/Sim). Results: The resulted Tc/ACC/Sim was able to enhance its accumulation at the osteoporosis site. Most importantly, the combination of calcium supplement and Sim offered synergetic osteoblast promotion therapy of osteoporosis with advanced performance than non-targeted system or mono therapy. Conclusion: This platform provides an alternative approach to stimulate bone formation by synergetic promotion of osteoblast differentiation using calcium supplement and Sim.
Collapse
|
12
|
Li YQ, Chen Y, Fang JY, Jiang SQ, Li P, Li F. Integrated network pharmacology and zebrafish model to investigate dual-effects components of Cistanche tubulosa for treating both Osteoporosis and Alzheimer's Disease. JOURNAL OF ETHNOPHARMACOLOGY 2020; 254:112764. [PMID: 32173426 DOI: 10.1016/j.jep.2020.112764] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/02/2020] [Accepted: 03/10/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Osteoporosis (OP) and Alzheimer's disease (AD) are common geriatric concurrent diseases, and many studies indicate the connection of their pathogenesis. Cistanche tubulosa (Schenk) Wight (CT) is a widely used traditional Chinese medicine and has been extensively applied to treat OP and AD, respectively. However, the active ingredients for both concurrent diseases simultaneously and underlying mechanisms are limited. AIM OF STUDY This work aimed at establishing an effective and reliable network screening method to find dual-effects compounds in CT that can protect AD and OP concurrently. And it will provide new perspectives of the link between OP and AD on molecular mechanisms. MATERIAL AND METHODS The dual-effects of CT were systematically analyzed with integrating multiple databases and extensive analysis at a network pharmacology level. Classified drug-target interaction network was constructed to reveal differences in effects between different types of compounds. To prove the effectiveness of this network, some compounds were selected to verify in Pre-induced OP model and AlCl3-induced AD model of zebrafish according to the topological parameters. RESULTS 22 dual-effects active ingredients in CT were initially screened out via network pharmacology with a closely connection with 81 OP and AD-related targets. Classified network analysis found the better bioactivities of phenylethanoid glycosides and flavonoids. The dual-effects of four selected compounds demonstrated that the network is reasonable and effective, suggesting the dual-effects of the remaining 18 compounds. Moreover, we identified 9 putative targets and two pathways that were significantly related to OP and AD. CONCLUSIONS We successfully identified 22 dual-effects active components in CT. This systematic screening strategy provided a new protocol to objectively discover multi-effects compounds of traditional Chinese medicine, and even a macroscopic perspective that will improve our understanding of the link between OP and AD on molecular mechanisms.
Collapse
Affiliation(s)
- Ying-Qi Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Yi Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Jia-Yi Fang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Si-Qi Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
| | - Fei Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China.
| |
Collapse
|
13
|
Bone marrow niche crosses paths with BMPs: a road to protection and persistence in CML. Biochem Soc Trans 2020; 47:1307-1325. [PMID: 31551354 DOI: 10.1042/bst20190221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/23/2019] [Accepted: 08/29/2019] [Indexed: 12/21/2022]
Abstract
Chronic myeloid leukaemia (CML) is a paradigm of precision medicine, being one of the first cancers to be treated with targeted therapy. This has revolutionised CML therapy and patient outcome, with high survival rates. However, this now means an ever-increasing number of patients are living with the disease on life-long tyrosine kinase inhibitor (TKI) therapy, with most patients anticipated to have near normal life expectancy. Unfortunately, in a significant number of patients, TKIs are not curative. This low-level disease persistence suggests that despite a molecularly targeted therapeutic approach, there are BCR-ABL1-independent mechanisms exploited to sustain the survival of a small cell population of leukaemic stem cells (LSCs). In CML, LSCs display many features akin to haemopoietic stem cells, namely quiescence, self-renewal and the ability to produce mature progeny, this all occurs through intrinsic and extrinsic signals within the specialised microenvironment of the bone marrow (BM) niche. One important avenue of investigation in CML is how the disease highjacks the BM, thereby remodelling this microenvironment to create a niche, which enables LSC persistence and resistance to TKI treatment. In this review, we explore how changes in growth factor levels, in particular, the bone morphogenetic proteins (BMPs) and pro-inflammatory cytokines, impact on cell behaviour, extracellular matrix deposition and bone remodelling in CML. We also discuss the challenges in targeting LSCs and the potential of dual targeting using combination therapies against BMP receptors and BCR-ABL1.
