1
|
Wang J, Shao F, Yu QX, Ye L, Wusiman D, Wu R, Tuo Z, Wang Z, Li D, Cho WC, Wei W, Feng D. The Common Hallmarks and Interconnected Pathways of Aging, Circadian Rhythms, and Cancer: Implications for Therapeutic Strategies. RESEARCH (WASHINGTON, D.C.) 2025; 8:0612. [PMID: 40046513 PMCID: PMC11880593 DOI: 10.34133/research.0612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/14/2025] [Accepted: 01/24/2025] [Indexed: 03/17/2025]
Abstract
The intricate relationship between cancer, circadian rhythms, and aging is increasingly recognized as a critical factor in understanding the mechanisms underlying tumorigenesis and cancer progression. Aging is a well-established primary risk factor for cancer, while disruptions in circadian rhythms are intricately associated with the tumorigenesis and progression of various tumors. Moreover, aging itself disrupts circadian rhythms, leading to physiological changes that may accelerate cancer development. Despite these connections, the specific interplay between these processes and their collective impact on cancer remains inadequately explored in the literature. In this review, we systematically explore the physiological mechanisms of circadian rhythms and their influence on cancer development. We discuss how core circadian genes impact tumor risk and prognosis, highlighting the shared hallmarks of cancer and aging such as genomic instability, cellular senescence, and chronic inflammation. Furthermore, we examine the interplay between circadian rhythms and aging, focusing on how this crosstalk contributes to tumorigenesis, tumor proliferation, and apoptosis, as well as the impact on cellular metabolism and genomic stability. By elucidating the common pathways linking aging, circadian rhythms, and cancer, this review provides new insights into the pathophysiology of cancer and identifies potential therapeutic strategies. We propose that targeting the circadian regulation of cancer hallmarks could pave the way for novel treatments, including chronotherapy and antiaging interventions, which may offer important benefits in the clinical management of cancer.
Collapse
Affiliation(s)
- Jie Wang
- Department of Urology, Institute of Urology, West China Hospital,
Sichuan University, Chengdu 610041, China
| | - Fanglin Shao
- Department of Rehabilitation,
The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Qing Xin Yu
- Department of Pathology,
Ningbo Clinical Pathology Diagnosis Center, Ningbo, Zhejiang 315211, China
- Department of Pathology,
Ningbo Medical Centre Lihuili Hospital, Ningbo, Zhejiang 315040, China
| | - Luxia Ye
- Department of Public Research Platform,
Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Dilinaer Wusiman
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN 47906, USA
| | - Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital,
Sichuan University, Chengdu 610041, China
| | - Zhouting Tuo
- Department of Urological Surgery, Daping Hospital, Army Medical Center of PLA,
Army Medical University, Chongqing, China
| | - Zhipeng Wang
- Department of Urology, Sichuan Provincial People’s Hospital,
University of Electronic Science and Technology of China, Chengdu, China
| | - Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital,
Sichuan University, Chengdu 610041, China
| | - William C. Cho
- Department of Clinical Oncology,
Queen Elizabeth Hospital, Hong Kong SAR, China
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital,
Sichuan University, Chengdu 610041, China
| | - Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital,
Sichuan University, Chengdu 610041, China
- Division of Surgery and Interventional Science,
University College London, London W1W 7TS, UK
| |
Collapse
|
2
|
Korleski J, Sudhir S, Rui Y, Caputo CA, Sall S, Johnson AL, Khela HS, Madhvacharyula T, Rasamsetty A, Li Y, Lal B, Zhou W, Smith-Connor K, Tzeng SY, Green JJ, Laterra J, Lopez-Bertoni H. miR-217-5p NanomiRs Inhibit Glioblastoma Growth and Enhance Effects of Ionizing Radiation via EZH2 Inhibition and Epigenetic Reprogramming. Cancers (Basel) 2024; 17:80. [PMID: 39796709 PMCID: PMC11719642 DOI: 10.3390/cancers17010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/15/2024] [Accepted: 12/19/2024] [Indexed: 01/13/2025] Open
Abstract
Background/Objectives: CSCs are critical drivers of the tumor and stem cell phenotypes of glioblastoma (GBM) cells. Chromatin modifications play a fundamental role in driving a GBM CSC phenotype. The goal of this study is to further our understanding of how stem cell-driving events control changes in chromatin architecture that contribute to the tumor-propagating phenotype of GBM. Methods: We utilized computational analyses to identify a subset of clinically relevant genes that were predicted to be repressed in a Polycomb repressive complex 2 (PRC2)-dependent manner in GBM upon induction of stem cell-driving events. These associations were validated in patient-derived GBM neurosphere models using state-of-the-art molecular techniques to express, silence, and measure microRNA (miRNA) and gene expression changes. Advanced Poly(β-amino ester) nanoparticle formulations (PBAEs) were used to deliver miRNAs in vivo to orthotopic human GBM tumor models. Results: We show that glioma stem cell (GSC) formation and tumor propagation involve the crosstalk between multiple epigenetic mechanisms, resulting in the repression of the miRNAs that regulate PRC2 function and histone H3 lysine 27 tri-methylation (H3K27me3). We also identified miR-217-5p as an EZH2 regulator repressed in GSCs and showed that miR-217-5p reconstitution using advanced nanoparticle formulations re-activates the PRC2-repressed genes, inhibits GSC formation, impairs tumor growth, and enhances the effects of ionizing radiation in an orthotopic model of GBM. Conclusions: These findings suggest that inhibiting PRC2 function by targeting EZH2 with miR-217-5p advanced nanoparticle formulations could have a therapeutic benefit in GBM.
Collapse
Affiliation(s)
- Jack Korleski
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA (S.S.); (T.M.); (Y.L.)
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Sweta Sudhir
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA (S.S.); (T.M.); (Y.L.)
| | - Yuan Rui
- Department of Biomedical Engineering, Institute for NanoBioTechnology, Baltimore, MD 21205, USA (S.Y.T.)
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Christopher A. Caputo
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA (S.S.); (T.M.); (Y.L.)
| | - Sophie Sall
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA (S.S.); (T.M.); (Y.L.)
| | - Amanda L. Johnson
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA (S.S.); (T.M.); (Y.L.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Harmon S. Khela
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA (S.S.); (T.M.); (Y.L.)
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Tanmaya Madhvacharyula
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA (S.S.); (T.M.); (Y.L.)
| | - Anisha Rasamsetty
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA (S.S.); (T.M.); (Y.L.)
| | - Yunqing Li
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA (S.S.); (T.M.); (Y.L.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Bachchu Lal
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA (S.S.); (T.M.); (Y.L.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Weiqiang Zhou
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA;
| | - Karen Smith-Connor
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA (S.S.); (T.M.); (Y.L.)
| | - Stephany Y. Tzeng
- Department of Biomedical Engineering, Institute for NanoBioTechnology, Baltimore, MD 21205, USA (S.Y.T.)
