1
|
Yoshino Y, Ichimiya K, Jingu K, Fujita Y, Chiba N. Nicaraven enhances the cytotoxicity of X-ray irradiation in cancer cells with homologous recombination deficiency. Biochem Biophys Res Commun 2025; 742:151153. [PMID: 39672008 DOI: 10.1016/j.bbrc.2024.151153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 12/15/2024]
Abstract
Poly (ADP-ribose) polymerase (PARP) is involved in the repair of DNA single-strand breaks. PARP inhibitors are cytotoxic to cancer cells with homologous recombination (HR) deficiency through a synthetic lethality mechanism. Nicaraven is a hydroxyl radical scavenger that has been investigated for the treatment of organ ischemia such as brain infarction. Nicaraven also shows PARP inhibitory and anti-cancer activity in vitro and in vivo. In this study, we investigated the potential synthetic lethality of nicaraven in cells with HR deficiency and whether the PARP inhibitory and radical scavenger activities of nicaraven contributes to its anti-cancer effects, especially in combination with exposure to ionizing radiation. The results showed that nicaraven was cytotoxic against cancer cells after knockdown of the HR factors BRCA1 or RAD51, indicating that nicaraven exerted synthetic lethal effects on cells with HR deficiency. X-ray irradiation-induced DNA double-strand breaks (DSBs) increased at 2 h and were largely repaired after 24 h in control cells, whereas nicaraven significantly increased the amounts of residual DSBs 24 h after X-ray irradiation, especially in HR-deficient cells. Nicaraven treatment enhanced the cytotoxicity of X-ray irradiation in HR-deficient cells, but not that in HR-proficient cells. These data suggest that the combination of nicaraven with X-ray irradiation selectively increases the cytotoxic effects of X-ray irradiation on HR-deficient cancer cells. Thus, nicaraven might be a valuable agent for cancer therapy, particularly in combination with radiotherapy.
Collapse
Affiliation(s)
- Yuki Yoshino
- Department of Cancer Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan; Department of Cancer Biology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | | | - Keiichi Jingu
- Department of Radiation Oncology, Tohoku University Graduate School of Medicine, Tohoku University, Sendai, 980-8574, Japan
| | - Yuhzo Fujita
- Science Technology Interact Co. Ltd, Tokyo, 103-0025, Japan
| | - Natsuko Chiba
- Department of Cancer Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan; Department of Cancer Biology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan.
| |
Collapse
|
2
|
Huang K, Yan C, Abdelghany L, Zhang X, Jingu K, Li TS. Nicaraven attenuates the acquired radioresistance of established tumors in mouse models via PARP inhibition. Mol Cell Biochem 2025; 480:341-353. [PMID: 38466467 DOI: 10.1007/s11010-024-04958-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/03/2024] [Indexed: 03/13/2024]
Abstract
Nicaraven has been reported to inhibit the activity of poly (ADP-ribose) polymerase (PARP). In this study, we investigated the probable ability of nicaraven to attenuate cancer radioresistance during fractionated radiotherapy. Tumor models were established in C57BL/6 mice and BALB/c nude mice by subcutaneous injection of Lewis mouse lung carcinoma cancer cells and A549 human lung cancer cells, respectively. When the tumors had grown to approximately 100 mm3, we initiated fractionated radiotherapy. Nicaraven or saline was administered immediately after each irradiation exposure. Compared to saline treatment, nicaraven administration significantly induced gamma-H2AX foci formation and cell apoptosis in tumors at 1 or 3 days after an additional challenge exposure to 10 Gy and inhibited tumor growth during the short-term follow-up period, suggesting increased radiosensitivity of cancer cells. Moreover, the expression of PARP in tumor tissue was decreased by nicaraven administration. Our data suggest that nicaraven likely attenuates the acquired radioresistance of cancers through PARP inhibition.
Collapse
Affiliation(s)
- Kai Huang
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Chen Yan
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Lina Abdelghany
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Xu Zhang
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Keiichi Jingu
- Department of Radiation Oncology, Graduate School of Medicine, Tohoku University, 2-1 Seiryomachi, Aoba Ward, Sendai, Miyagi, 980-0872, Japan
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
| |
Collapse
|
3
|
Abdelghany L, Xu Y, Sekiya R, Yan C, Jingu K, Li TS. Nicaraven Exerts a Limited Effect on Radiation-Induced Inhibition of Tumor Growth in a Subcutaneous Murine Tumor Model. Radiat Res 2023; 200:382-388. [PMID: 37702409 DOI: 10.1667/rade-22-00212.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 08/03/2023] [Indexed: 09/14/2023]
Abstract
Nicaraven selectively protects normal tissue from radiation-induced injury. To further develop the clinical application of nicaraven for mitigating the side effects of cancer radiotherapy, we investigated the potential effect of nicaraven administration in radiation-induced inhibition of tumor growth. A subcutaneous tumor model was established in mice by the injection of Lewis lung cancer cells at the back of the chest. X-ray radiation was delivered to the thoracic area and different doses of nicaraven (0, 20, 50, 100 mg/kg) were administrated intraperitoneally pre- or post-irradiation. The tumor size was measured every other day. Mice were euthanized on day 30, and the tumor weight and the levels of cytokines in tumor tissue were measured. Pre- or post-irradiation administration of nicaraven up to a dose of 100 mg/kg did not significantly diminish the radiation-induced inhibition of tumor growth, but post-irradiation administration of 20 and 50 mg/kg nicaraven resulted in relatively lower tumor weight. The levels of IL-1β, IL-6, IL-10, MCP-1, MIP-2a, TGF-β1, VEGF, p53, p21, cyclin D1 and caspase-3 in tumor tissue did not change by nicaraven administration and were not significantly associated with the tumor weights. According to our experimental data, nicaraven will not significantly diminish the radiation-induced inhibition of tumor growth, even with pre-irradiation administration at a high dose.