Collapse
|
14
|
Lithium alters expression of RNAs in a type-specific manner in differentiated human neuroblastoma neuronal cultures, including specific genes involved in Alzheimer's disease. Sci Rep 2019; 9:18261. [PMID: 31797941 PMCID: PMC6892907 DOI: 10.1038/s41598-019-54076-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/08/2019] [Indexed: 02/08/2023] Open
Abstract
Lithium (Li) is a medication long-used to treat bipolar disorder. It is currently under investigation for multiple nervous system disorders, including Alzheimer's disease (AD). While perturbation of RNA levels by Li has been previously reported, its effects on the whole transcriptome has been given little attention. We, therefore, sought to determine comprehensive effects of Li treatment on RNA levels. We cultured and differentiated human neuroblastoma (SK-N-SH) cells to neuronal cells with all-trans retinoic acid (ATRA). We exposed cultures for one week to lithium chloride or distilled water, extracted total RNA, depleted ribosomal RNA and performed whole-transcriptome RT-sequencing. We analyzed results by RNA length and type. We further analyzed expression and protein interaction networks between selected Li-altered protein-coding RNAs and common AD-associated gene products. Lithium changed expression of RNAs in both non-specific (inverse to sequence length) and specific (according to RNA type) fashions. The non-coding small nucleolar RNAs (snoRNAs) were subject to the greatest length-adjusted Li influence. When RNA length effects were taken into account, microRNAs as a group were significantly less likely to have had levels altered by Li treatment. Notably, several Li-influenced protein-coding RNAs were co-expressed or produced proteins that interacted with several common AD-associated genes and proteins. Lithium's modification of RNA levels depends on both RNA length and type. Li activity on snoRNA levels may pertain to bipolar disorders while Li modification of protein coding RNAs may be relevant to AD.
Collapse
|
15
|
Gu Z, Li W, Doughty J, Meng D, Yang Q, Yuan H, Li Y, Chen Q, Yu J, Liu CS, Li T. A gamma-thionin protein from apple, MdD1, is required for defence against S-RNase-induced inhibition of pollen tube prior to self/non-self recognition. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:2184-2198. [PMID: 31001872 PMCID: PMC6790362 DOI: 10.1111/pbi.13131] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/09/2019] [Accepted: 04/14/2019] [Indexed: 05/09/2023]
Abstract
Apple exhibits S-RNase-mediated self-incompatibility. Although the cytotoxic effect of S-RNase inside the self-pollen tube has been studied extensively, the underlying defence mechanism in pollen tube in Rosaceae remains unclear. On exposure to stylar S-RNase, plant defence responses are activated in the pollen tube; however, how these are regulated is currently poorly understood. Here, we show that entry of both self and non-self S-RNase into pollen tubes of apple (Malus domestica) stimulates jasmonic acid (JA) production, in turn inducing the accumulation of MdMYC2 transcripts, a transcription factor in the JA signalling pathway widely considered to be involved in plant defence processes. MdMYC2 acts as a positive regulator in the pollen tube activating expression of MdD1, a gene encoding a defence protein. Importantly, MdD1 was shown to bind to the RNase activity sites of S-RNase leading to inhibition of enzymatic activity. This work provides intriguing insights into an ancient defence mechanism present in apple pollen tubes where MdD1 likely acts as a primary line of defence to inhibit S-RNase cytotoxicity prior to self/non-self recognition.