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jordan J. Green
- Department of Biomedical Engineering, Institute for NanoBioTechnology, Baltimore, MD 21205, USA (S.Y.T.)
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Materials Science & Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA
| | - John Laterra
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA (S.S.); (T.M.); (Y.L.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hernando Lopez-Bertoni
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA (S.S.); (T.M.); (Y.L.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA
| |
Collapse
|
3
|
Murgo E, Colangelo T, Bellet MM, Malatesta F, Mazzoccoli G. Role of the Circadian Gas-Responsive Hemeprotein NPAS2 in Physiology and Pathology. BIOLOGY 2023; 12:1354. [PMID: 37887064 PMCID: PMC10603908 DOI: 10.3390/biology12101354] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/14/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023]
Abstract
Neuronal PAS domain protein 2 (NPAS2) is a hemeprotein comprising a basic helix-loop-helix domain (bHLH) and two heme-binding sites, the PAS-A and PAS-B domains. This protein acts as a pyridine nucleotide-dependent and gas-responsive CO-dependent transcription factor and is encoded by a gene whose expression fluctuates with circadian rhythmicity. NPAS2 is a core cog of the molecular clockwork and plays a regulatory role on metabolic pathways, is important for the function of the central nervous system in mammals, and is involved in carcinogenesis as well as in normal biological functions and processes, such as cardiovascular function and wound healing. We reviewed the scientific literature addressing the various facets of NPAS2 and framing this gene/protein in several and very different research and clinical fields.
Collapse
Affiliation(s)
- Emanuele Murgo
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy;
| | - Tommaso Colangelo
- Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto 1, 71100 Foggia, Italy;
- Cancer Cell Signaling Unit, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy
| | - Maria Marina Bellet
- Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, 06132 Perugia, Italy;
| | - Francesco Malatesta
- Department of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Gianluigi Mazzoccoli
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy;
| |
Collapse
|
4
|
Mokhtari K, Peymani M, Rashidi M, Hushmandi K, Ghaedi K, Taheriazam A, Hashemi M. Colon cancer transcriptome. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 180-181:49-82. [PMID: 37059270 DOI: 10.1016/j.pbiomolbio.2023.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
Over the last four decades, methodological innovations have continuously changed transcriptome profiling. It is now feasible to sequence and quantify the transcriptional outputs of individual cells or thousands of samples using RNA sequencing (RNA-seq). These transcriptomes serve as a connection between cellular behaviors and their underlying molecular mechanisms, such as mutations. This relationship, in the context of cancer, provides a chance to unravel tumor complexity and heterogeneity and uncover novel biomarkers or treatment options. Since colon cancer is one of the most frequent malignancies, its prognosis and diagnosis seem to be critical. The transcriptome technology is developing for an earlier and more accurate diagnosis of cancer which can provide better protectivity and prognostic utility to medical teams and patients. A transcriptome is a whole set of expressed coding and non-coding RNAs in an individual or cell population. The cancer transcriptome includes RNA-based changes. The combined genome and transcriptome of a patient may provide a comprehensive picture of their cancer, and this information is beginning to affect treatment decision-making in real-time. A full assessment of the transcriptome of colon (colorectal) cancer has been assessed in this review paper based on risk factors such as age, obesity, gender, alcohol use, race, and also different stages of cancer, as well as non-coding RNAs like circRNAs, miRNAs, lncRNAs, and siRNAs. Similarly, they have been examined independently in the transcriptome study of colon cancer.
Collapse
Affiliation(s)
- Khatere Mokhtari
- Department of Modern Biology, ACECR Institute of Higher Education (Isfahan Branch), Isfahan, Iran
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
5
|
Zhu WZ, He QY, Feng DC, Wei Q, Yang L. Circadian rhythm in prostate cancer: time to take notice of the clock. Asian J Androl 2023; 25:184-191. [PMID: 36073562 PMCID: PMC10069698 DOI: 10.4103/aja202255] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The circadian clock is an evolutionary molecular product that is associated with better adaptation to changes in the external environment. Disruption of the circadian rhythm plays a critical role in tumorigenesis of many kinds of cancers, including prostate cancer (PCa). Integrating circadian rhythm into PCa research not only brings a closer understanding of the mechanisms of PCa but also provides new and effective options for the precise treatment of patients with PCa. This review begins with patterns of the circadian clock, highlights the role of the disruption of circadian rhythms in PCa at the epidemiological and molecular levels, and discusses possible new approaches to PCa therapy that target the circadian clock.
Collapse
Affiliation(s)
- Wei-Zhen Zhu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qi-Ying He
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - De-Chao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiang Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lu Yang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Santoni M, Molina-Cerrillo J, Santoni G, Lam ET, Massari F, Mollica V, Mazzaschi G, Rapoport BL, Grande E, Buti S. Role of Clock Genes and Circadian Rhythm in Renal Cell Carcinoma: Recent Evidence and Therapeutic Consequences. Cancers (Basel) 2023; 15:cancers15020408. [PMID: 36672355 PMCID: PMC9856936 DOI: 10.3390/cancers15020408] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Circadian rhythm regulates cellular differentiation and physiology and shapes the immune response. Altered expression of clock genes might lead to the onset of common malignant cancers, including Renal Cell Carcinoma (RCC). Data from Cancer Genome Atlas (TCGA) indicate that clock genes PER1-3, CRY2, CLOCK, NR1D2 and RORα are overexpressed in RCC tissues and correlate with patients' prognosis. The expression of clock genes could finely tune transcription factor activity in RCC and is associated with the extent of immune cell infiltration. The clock system interacts with hypoxia-induced factor-1α (HIF-1α) and regulates the circadian oscillation of mammalian target of rapamycin (mTOR) activity thereby conditioning the antitumor effect of mTOR inhibitors. The stimulation of natural killer (NK) cell activity exerted by the administration of interferon-α, a cornerstone of the first era of immunotherapy for RCC, relevantly varies according to circadian dosing time. Recent evidence demonstrated that time-of-day infusion directly affects the efficacy of immune checkpoint inhibitors in cancer patients. Compounds targeting the circadian clock have been identified and their role in the era of immunotherapy deserves to be further investigated. In this review, we aimed at addressing the impact of clock genes on the natural history of kidney cancer and their potential therapeutic implications.
Collapse
Affiliation(s)
- Matteo Santoni
- Oncology Unit, Macerata Hospital, Via Santa Lucia 2, 62100 Macerata, Italy
| | | | - Giorgio Santoni
- Scuola di Scienze del Farmaco e dei Prodotti della Salute, Università di Camerino, 62032 Camerino, Italy
| | - Elaine T. Lam
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Francesco Massari
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni-15, 40138 Bologna, Italy
| | - Veronica Mollica
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni-15, 40138 Bologna, Italy
| | - Giulia Mazzaschi
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
| | - Bernardo L. Rapoport
- The Medical Oncology Centre of Rosebank, 129 Oxford Road, Saxonwold, Johannesburg 2196, South Africa
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Corner Doctor Savage Road and Bophelo Road, Pretoria 0002, South Africa
| | - Enrique Grande
- Department of Medical Oncology, MD Anderson Cancer Center Madrid, 28033 Madrid, Spain
| | - Sebastiano Buti
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
- Correspondence: or ; Tel.: +39-0521-702314; Fax: +39-0521-995448
| |
Collapse
|
7
|
Niu Y, Tang S. Circadian clock-mediated nuclear receptors in cancer. J Cell Physiol 2022; 237:4428-4442. [PMID: 36250982 DOI: 10.1002/jcp.30905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/25/2022] [Accepted: 10/03/2022] [Indexed: 11/09/2022]
Abstract
Circadian system coordinates the daily periodicity of physiological and biochemical functions to adapt to environmental changes. Circadian disruption has been identified to increase the risk of cancer and promote cancer progression, but the underlying mechanism remains unclear. And further mechanistic understanding of the crosstalk between clock components and cancer is urgent to achieve clinical anticancer benefits from chronochemotherapy. Recent studies discover that several nuclear receptors regulating circadian clock, also play crucial roles in mediating multiple cancer processes. In this review, we aim to summarize the latest developments of clock-related nuclear receptors in cancer biology and dissect mechanistic insights into how nuclear receptors coordinate with circadian clock to regulate tumorigenesis and cancer treatment. A better understanding of circadian clock-related nuclear receptors in cancer could help prevent tumorigenesis and improve anticancer efficacy.
Collapse
Affiliation(s)
- Ya Niu
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Shuang Tang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| |
Collapse
|
8
|
Wang Q, Yu P, Liu C, He X, Wang G. Mitochondrial fragmentation in liver cancer: Emerging player and promising therapeutic opportunities. Cancer Lett 2022; 549:215912. [PMID: 36103914 DOI: 10.1016/j.canlet.2022.215912] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/24/2022] [Accepted: 09/06/2022] [Indexed: 11/02/2022]
Abstract
Hepatocellular carcinoma (HCC) is the leading cause of cancer-related death worldwide. Enhanced mitochondrial fragmentation (MF) is associated with poor prognosis in HCC patients. However, its molecular mechanism in HCC remains elusive. Although enhanced MF activates effector T cells and dendritic cells, it induces immunoescape by decreasing the number and cytotoxicity of natural killer cells in the HCC immune microenvironment. Therefore, the influence of MF on the activity of different immune cells is a great challenge. Enhanced MF contributes to maintaining stemness by promoting the asymmetric division of liver cancer stem cells (LCSCs), suggesting that MF may become a potential target for HCC recurrence, metastasis, and chemotherapy resistance. Moreover, mechanistic studies suggest that MF may promote tumour progression through autophagy, oxidative stress, and metabolic reprogramming. Human-induced hepatocyte organoids are a recently developed system that can be genetically manipulated to mimic cancer initiation and identify potential preventive treatments. We can use it to screen MF-related candidate inhibitors of HCC progression and further explore the role of MF in hepatocarcinogenesis. We herein describe the mechanisms by which MF contributes to HCC development, discuss potential therapeutic approaches, and highlight the possibility that MF modulation has a synergistic effect with immunotherapy.
Collapse
Affiliation(s)
- Qian Wang
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China.
| | - Pengfei Yu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, Shaanxi Province, China
| | - Chaoxu Liu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310006, China
| | - Xianli He
- Department of General Surgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Gang Wang
- Department of General Surgery, The 74th Group Army Hospital, Guangzhou, 510318, China.
| |
Collapse
|
9
|
Comprehensive Analysis of Phagocytosis-Related Regulators to Aid Prognostic Prediction and Immunotherapy in Patients with Low-Grade Glioma. DISEASE MARKERS 2022; 2022:4142684. [PMID: 35510040 PMCID: PMC9061072 DOI: 10.1155/2022/4142684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/14/2022] [Indexed: 11/18/2022]
Abstract
Antibody-dependent cellular phagocytosis- (ADCP-) related regulators (PRs) have been confirmed an important role in immunotherapy. However, the characterization of specific PRs in low-grade glioma (LGG) has not been comprehensively explored. In this study, we retrieved RNA-seq and CRISPR-Cas9 data to identify specific PRs in LGG patients and constructed a PRs-signature using the LASSO-Cox algorithm. The ROC analysis and Kaplan-Meier analysis showed that PRs-signature had a good predictive effect, and the multivariate Cox regression analysis showed that PRs-risk scores were independent prognostic factors correlated with overall survival (OS). In addition, CIBERSORT, ssGSEA, and MCP counter algorithms were used to explore immune cell content in different risk groups, especially in the correlation between macrophages and specific PRs. Finally, mRNA expression was upregulated in the high-risk group compared with the low-risk group at most immune checkpoints and proinflammatory factors. In conclusion, we constructed a prediction model for prognostic management and revealed the cross-talk between specific PRs and immunotherapy in LGG patients.
Collapse
|
10
|
Malik S, Stokes Iii J, Manne U, Singh R, Mishra MK. Understanding the significance of biological clock and its impact on cancer incidence. Cancer Lett 2022; 527:80-94. [PMID: 34906624 PMCID: PMC8816870 DOI: 10.1016/j.canlet.2021.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022]
Abstract
The circadian clock is an essential timekeeper that controls, for humans, the daily rhythm of biochemical, physiological, and behavioral functions. Irregular performance or disruption in circadian rhythms results in various diseases, including cancer. As a factor in cancer development, perturbations in circadian rhythms can affect circadian homeostasis in energy balance, lead to alterations in the cell cycle, and cause dysregulation of chromatin remodeling. However, knowledge gaps remain in our understanding of the relationship between the circadian clock and cancer. Therefore, a mechanistic understanding by which circadian disruption enhances cancer risk is needed. This review article outlines the importance of the circadian clock in tumorigenesis and summarizes underlying mechanisms in the clock and its carcinogenic mechanisms, highlighting advances in chronotherapy for cancer treatment.