Collapse
Affiliation(s)
- Zhaoyu Gu
- Laboratory of Fruit Cell and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Wei Li
- Laboratory of Fruit Cell and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - James Doughty
- Department of Biology and BiochemistryUniversity of BathBathUK
| | - Dong Meng
- Laboratory of Fruit Cell and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Qing Yang
- Laboratory of Fruit Cell and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Hui Yuan
- Laboratory of Fruit Cell and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Yang Li
- Laboratory of Fruit Cell and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Qiuju Chen
- Laboratory of Fruit Cell and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Jie Yu
- Laboratory of Fruit Cell and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Chun sheng Liu
- Laboratory of Fruit Cell and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Tianzhong Li
- Laboratory of Fruit Cell and Molecular BreedingChina Agricultural UniversityBeijingChina
| |
Collapse
|
16
|
Carter CJ. Autism genes and the leukocyte transcriptome in autistic toddlers relate to pathogen interactomes, infection and the immune system. A role for excess neurotrophic sAPPα and reduced antimicrobial Aβ. Neurochem Int 2019; 126:36-58. [PMID: 30862493 DOI: 10.1016/j.neuint.2019.03.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/22/2019] [Accepted: 03/06/2019] [Indexed: 12/20/2022]
Abstract
Prenatal and early childhood infections have been implicated in autism. Many autism susceptibility genes (206 Autworks genes) are localised in the immune system and are related to immune/infection pathways. They are enriched in the host/pathogen interactomes of 18 separate microbes (bacteria/viruses and fungi) and to the genes regulated by bacterial toxins, mycotoxins and Toll-like receptor ligands. This enrichment was also observed for misregulated genes from a microarray study of leukocytes from autistic toddlers. The upregulated genes from this leukocyte study also matched the expression profiles in response to numerous infectious agents from the Broad Institute molecular signatures database. They also matched genes related to sudden infant death syndrome and autism comorbid conditions (autoimmune disease, systemic lupus erythematosus, diabetes, epilepsy and cardiomyopathy) as well as to estrogen and thyrotropin responses and to those upregulated by different types of stressors including oxidative stress, hypoxia, endoplasmic reticulum stress, ultraviolet radiation or 2,4-dinitrofluorobenzene, a hapten used to develop allergic skin reactions in animal models. The oxidative/integrated stress response is also upregulated in the autism brain and may contribute to myelination problems. There was also a marked similarity between the expression signatures of autism and Alzheimer's disease, and 44 shared autism/Alzheimer's disease genes are almost exclusively expressed in the blood-brain barrier. However, in contrast to Alzheimer's disease, levels of the antimicrobial peptide beta-amyloid are decreased and the levels of the neurotrophic/myelinotrophic soluble APP alpha are increased in autism, together with an increased activity of α-secretase. sAPPα induces an increase in glutamatergic and a decrease in GABA-ergic synapses creating and excitatory/inhibitory imbalance that has also been observed in autism. A literature survey showed that multiple autism genes converge on APP processing and that many are able to increase sAPPalpha at the expense of beta-amyloid production. A genetically programmed tilt of this axis towards an overproduction of neurotrophic/gliotrophic sAPPalpha and underproduction of antimicrobial beta-amyloid may explain the brain overgrowth and myelination dysfunction, as well as the involvement of pathogens in autism.
Collapse
Affiliation(s)
- C J Carter
- PolygenicPathways, 41C Marina, Saint Leonard's on Sea, TN38 0BU, East Sussex, UK.
| |
Collapse
|
17
|
Li W, Meng D, Gu Z, Yang Q, Yuan H, Li Y, Chen Q, Yu J, Liu C, Li T. Apple S-RNase triggers inhibition of tRNA aminoacylation by interacting with a soluble inorganic pyrophosphatase in growing self-pollen tubes in vitro. THE NEW PHYTOLOGIST 2018; 218:579-593. [PMID: 29424440 DOI: 10.1111/nph.15028] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 01/04/2018] [Indexed: 05/21/2023]
Abstract
Apple exhibits S-RNase-based self-incompatibility (SI), in which S-RNase plays a central role in rejecting self-pollen. It has been proposed that the arrest of pollen growth in SI of Solanaceae plants is a consequence of the degradation of pollen rRNA by S-RNase; however, the underlying mechanism in Rosaceae is still unclear. Here, we used S2 -RNase as a bait to screen an apple pollen cDNA library and characterized an apple soluble inorganic pyrophosphatase (MdPPa) that physically interacted with S-RNases. When treated with self S-RNases, apple pollen tubes showed a marked growth inhibition, as well as a decrease in endogenous soluble pyrophosphatase activity and elevated levels of inorganic pyrophosphate (PPi). In addition, S-RNase was found to bind to two variable regions of MdPPa, resulting in a noncompetitive inhibition of its activity. Silencing of MdPPa expression led to a reduction in pollen tube growth. Interestingly, tRNA aminoacylation was inhibited in self S-RNase-treated or MdPPa-silenced pollen tubes, resulting in the accumulation of uncharged tRNA. Furthermore, we provide evidence showing that this disturbance of tRNA aminoacylation is independent of RNase activity. We propose an alternative mechanism differing from RNA degradation to explain the cytotoxicity of the S-RNase apple SI process.