Collapse
Affiliation(s)
- Shalie Malik
- Cancer Biology Research and Training, Department of Biological Sciences, Alabama State University, Montgomery, AL, USA; Department of Zoology and Dr. Giri Lal Gupta Institute of Public Health and Public Affairs, University of Lucknow, Lucknow, UP, India
| | - James Stokes Iii
- Department of Biological and Environmental Sciences, Auburn University, Montgomery, AL, USA
| | - Upender Manne
- Departments of Pathology, Surgery and Epidemiology, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rajesh Singh
- Department of Microbiology, Biochemistry, and Immunology, Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA, USA
| | - Manoj K Mishra
- Cancer Biology Research and Training, Department of Biological Sciences, Alabama State University, Montgomery, AL, USA.
| |
Collapse
|
11
|
Zheng X, Lv X, Zhu L, Xu K, Shi C, Cui L, Ding H. The Circadian Gene NPAS2 Act as a Putative Tumor Stimulative Factor for Uterine Corpus Endometrial Carcinoma. Cancer Manag Res 2022; 13:9329-9343. [PMID: 34992456 PMCID: PMC8711112 DOI: 10.2147/cmar.s343097] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/08/2021] [Indexed: 12/26/2022] Open
Abstract
Background Mounting evidence indicates altered circadian rhythm represents a critical factor affecting carcinogenesis and tumor progression. The circadian gene neuronal PAS domain protein 2 (NPAS2) constitutes a newly discovered prognostic biomarker. NPAS2 dysregulation is found in multiple malignancies, although its functions in uterine corpus endometrial carcinoma (UCEC) remain largely unknown. Objective To evaluate NPAS2’s roles in UCEC and to explore the underlying mechanisms. Methods NPAS2 transcription levels, patient prognosis, different clinical stages and target microRNAs in UCEC cases were comparatively assessed based on public databases, including UALCAN, GEPIA, TIMER, Kaplan–Meier plotter, starBase database, LinkedOmics and String. Then, qRT-PCR and immunohistochemical analysis were applied to analyze the expression of NPAS2 in UCEC tissue samples. CCK-8, clonogenic assay and flow cytometry were carried out for detecting cell viability, colony formation ability and cell apoptosis, respectively. Results NPAS2 was upregulated in tissue samples from UCEC cases compared with the corresponding control specimens. NPAS2 overexpression was associated with decreased overall (OS), disease free (DFS) and relapse free (RFS) survival in UCEC. In addition, NPAS2 overexpression was associated with clinical stage, tumor grade, estrogen receptor status, myometrial invasion in UCEC. Furthermore, NPAS2 knockdown or overexpression altered cell proliferation and apoptosis in UCEC. Moreover, NPAS2 showed significant negative correlations with miR-17-5p and miR-93-5p, and positive correlations with miR-106a-5p and miR-381-3p in UCEC. Conclusion NPAS2 overexpression is associated with poor prognosis and clinicopathological characteristics in UCEC and promotes proliferation and colony formation while inhibiting apoptosis. Finally, NPAS2 is associated with several miRNAs in UCEC.
Collapse
Affiliation(s)
- Xiaojiao Zheng
- Department of Obstetrics and Gynecology, Ningbo First Hospital, Ningbo, Zhejiang, 315035, People's Republic of China.,Department of Biochemistry & Genetics, The National Education Base for Basic Medical Sciences, Institute of Cell Biology, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang Province, People's Republic of China
| | - Xiuyi Lv
- Department of Obstetrics and Gynecology, Ningbo First Hospital, Ningbo, Zhejiang, 315035, People's Republic of China
| | - Linyan Zhu
- Department of Obstetrics and Gynecology, Ningbo First Hospital, Ningbo, Zhejiang, 315035, People's Republic of China
| | - Kejun Xu
- Department of Obstetrics and Gynecology, Ningbo First Hospital, Ningbo, Zhejiang, 315035, People's Republic of China
| | - Cong Shi
- Department of Obstetrics and Gynecology, Ningbo First Hospital, Ningbo, Zhejiang, 315035, People's Republic of China
| | - Lining Cui
- Department of Obstetrics and Gynecology, Ningbo First Hospital, Ningbo, Zhejiang, 315035, People's Republic of China
| | - Huiqing Ding
- Department of Obstetrics and Gynecology, Ningbo First Hospital, Ningbo, Zhejiang, 315035, People's Republic of China
| |
Collapse
|
12
|
Peng LU, Bai G, Pang Y. Roles of NPAS2 in circadian rhythm and disease. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1257-1265. [PMID: 34415290 DOI: 10.1093/abbs/gmab105] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Indexed: 11/14/2022] Open
Abstract
NPAS2, a circadian rhythm gene encoding the neuronal PAS domain protein 2 (NPAS2), has received widespread attention because of its complex functions in cells and diverse roles in disease progression, especially tumorigenesis. NPAS2 binds with DNA at E-box sequences and forms heterodimers with another circadian protein, brain and muscle ARNT-like protein 1 (BMAL1). Nucleotide variations of the NPAS2 gene have been shown to influence the overall survival and risk of death of cancer patients, and differential expression of NPAS2 has been linked to patient outcomes in breast cancer, lung cancer, non-Hodgkin's lymphoma, and other diseases. Here, we review the latest advances in our understanding of NPAS2 with the aim of drawing attention to its potential clinical applications and prospects.
Collapse
Affiliation(s)
- L u Peng
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Gaigai Bai
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Yingxin Pang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan 250012, China
| |
Collapse
|
13
|
Small Molecules Targeting Biological Clock; A Novel Prospective for Anti-Cancer Drugs. Molecules 2020; 25:molecules25214937. [PMID: 33114496 PMCID: PMC7663518 DOI: 10.3390/molecules25214937] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 12/11/2022] Open
Abstract
The circadian rhythms are an intrinsic timekeeping system that regulates numerous physiological, biochemical, and behavioral processes at intervals of approximately 24 h. By regulating such processes, the circadian rhythm allows organisms to anticipate and adapt to continuously changing environmental conditions. A growing body of evidence shows that disruptions to the circadian rhythm can lead to various disorders, including cancer. Recently, crucial knowledge has arisen regarding the essential features that underlie the overt circadian rhythm and its influence on physiological outputs. This knowledge suggests that specific small molecules can be utilized to control the circadian rhythm. It has been discovered that these small molecules can regulate circadian-clock-related disorders such as metabolic, cardiovascular, inflammatory, as well as cancer. This review examines the potential use of small molecules for developing new drugs, with emphasis placed on recent progress that has been made regarding the identification of small-molecule clock modulators and their potential use in treating cancer.