Collapse
Affiliation(s)
- Wei Li
- Laboratory of Fruit Cell and Molecular Breeding, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Dong Meng
- Laboratory of Fruit Cell and Molecular Breeding, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zhaoyu Gu
- Laboratory of Fruit Cell and Molecular Breeding, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Qing Yang
- Laboratory of Fruit Cell and Molecular Breeding, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Hui Yuan
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yang Li
- Laboratory of Fruit Cell and Molecular Breeding, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Qiuju Chen
- Laboratory of Fruit Cell and Molecular Breeding, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Jie Yu
- Laboratory of Fruit Cell and Molecular Breeding, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Chunsheng Liu
- Laboratory of Fruit Cell and Molecular Breeding, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Tianzhong Li
- Laboratory of Fruit Cell and Molecular Breeding, College of Horticulture, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
18
|
Becker RE, Kapogiannis D, Greig NH. Does traumatic brain injury hold the key to the Alzheimer's disease puzzle? Alzheimers Dement 2018; 14:431-443. [PMID: 29245000 PMCID: PMC5958613 DOI: 10.1016/j.jalz.2017.11.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/10/2017] [Accepted: 11/14/2017] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Neurodegenerative disorders have been a graveyard for hundreds of well-intentioned efforts at drug discovery and development. Concussion and other traumatic brain injuries (TBIs) and Alzheimer's disease (AD) share many overlapping pathologies and possible clinical links. METHODS We searched the literature since 1995 using MEDLINE and Google Scholar for the terms concussion, AD, and shared neuropathologies. We also studied a TBI animal model as a supplement to transgenic (Tg) mouse AD models for evaluating AD drug efficacy by preventing neuronal losses. To evaluate TBI/AD pathologies and neuronal self-induced cell death (apoptosis), we are studying brain extracellular vesicles in plasma and (-)-phenserine pharmacology to probe, in animal models of AD and humans, apoptosis and pathways common to concussion and AD. RESULTS Neuronal cell death and a diverse and significant pathological cascade follow TBIs. Many of the developing pathologies are present in early AD. The use of an animal model of concussion as a supplement to Tg mice provides an indication of an AD drug candidate's potential for preventing apoptosis and resulting progression toward dementia in AD. This weight drop supplementation to Tg mouse models, the experimental drug (-)-phenserine, and plasma-derived extracellular vesicles enriched for neuronal origin to follow biomarkers of neurodegenerative processes, each and in combination, show promise as tools useful for probing the progression of disease in AD, TBI/AD pathologies, apoptosis, and drug effects on rates of apoptosis both preclinically and in humans. (-)-Phenserine both countered many subacute post-TBI pathologies that could initiate clinical AD and, in the concussion and other animal models, showed evidence consistent with direct inhibition of neuronal preprogrammed cell death in the presence of TBI/AD pathologies. DISCUSSION These findings may provide support for expanding preclinical Tg mouse studies in AD with a TBI weight drop model, insights into the progression of pathological targets, their relations to apoptosis, and timing of interventions against these targets and apoptosis. Such studies may demonstrate the potential for drugs to effectively and safely inhibit preprogrammed cell death as a new drug development strategy for use in the fight to defeat AD.
Collapse
Affiliation(s)
- Robert E Becker
- Aristea Translational Medicine Corporation, Park City, UT, USA; Drug Design and Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, Baltimore, MD, USA.
| | - Dimitrios Kapogiannis
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, Baltimore, MD, USA
| | - Nigel H Greig
- Drug Design and Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, Baltimore, MD, USA.
| |
Collapse
|
19
|
Role of Amyloid Precursor Protein (APP) and Its Derivatives in the Biology and Cell Fate Specification of Neural Stem Cells. Mol Neurobiol 2018; 55:7107-7117. [DOI: 10.1007/s12035-018-0914-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/18/2018] [Indexed: 01/31/2023]
|
20
|
Kashima R, Hata A. The role of TGF-β superfamily signaling in neurological disorders. Acta Biochim Biophys Sin (Shanghai) 2018; 50:106-120. [PMID: 29190314 PMCID: PMC5846707 DOI: 10.1093/abbs/gmx124] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/02/2017] [Indexed: 12/12/2022] Open
Abstract
The TGF-β superfamily signaling is involved in a variety of biological processes during embryogenesis and in adult tissue homeostasis. Faulty regulation of the signaling pathway that transduces the TGF-β superfamily signals accordingly leads to a number of ailments, such as cancer and cardiovascular, metabolic, urinary, intestinal, skeletal, and immune diseases. In recent years, a number of studies have elucidated the essential roles of TGF-βs and BMPs during neuronal development in the maintenance of appropriate innervation and neuronal activity. The new advancement implicates significant roles of the aberrant TGF-β superfamily signaling in the pathogenesis of neurological disorders. In this review, we compile a number of reports implicating the deregulation of TGF-β/BMP signaling pathways in the pathogenesis of cognitive and neurodegenerative disorders in animal models and patients. We apologize in advance that the review falls short of providing details of the role of TGF-β/BMP signaling or mechanisms underlying the pathogenesis of neurological disorders. The goal of this article is to reveal a gap in our knowledge regarding the association between TGF-β/BMP signaling pathways and neuronal tissue homeostasis and development and facilitate the research with a potential to develop new therapies for neurological ailments by modulating the pathways.
Collapse
Affiliation(s)
- Risa Kashima
- Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA
| | - Akiko Hata
- Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
21
|
Calpe S, Correia ACP, Sancho-Serra MDC, Krishnadath KK. Comparison of newly developed anti-bone morphogenetic protein 4 llama-derived antibodies with commercially available BMP4 inhibitors. MAbs 2017; 8:678-88. [PMID: 26967714 PMCID: PMC4966848 DOI: 10.1080/19420862.2016.1158380] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Due to improved understanding of the role of bone morphogenetic protein 4 (BMP4) in an increasing number of diseases, the development of selective inhibitors of BMP4 is an attractive therapeutic option. The currently available BMP4 inhibitors are not suitable as therapeutics because of their low specificity and low effectiveness. Here, we compared newly generated anti-BMP4 llama-derived antibodies (VHHs) with 3 different types of commercially available BMP4 inhibitors, natural antagonists, small molecule BMPR inhibitors and conventional anti-BMP4 monoclonal antibodies. We found that the anti-BMP4 VHHs were as effective as the natural antagonist or small molecule inhibitors, but had higher specificity. We also showed that commercial anti-BMP4 antibodies were inferior in terms of both specificity and effectiveness. These findings might result from the fact that the VHHs C4C4 and C8C8 target a small region within the BMPR1 epitope of BMP4, whereas the commercial antibodies target other areas of the BMP4 molecule. Our results show that the newly developed anti-BMP4 VHHs are promising antibodies with better specificity and effectivity for inhibition of BMP4, making them an attractive tool for research and for therapeutic applications.
Collapse
Affiliation(s)
- Silvia Calpe
- a Center for Experimental & Molecular Medicine , Academic Medical Center , Meibergdreef , Amsterdam , The Netherlands
| | - Ana C P Correia
- a Center for Experimental & Molecular Medicine , Academic Medical Center , Meibergdreef , Amsterdam , The Netherlands
| | - Maria Del Carmen Sancho-Serra
- a Center for Experimental & Molecular Medicine , Academic Medical Center , Meibergdreef , Amsterdam , The Netherlands
| | - Kausilia K Krishnadath
- a Center for Experimental & Molecular Medicine , Academic Medical Center , Meibergdreef , Amsterdam , The Netherlands.,b Department of Gastroenterology & Hepatology , Academic Medical Center , Meibergdreef, Amsterdam , The Netherlands
| |
Collapse
|
22
|
A Survey of Strategies to Modulate the Bone Morphogenetic Protein Signaling Pathway: Current and Future Perspectives. Stem Cells Int 2016; 2016:7290686. [PMID: 27433166 PMCID: PMC4940573 DOI: 10.1155/2016/7290686] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/24/2016] [Indexed: 12/14/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) constitute the largest subdivision of the TGF-β family of ligands and are unequivocally involved in regulating stem cell behavior. Appropriate regulation of canonical BMP signaling is critical for the development and homeostasis of numerous human organ systems, as aberrations in the BMP pathway or its regulation are increasingly associated with diverse human pathologies. In this review, we provide a wide-perspective on strategies that increase or decrease BMP signaling. We briefly outline the current FDA-approved approaches, highlight emerging next-generation technologies, and postulate prospective avenues for future investigation. We also detail how activating other pathways may indirectly modulate BMP signaling, with a particular emphasis on the relationship between the BMP and Activin/TGF-β pathways.
Collapse
|
23
|
Chu C, Deng J, Liu L, Cao Y, Wei X, Li J, Man Y. Nanoparticles combined with growth factors: recent progress and applications. RSC Adv 2016. [DOI: 10.1039/c6ra13636b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Increasing attention has been focused on the applications of nanoparticles combined with growth factors (NPs/GFs) due to the substantial functions of GFs in regenerative medicine and disease treatments.