Collapse
|
14
|
Zhang J, Lv H, Ji M, Wang Z, Wu W. Low circadian clock genes expression in cancers: A meta-analysis of its association with clinicopathological features and prognosis. PLoS One 2020; 15:e0233508. [PMID: 32437452 PMCID: PMC7241715 DOI: 10.1371/journal.pone.0233508] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/06/2020] [Indexed: 02/06/2023] Open
Abstract
Background Per1, Per2, Per3, Cry1, Cry2, Bmal1, Npas2 and CLOCK genes are the eight core circadian clock genes. Low expression of these circadian clock genes plays an important role in the progression of cancers. However, its clinicopathological and prognostic value in patients with cancers remains controversial and inconclusive. We performed a meta-analysis of studies assessing the clinicopathological and prognostic significance of low expression of these genes in cancers. Methods Relevant studies were searched from the Cochrane Central Register of Controlled Trials, Embase, EBSCO, Ovid, PubMed, Science Direct, Wiley Online Library database, CNKI and Wan Fang database. The meta-analysis was performed by using STATA version 12 software. A random-effect model was employed to evaluate all pooled hazard ratios (HRs) and odd ratios (ORs). Results A total of 36 studies comprising 7476 cases met the inclusion criteria. Meta-analysis suggested that low expression of Per1 was associated with poor differentiation (Per1: OR=2.30, 95%CI: 1.36∼3.87, P=0.002) and deeper invasion depth (Per1: OR=2.12, 95%CI: 1.62∼2.77, Ρ<0.001); low Per2 expression was correlated with poor differentiation (Per2: OR=2.41, 95%CI: 1.53∼3.79, Ρ<0.001), worse TNM stage (Per2:OR=3.47, 95%CI: 1.88∼6.42, P<0.001) and further metastasis (Per2:OR=2.35, 95%CI: 1.35∼4.11, Ρ=0.003). Furthermore, the results revealed that low expressions of Per1 and Per2 were also correlated with poor overall survival of cancers (Per1: HR=1.35, 95%CI: 1.06∼1.72, P=0.014; Per2: HR=1.43, 95%CI: 1.10∼1.85, P=0.007). Subgroup analysis indicated that low Per1 and Per2 expressions were especially associated with poor prognosis of gastrointestinal caners (Per1: HR=1.33, 95%CI: 1.14∼1.55, Ρ<0.001, Ι2=4.2%; Per2: HR=1.62, 95%CI: 1.25∼2.18, P<0.001, I2=0.0%). Conclusions Our study suggested that low Per1, Per2 and Npas2 expression played a distinct and crucial role in progression of cancers. Low expressions of Per1 and Per2 could serve as unfavorable indicators for cancers prognosis, especially for gastrointestinal cancers.
Collapse
Affiliation(s)
- Jiangguo Zhang
- Department of Gastroenterology, Shekou People’s Hospital, Shenzhen, Guangdong, China
- * E-mail: (JZ); (WW)
| | - Hong Lv
- Department of Gastroenterology, Shekou People’s Hospital, Shenzhen, Guangdong, China
| | - Mingzhu Ji
- Department of Gastroenterology, Shekou People’s Hospital, Shenzhen, Guangdong, China
| | - Zhimo Wang
- Department of Gastroenterology, Nanshan People’s Hospital, Shenzhen, Guangdong, China
| | - Wenqing Wu
- Shekou People’s Hospital, Shenzhen, Guangdong, China
- * E-mail: (JZ); (WW)
| |
Collapse
|
15
|
Yuan W, Liu L, Wei C, Li X, Sun D, Dai C, Li S, Peng S, Jiang L. Identification and meta-analysis of copy number variation-driven circadian clock genes for colorectal cancer. Oncol Lett 2019; 18:4816-4824. [PMID: 31611992 PMCID: PMC6781691 DOI: 10.3892/ol.2019.10830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 07/26/2019] [Indexed: 12/24/2022] Open
Abstract
Both copy number variation (CNV) and circadian clock genes play a critical role in the etiology and pathogenesis of colorectal cancer (CRC); however, a comprehensive analysis of CNV-driven circadian clock genes is urgently required. The present study aimed to investigate the systematic associations between somatic cell CNVs and circadian clock gene expression in patients with CRC. Using somatic CNV, legacy clinical information and gene expression data from The Cancer Genome Atlas, 295 genes that were significantly differentially expressed and with significantly different CNV were obtained, and the expression of the genes, among which 15 were circadian clock genes, was significantly associated with CNV. Further analysis revealed that aryl hydrocarbon receptor nuclear translocator-like 2 (ARNTL2) expression and CNV in these circadian clock genes were significantly associated with survival time in patients with CRC, and the expression of ARNTL2 was also significantly associated with the pathological stage of CRC. Gene set enrichment analysis found that ARNTL2 is enriched for gene sets associated with CRC pathogenesis such as the p53 signaling pathway. These results suggest that ARNTL2 may be a promising prognostic biomarker for patients with CRC, and that circadian clock genes play an important role in CRC through CNV.
Collapse
Affiliation(s)
- Wenliang Yuan
- School of Optical-Electric and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P.R. China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, P.R. China.,National Pathogen Collection Center for Aquatic Animals, Ministry of Agriculture, Shanghai 201306, P.R. China.,International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, P.R. China.,College of Mathematics and Computer Science, Chizhou University, Chizhou, Anhui 247000, P.R. China
| | - Li Liu
- College of Mathematics and Computer Science, Chizhou University, Chizhou, Anhui 247000, P.R. China
| | - Cai Wei
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, P.R. China.,National Pathogen Collection Center for Aquatic Animals, Ministry of Agriculture, Shanghai 201306, P.R. China.,International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, P.R. China
| | - Xiaobo Li
- Institute of Biomedical Informatics, Lishui University, Lishui, Zhejiang 323000, P.R. China.,College of Engineering, Lishui University, Lishui, Zhejiang 323000, P.R. China
| | - Dan Sun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, P.R. China.,National Pathogen Collection Center for Aquatic Animals, Ministry of Agriculture, Shanghai 201306, P.R. China.,International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, P.R. China
| | - Chaoxu Dai
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, P.R. China.,National Pathogen Collection Center for Aquatic Animals, Ministry of Agriculture, Shanghai 201306, P.R. China.,International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, P.R. China
| | - Sicong Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, P.R. China.,National Pathogen Collection Center for Aquatic Animals, Ministry of Agriculture, Shanghai 201306, P.R. China.,International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, P.R. China
| | - Sihua Peng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, P.R. China.,National Pathogen Collection Center for Aquatic Animals, Ministry of Agriculture, Shanghai 201306, P.R. China.,International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, P.R. China
| | - Linhua Jiang
- School of Optical-Electric and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P.R. China
| |
Collapse
|
16
|
Rahman S, Kraljević Pavelić S, Markova-Car E. Circadian (De)regulation in Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2019; 20:ijms20112662. [PMID: 31151182 PMCID: PMC6600143 DOI: 10.3390/ijms20112662] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/26/2019] [Accepted: 05/28/2019] [Indexed: 12/15/2022] Open
Abstract
Head and neck cancer encompass different malignancies that develop in and around the throat, larynx, nose, sinuses and mouth. Most head and neck cancers are squamous cell carcinomas (HNSCC) that arise in the flat squamous cells that makeup the thin layer of tissue on the surface of anatomical structures in the head and neck. Each year, HNSCC is diagnosed in more than 600,000 people worldwide, with about 50,000 new cases. HNSCC is considered extremely curable if detected early. But the problem remains in treatment of inoperable cases, residues or late stages. Circadian rhythm regulation has a big role in developing various carcinomas, and head and neck tumors are no exception. A number of studies have reported that alteration in clock gene expression is associated with several cancers, including HNSCC. Analyses on circadian clock genes and their association with HNSCC have shown that expression of PER1, PER2, PER3, CRY1, CRY2,CKIε, TIM, and BMAL1 are deregulated in HNSCC tissues. This review paper comprehensively presents data on deregulation of circadian genes in HNSCC and critically evaluates their potential diagnostics and prognostics role in this type of pathology.