Collapse
Affiliation(s)
- Chenyu Chu
- State Key Laboratory of Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
- China
| | - Jia Deng
- State Key Laboratory of Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
- China
| | - Li Liu
- State Key Laboratory of Biotherapy and Laboratory for Aging Research
- West China Hospital
- Sichuan University and Collaborative Innovation Center for Biotherapy
- Chengdu
- China
| | - Yubin Cao
- State Key Laboratory of Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
- China
| | - Xiawei Wei
- State Key Laboratory of Biotherapy and Laboratory for Aging Research
- West China Hospital
- Sichuan University and Collaborative Innovation Center for Biotherapy
- Chengdu
- China
| | - Jidong Li
- Research Center for Nano Biomaterials
- Analytical & Testing Center
- Sichuan University
- Chengdu 610041
- P. R. China
| | - Yi Man
- State Key Laboratory of Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
- China
| |
Collapse
|
24
|
Camargo LM, Zhang XD, Loerch P, Caceres RM, Marine SD, Uva P, Ferrer M, de Rinaldis E, Stone DJ, Majercak J, Ray WJ, Yi-An C, Shearman MS, Mizuguchi K. Pathway-based analysis of genome-wide siRNA screens reveals the regulatory landscape of APP processing. PLoS One 2015; 10:e0115369. [PMID: 25723573 PMCID: PMC4344212 DOI: 10.1371/journal.pone.0115369] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 11/14/2014] [Indexed: 01/08/2023] Open
Abstract
The progressive aggregation of Amyloid-β (Aβ) in the brain is a major trait of Alzheimer's Disease (AD). Aβ is produced as a result of proteolytic processing of the β-amyloid precursor protein (APP). Processing of APP is mediated by multiple enzymes, resulting in the production of distinct peptide products: the non-amyloidogenic peptide sAPPα and the amyloidogenic peptides sAPPβ, Aβ40, and Aβ42. Using a pathway-based approach, we analyzed a large-scale siRNA screen that measured the production of different APP proteolytic products. Our analysis identified many of the biological processes/pathways that are known to regulate APP processing and have been implicated in AD pathogenesis, as well as revealing novel regulatory mechanisms. Furthermore, we also demonstrate that some of these processes differentially regulate APP processing, with some mechanisms favouring production of certain peptide species over others. For example, synaptic transmission having a bias towards regulating Aβ40 production over Aβ42 as well as processes involved in insulin and pancreatic biology having a bias for sAPPβ production over sAPPα. In addition, some of the pathways identified as regulators of APP processing contain genes (CLU, BIN1, CR1, PICALM, TREM2, SORL1, MEF2C, DSG2, EPH1A) recently implicated with AD through genome wide association studies (GWAS) and associated meta-analysis. In addition, we provide supporting evidence and a deeper mechanistic understanding of the role of diabetes in AD. The identification of these processes/pathways, their differential impact on APP processing, and their relationships to each other, provide a comprehensive systems biology view of the “regulatory landscape” of APP.
Collapse
Affiliation(s)
- Luiz Miguel Camargo
- Merck Research Laboratories, Merck & Co, Boston, United States of America
- * E-mail:
| | | | - Patrick Loerch
- Merck Research Laboratories, Merck & Co, Boston, United States of America
| | | | - Shane D. Marine
- Merck Research Laboratories, Merck & Co, North Wales, United States of America
| | - Paolo Uva
- Merck Research Laboratories, Instituto di Recerca di Biologia Molecolare, Pomezia, Italy
| | - Marc Ferrer
- Merck Research Laboratories, Merck & Co, North Wales, United States of America
| | - Emanuele de Rinaldis
- Merck Research Laboratories, Instituto di Recerca di Biologia Molecolare, Pomezia, Italy
| | - David J. Stone
- Merck Research Laboratories, Merck & Co, West Point, United States of America
| | - John Majercak
- Merck Research Laboratories, Merck & Co, West Point, United States of America
| | - William J. Ray
- Merck Research Laboratories, Merck & Co, West Point, United States of America
| | - Chen Yi-An
- National Institute of Biomedical Innovation, Osaka, Japan
| | - Mark S. Shearman
- Merck Research Laboratories, Merck & Co, Boston, United States of America
| | | |
Collapse
|