Collapse
Affiliation(s)
- Sadia Rahman
- University of Rijeka, Department of Biotechnology, Centre for High-Throughput Technologies, 51000 Rijeka, Croatia.
| | - Sandra Kraljević Pavelić
- University of Rijeka, Department of Biotechnology, Centre for High-Throughput Technologies, 51000 Rijeka, Croatia.
| | - Elitza Markova-Car
- University of Rijeka, Department of Biotechnology, Centre for High-Throughput Technologies, 51000 Rijeka, Croatia.
| |
Collapse
|
17
|
Yu CC, Chen LC, Chiou CY, Chang YJ, Lin VC, Huang CY, Lin IL, Chang TY, Lu TL, Lee CH, Huang SP, Bao BY. Genetic variants in the circadian rhythm pathway as indicators of prostate cancer progression. Cancer Cell Int 2019; 19:87. [PMID: 30996687 PMCID: PMC6451277 DOI: 10.1186/s12935-019-0811-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/01/2019] [Indexed: 11/10/2022] Open
Abstract
Background To determine the association between circadian pathway genetic variants and the risk of prostate cancer progression. Methods We systematically evaluated 79 germline variants in nine circadian pathway genes in a cohort of 458 patients with localized prostate cancer as the discovery phase. We then replicated the significant findings in another cohort of 324 men with more advanced disease. The association of each variant with prostate cancer progression was evaluated by a log-rank test and Cox regression. Results A single nucleotide polymorphism of the neuronal PAS domain protein 2 (NPAS2) gene (rs6542993 A>T) was found to be associated with a significantly higher risk of disease progression in both localized (P = 0.001) and advanced (P = 0.039) prostate cancer cases. In silico analysis revealed decreased expression levels of NPAS2 in carriers of the T allele of rs6542993 compared with those carrying the A allele. Consistently, downregulation of NPAS2 expression was associated with more aggressive prostate cancer and poor progression-free survival (log-rank P = 0.002). Conclusions The NPAS2 rs6542993 polymorphism may be a promising biomarker, and may shed light on the pathways that govern prostate cancer progression.
Collapse
Affiliation(s)
- Chia-Cheng Yu
- 1Division of Urology, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, 813 Taiwan.,2Department of Urology, School of Medicine, National Yang-Ming University, Taipei, 112 Taiwan.,3Department of Pharmacy, Tajen University, Pingtung, 907 Taiwan
| | - Lih-Chyang Chen
- 4Department of Medicine, Mackay Medical College, New Taipei City, 252 Taiwan
| | - Chih-Yung Chiou
- 5Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taoyuan, 333 Taiwan
| | - Yu-Jia Chang
- 6Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 110 Taiwan.,7Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110 Taiwan.,8Division of General Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, 110 Taiwan.,9Cancer Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, 110 Taiwan
| | - Victor C Lin
- 10Department of Urology, E-Da Hospital, Kaohsiung, 824 Taiwan.,11School of Medicine for International Students, I-Shou University, Kaohsiung, 840 Taiwan
| | - Chao-Yuan Huang
- 12Department of Urology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, 100 Taiwan.,13Department of Urology, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, 300 Taiwan
| | - I-Ling Lin
- 14Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, 807 Taiwan
| | - Ta-Yuan Chang
- 15Department of Occupational Safety and Health, China Medical University, Taichung, 404 Taiwan
| | - Te-Ling Lu
- 16Department of Pharmacy, China Medical University, Taichung, 404 Taiwan
| | - Cheng-Hsueh Lee
- 17Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, 807 Taiwan
| | - Shu-Pin Huang
- 17Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, 807 Taiwan.,18Department of Urology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807 Taiwan.,19Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807 Taiwan.,20Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, 804 Taiwan
| | - Bo-Ying Bao
- 16Department of Pharmacy, China Medical University, Taichung, 404 Taiwan.,21Sex Hormone Research Center, China Medical University Hospital, Taichung, 404 Taiwan.,22Department of Nursing, Asia University, Taichung, 413 Taiwan
| |
Collapse
|
18
|
Sasaki H, Hokugo A, Wang L, Morinaga K, Ngo JT, Okawa H, Nishimura I. Neuronal PAS Domain 2 (Npas2)-Deficient Fibroblasts Accelerate Skin Wound Healing and Dermal Collagen Reconstruction. Anat Rec (Hoboken) 2019; 303:1630-1641. [PMID: 30851151 DOI: 10.1002/ar.24109] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/11/2018] [Accepted: 12/17/2018] [Indexed: 01/17/2023]
Abstract
The circadian clock, which consists of endogenous self-sustained and cell-autonomous oscillations in mammalian cells, is known to regulate a wide range of peripheral tissues. The unique upregulation of a clock gene, neuronal PAS domain protein 2 (Npas2), observed along with fibroblast aging prompted us to investigate the role of Npas2 in the homeostasis of dermal structure using in vivo and in vitro wound healing models. Time-course healing of a full-thickness skin punched wound exhibited significantly faster wound closure in Npas2-/- mice than wild-type (WT) C57Bl/6J mice. Dorsal skin fibroblasts isolated from WT, Npas2+/-, and Npas2-/- mice exhibited consistent profiles of core clock gene expression except for Npas2 and Per2. In vitro behavioral characterizations of dermal fibroblasts revealed that Npas2-/- mutation was associated with increased proliferation, migration, and cell contraction measured by floating collagen gel contraction and single-cell force contraction assays. Npas2 knockout fibroblasts carrying sustained the high expression level of type XII and XIV FAICT collagens and synthesized dermis-like thick collagen fibers in vitro. Confocal laser scanning microscopy demonstrated the reconstruction of dermis-like collagen architecture in the wound healing area of Npas2-/- mice. This study indicates that the induced Npas2 expression in fibroblasts may interfere with skin homeostasis, wound healing, and dermal tissue reconstruction, providing a basis for novel therapeutic target and strategy. Anat Rec, 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hodaka Sasaki
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, California.,Department of Oral and Maxillofacial Implantology, Tokyo Dental College, Tokyo, Japan
| | - Akishige Hokugo
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, California.,Regenerative Bioengineering and Repair Laboratory, Division of Plastic and Reconstructive Surgery, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Lixin Wang
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, California.,Regenerative Bioengineering and Repair Laboratory, Division of Plastic and Reconstructive Surgery, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Kenzo Morinaga
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, California.,Department of Oral Rehabilitation, Section of Oral Implantology, Fukuoka Dental College, Fukuoka, Japan
| | - John T Ngo
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, California
| | - Hiroko Okawa
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, California.,Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Ichiro Nishimura
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, California
| |
Collapse
|
19
|
Wendeu-Foyet MG, Koudou Y, Cénée S, Trétarre B, Rébillard X, Cancel-Tassin G, Cussenot O, Boland A, Bacq D, Deleuze JF, Lamy PJ, Mulot C, Laurent-Puig P, Truong T, Menegaux F. Circadian genes and risk of prostate cancer: Findings from the EPICAP study. Int J Cancer 2019; 145:1745-1753. [PMID: 30665264 DOI: 10.1002/ijc.32149] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022]
Abstract
Circadian rhythms regulate several physiological functions and genes controlling the circadian rhythm were found to regulate cell proliferation, cell cycle and apoptosis. Few studies have investigated the role of those circadian genes in prostate cancer occurrence. We aim to investigate the relationship between circadian genes polymorphisms and prostate cancer risk based on data from the EPICAP study, a population-based case-control study including 1,515 men (732 cases / 783 controls) with genotyped data. Odds Ratios (ORs) for association between prostate cancer and circadian gene variants were estimated for each of the 872 single nucleotide polymorphisms (SNPs) in 31 circadian clock genes. We also used a gene-based and pathway-based approach with a focus on the pathway including 9 core circadian genes. Separate analyses were conducted by prostate cancer aggressiveness. The core-circadian pathway (p = 0.0006) was significantly associated to prostate cancer, for either low (p = 0.002) or high (p = 0.01) grade tumor. At the gene level, we observed significant associations between all prostate cancer and NPAS2 and PER1 after correcting for multiple testing, while only RORA was significant for aggressive tumors. At the SNP-level, no significant association was observed. Our findings provide additional evidence of a potential link between genetic variants in circadian genes and prostate cancer risk. Further investigation is warranted to confirm these findings and to better understand the biological pathways involved.
Collapse
Affiliation(s)
- Méyomo G Wendeu-Foyet
- Université Paris-Saclay, Université Paris-Sud, CESP (Center for Research in Epidemiology and Population Health), Inserm, Team Cancer and Environment, Villejuif, France
| | - Yves Koudou
- Université Paris-Saclay, Université Paris-Sud, CESP (Center for Research in Epidemiology and Population Health), Inserm, Team Cancer and Environment, Villejuif, France
| | - Sylvie Cénée
- Université Paris-Saclay, Université Paris-Sud, CESP (Center for Research in Epidemiology and Population Health), Inserm, Team Cancer and Environment, Villejuif, France
| | | | | | - Géraldine Cancel-Tassin
- CeRePP, Hopital Tenon, Paris, France.,Sorbonne Université, GRC n°5, ONCOTYPE-URO, AP-HP, Hôpital Tenon, Paris
| | - Olivier Cussenot
- CeRePP, Hopital Tenon, Paris, France.,Sorbonne Université, GRC n°5, ONCOTYPE-URO, AP-HP, Hôpital Tenon, Paris
| | - Anne Boland
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Delphine Bacq
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Pierre-Jean Lamy
- Clinique Beau Soleil, Montpellier, France.,Imagenome, Labosud, Montpellier, France
| | - Claire Mulot
- Université Paris Descartes, INSERM UMR-S1147 EPIGENETEC, Paris, France
| | | | - Thérèse Truong
- Université Paris-Saclay, Université Paris-Sud, CESP (Center for Research in Epidemiology and Population Health), Inserm, Team Cancer and Environment, Villejuif, France
| | - Florence Menegaux
- Université Paris-Saclay, Université Paris-Sud, CESP (Center for Research in Epidemiology and Population Health), Inserm, Team Cancer and Environment, Villejuif, France
| |
Collapse
|
20
|
Shostak A. Human Clock Genes and Cancer. CURRENT SLEEP MEDICINE REPORTS 2018. [DOI: 10.1007/s40675-018-0102-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Nirvani M, Khuu C, Utheim TP, Sand LP, Sehic A. Circadian clock and oral cancer. Mol Clin Oncol 2017; 8:219-226. [PMID: 29435282 PMCID: PMC5774470 DOI: 10.3892/mco.2017.1518] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/24/2017] [Indexed: 12/20/2022] Open
Abstract
The circadian clock is comprised of a master component situated in the hypothalamic suprachiasmatic nucleus and subordinate clock genes in almost every cell of the body. The circadian clock genes and their encoded proteins govern the organism to follow the natural signals of time, and adapt to external changes in the environment. The majority of physiological processes in mammals exhibit variable circadian rhythms, which are generated and coordinated by an oscillation in the expression of the clock genes. A number of studies have reported that alteration in the expression level of clock genes is correlated with several pathological conditions, including cancer. However, little is known about the role of clock genes in homeostasis of the oral epithelium and their disturbances in oral carcinogenesis. The present review summarizes the current state of knowledge of the implications of clock genes in oral cancer. It has been demonstrated that the development of oral squamous cell carcinoma undergoes circadian oscillation in relation to tumor volume and proliferation rate. The circadian clock gene period (PER)1 has been associated with oral cancer pathogenesis and it is suggested that changes in the expression of PER1 may exhibit an important role in the development, invasion, and metastasis of oral squamous cell carcinoma. However, its role remains elusive and there is a need for further research in order to understand the underlying mechanisms of the clock genes in oral cancer pathogenesis.
Collapse
Affiliation(s)
- Minou Nirvani
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, 0316 Oslo, Norway
| | - Cuong Khuu
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, 0316 Oslo, Norway
| | - Tor Paaske Utheim
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, 0316 Oslo, Norway.,Department of Medical Biochemistry, Oslo University Hospital, 0424 Oslo, Norway
| | - Lars Peter Sand
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, 0316 Oslo, Norway
| | - Amer Sehic
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, 0316 Oslo, Norway
| |
Collapse
|
22
|
Zhao F, Pu Y, Qian L, Zang C, Tao Z, Gao J. MiR-20a-5p promotes radio-resistance by targeting NPAS2 in nasopharyngeal cancer cells. Oncotarget 2017; 8:105873-105881. [PMID: 29285299 PMCID: PMC5739686 DOI: 10.18632/oncotarget.22411] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 09/13/2017] [Indexed: 12/23/2022] Open
Abstract
MicroRNAs (miRNAs) are key players of gene expression involved in diverse biological processes including the cancer radio-resistance, which hinders the effective cancer therapy. Here we found that the miR-20a-5p level is significantly up-regulated in radio-resistant nasopharyngeal cancer (NPC) cells via an RNA-seq and miR-omic analysis. Moreover, we identified that the neuronal PAS domain protein 2 (NPAS2) gene is one of the targets of miR-20a-5p. The involvement of miR-20a-5p and NPAS2 with NPC radio-resistance was further validated by either down- or up-regulation of their levels in NPC cell lines. Taken together, these results not only reveal novel insights into the NPC radio-resistance, but also provide hints for an effective therapeutic strategy to fight against NPC radio-resistance.
Collapse
Affiliation(s)
- Fangfang Zhao
- The Institute of Cancer Research, Anhui Cancer Hospital, West Branch of Anhui Provincial Hospital, Anhui Medical University, Hefei 230031, Anhui, China
| | - Youguang Pu
- The Institute of Cancer Research, Anhui Cancer Hospital, West Branch of Anhui Provincial Hospital, Anhui Medical University, Hefei 230031, Anhui, China
| | - Liting Qian
- Department of Radiation Oncology, Anhui Provincial Hospital, Anhui Medical University, Hefei 230031, Anhui, China
| | - Chunbao Zang
- Department of Radiation Oncology, Anhui Cancer Hospital, West Branch of Anhui Provincial Hospital, Anhui Medical University, Hefei 230031, Anhui, China
| | - Zhenchao Tao
- Department of Radiation Oncology, Anhui Cancer Hospital, West Branch of Anhui Provincial Hospital, Anhui Medical University, Hefei 230031, Anhui, China
| | - Jin Gao
- Department of Radiation Oncology, Anhui Provincial Hospital, Anhui Medical University, Hefei 230031, Anhui, China
| |
Collapse
|
23
|
Yang SL, Ren QG, Wen L, Hu JL, Wang HY. Research progress on circadian clock genes in common abdominal malignant tumors. Oncol Lett 2017; 14:5091-5098. [PMID: 29113149 PMCID: PMC5661368 DOI: 10.3892/ol.2017.6856] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 07/03/2017] [Indexed: 02/01/2023] Open
Abstract
The circadian clock refers to the inherent biological rhythm of an organism, which, is accurately regulated by numerous clock genes. Studies in recent years have reported that the abnormal expression of clock genes is ubiquitous in common abdominal malignant tumors, including liver, colorectal, gastric and pancreatic cancer. In addition, the abnormal expression of certain clock genes is closely associated with clinical tumor parameters or patient prognosis. Studies in clock genes may expand the knowledge about the mechanism of occurrence and development of tumors, and may provide a new approach for tumor therapy. The present study summarizes the research progress in this field.
Collapse
Affiliation(s)
- Sheng-Li Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P.R. China
| | - Quan-Guang Ren
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P.R. China
| | - Lu Wen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P.R. China
| | - Jian-Li Hu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P.R. China
| | - Heng-Yi Wang
- Department of Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
24
|
Franzoni A, Markova-Car E, Dević-Pavlić S, Jurišić D, Puppin C, Mio C, De Luca M, Petruz G, Damante G, Pavelić SK. A polymorphic GGC repeat in the NPAS2 gene and its association with melanoma. Exp Biol Med (Maywood) 2017; 242:1553-1558. [PMID: 28799406 DOI: 10.1177/1535370217724093] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Circadian clock regulation in mammals is controlled by feedback loops of a set of circadian genes. One of these circadian genes, NPAS2, encodes for a member of the bHLH-PAS class of transcription factors and is expressed in the forebrain and in some peripheral organs such as liver and skin. Other biological processes are also regulated by circadian genes. For example, NPAS2 is involved in cell proliferation, DNA damage repair and malignant transformation. Aberrant expression of clock genes has been previously observed in melanoma which led to our effort to sequence the NPAS2 promoter region in this cancer type. The NPAS2 putative promoter and 5' untranslated region of ninety-three melanoma patients and ninety-six control subjects were sequenced and several variants were identified. Among these is a novel microsatellite comprising a GGC repeat with different alleles ranging from 7 to 13 repeats located in the 5' untranslated exon. Homozygosity of an allele with nine repeats (9/9) was more prevalent in melanoma than in control subjects (22.6% and 13.5%, respectively, P: 0.0206) suggesting that some NPAS2 variants might contribute to melanoma susceptibility. Impact statement This report describes a variable microsatellite repeat sequence located in the 5' untranslated exon of NSPAS2, a gene encoding a clock transcription factor. Significantly, this study is the first to show that a variant copy number GGC repeat sequence in the NPAS2 clock gene associates with melanoma risk and which may be useful in the assessment of melanoma predisposition.
Collapse
Affiliation(s)
- Alessandra Franzoni
- 1 Medical Genetics Institute, Azienda Ospedaliero-Universitaria di Udine, Udine 33017, Italy
| | - Elitza Markova-Car
- 2 Department of Biotechnology, Centre for High-Throughput Technologies, University of Rijeka, Rijeka 51000, Croatia
| | - Sanja Dević-Pavlić
- 2 Department of Biotechnology, Centre for High-Throughput Technologies, University of Rijeka, Rijeka 51000, Croatia
| | - Davor Jurišić
- 3 Department for Plastic and Reconstructive Surgery, Clinic for Surgery, University Hospital Centre Rijeka, Rijeka 51000, Croatia
| | - Cinzia Puppin
- 4 Department of Medical and Biological Sciences, University of Udine, Udine 33100, Italy
| | - Catia Mio
- 4 Department of Medical and Biological Sciences, University of Udine, Udine 33100, Italy
| | - Marila De Luca
- 4 Department of Medical and Biological Sciences, University of Udine, Udine 33100, Italy
| | - Giulia Petruz
- 4 Department of Medical and Biological Sciences, University of Udine, Udine 33100, Italy
| | - Giuseppe Damante
- 1 Medical Genetics Institute, Azienda Ospedaliero-Universitaria di Udine, Udine 33017, Italy.,4 Department of Medical and Biological Sciences, University of Udine, Udine 33100, Italy
| | - Sandra Kraljević Pavelić
- 2 Department of Biotechnology, Centre for High-Throughput Technologies, University of Rijeka, Rijeka 51000, Croatia
| |
Collapse
|
25
|
NPAS2 promotes cell survival of hepatocellular carcinoma by transactivating CDC25A. Cell Death Dis 2017; 8:e2704. [PMID: 28333141 PMCID: PMC5386534 DOI: 10.1038/cddis.2017.131] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/19/2017] [Accepted: 02/20/2017] [Indexed: 02/07/2023]
Abstract
Emerging evidences show that disruption of the circadian rhythm is associated with tumor initiation and progression. Neuronal PAS domain protein 2 (NPAS2), one of the core circadian molecules, has been proved to be a potential prognostic biomarker in colorectal and breast cancers. However, to date, the potential functional roles and molecular mechanisms by which NPAS2 affects cancer cell survival are greatly unclear, especially in hepatocellular carcinoma (HCC). We first investigated the expression of NPAS2 and its clinical significance in HCC. We then systematically explored the role of NPAS2 in HCC cell survival both in vitro and in vivo and the underlying mechanism. NPAS2 was frequently upregulated in HCC, which significantly facilitated cell survival both in vitro and in vivo mainly by promoting cell proliferation and inhibiting mitochondria-dependent intrinsic apoptosis, and thus contributed to poor prognosis of HCC patients. Mechanistically, the survival-promoting role of NPAS2 was mediated by transcriptional upregulation of the CDC25A phosphatase and subsequent dephosphorylation of CDK2/4/6 and Bcl-2, which induced cell proliferation and inhibited cell apoptosis in HCC, respectively. Moreover, BMAL1, another core clock transcription factor, was identified to heterodimerize with NPAS2 to bind to the E-box element in the promoter of CDC25A and be associated with the NPAS2-mediated tumor cell survival in HCC. Our findings demonstrate that NPAS2 has a critical role in HCC cell survival and tumor growth, which is mainly mediated by transcriptional upregulation of CDC25A. Thereby, NPAS2 may serve as a potential therapeutic target in HCC patients.
Collapse
|