Collapse
Affiliation(s)
- Lina Abdelghany
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Yong Xu
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Reiko Sekiya
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Chen Yan
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Keiichi Jingu
- Department of Radiation Oncology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| |
Collapse
|
4
|
Zha D, Yang Y, Huang X, Wang Z, Lin H, Yang L, Xu L, Wu Y, Huang H, Wang Y, Xin Z, Wu X, Xiao YF, Li TS, Deng KY, Xin HB, Qian Y. Nicaraven protects against endotoxemia-induced inflammation and organ injury through modulation of AMPK/Sirt1 signaling in macrophages. Eur J Pharmacol 2023; 946:175666. [PMID: 36944380 DOI: 10.1016/j.ejphar.2023.175666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 03/23/2023]
Abstract
Endotoxemia is a disease characterized by systemic inflammatory responses and organ injury caused by lipopolysaccharide (LPS) infection, with high mortality. Nicaraven (AVS), a potent hydroxyl radical scavenger, has been proven to regulate the inflammatory response in tumors. To investigate the protective effects and mechanisms of AVS in endotoxemia, mice were injected intraperitoneally with LPS to induce endotoxemia. AVS treatment significantly decreased the levels of pro-inflammatory cytokines in the serum, reduced neutrophil infiltration, attenuated multiple organ injury, and increased the survival rate in LPS-challenged mice. In the LPS-induced inflammatory model of macrophages, AVS inhibited macrophage activation, suppressed nitric oxide (NO) production, and inhibited the expression and secretion of pro-inflammatory cytokines. Mechanistically, AVS treatment up-regulated silence information regulator transcript-1 (Sirt1) expression in a time- and dose-dependent manner. AVS treatment activated the AMP-dependent protein kinase (AMPK)/Sirt1 signaling pathway and suppressed the activation of nuclear factor kappa B (NF-κB) in macrophages exposed to LPS. However, the anti-inflammatory effects of AVS could be reversed by the AMPK, the Sirt1 inhibitor, or the histone deacetylase inhibitor. We confirmed that the AMPK inhibitor inhibited AVS-mediated AMPK/Sirt1 activation and NF-κB p65 acetylation. These results suggested that AVS alleviated endotoxemia by activating the AMPK/Sirt1 signaling pathway in macrophages.
Collapse
Affiliation(s)
- Duoduo Zha
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, China
| | - Yaqin Yang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, China
| | - Xiang Huang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, China
| | - Ziwei Wang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, China
| | - Hongru Lin
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, China
| | - Lingyi Yang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, China
| | - Luyan Xu
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, China
| | - Yijia Wu
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, China
| | - Houda Huang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, China
| | - Yihan Wang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, China
| | - Zhaochen Xin
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, China
| | - Xuehan Wu
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, China
| | - Yun-Fei Xiao
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, China
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Ke-Yu Deng
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, China
| | - Hong-Bo Xin
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, China.
| | - Yisong Qian
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
5
|
Abdelghany L, Kawabata T, Goto S, Jingu K, Li TS. Nicaraven induces programmed cell death by distinct mechanisms according to the expression levels of Bcl-2 and poly (ADP-ribose) glycohydrolase in cancer cells. Transl Oncol 2022; 26:101548. [PMID: 36206675 PMCID: PMC9535466 DOI: 10.1016/j.tranon.2022.101548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 11/25/2022] Open
Abstract
The PARP-1 expression level and poly (ADP-ribosyl)ation activity in cancer markedly affect the therapeutic outcome. Nicaraven, a free radical scavenger has been found to inhibit PARP, but the effect on cancer cells is still unclear. In this study, we investigated the potential role and molecular mechanism of nicaraven on cancer cells. Using U937 lymphoma cells and HCT-8 colorectal cancer cells, we found that nicaraven moderately reduced the cell viability of both cells in a dose-dependent manner. Interestingly, nicaraven significantly induced apoptosis of U937 cells that are dominantly expressing Bcl-2 but induced PAR-dependent cell death (parthanatos) of HCT-8 cells that are highly expressing poly (ADP-ribose) glycohydrolase (PARG). Based on our data, nicaraven seems to induce programmed cell death through distinct mechanisms, according to the expression levels of Bcl-2 and PARG in cancer cells.
Collapse
Affiliation(s)
- Lina Abdelghany
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Tsuyoshi Kawabata
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Shinji Goto
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Keiichi Jingu
- Department of Radiation Oncology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.
| |
Collapse
|
6
|
Protection of the hematopoietic system against radiation-induced damage: drugs, mechanisms, and developments. Arch Pharm Res 2022; 45:558-571. [PMID: 35951164 DOI: 10.1007/s12272-022-01400-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 08/03/2022] [Indexed: 11/12/2022]
Abstract
Sometimes, people can be exposed to moderate or high doses of radiation accidentally or through the environment. Radiation can cause great harm to several systems within organisms, especially the hematopoietic system. Several types of drugs protect the hematopoietic system against radiation damage in different ways. They can be classified as "synthetic drugs" and "natural compounds." Their cellular mechanisms to protect organisms from radiation damage include free radical-scavenging, anti-oxidation, reducing genotoxicity and apoptosis, and alleviating suppression of the bone marrow. These topics have been reviewed to provide new ideas for the development and research of drugs alleviating radiation-induced damage to the hematopoietic system.
Collapse
|
7
|
Ranjan R, Kalita B, Singh A, Yashavarddhan MH, Prakash H, Gupta ML. Prophylactic administration of podophyllotoxin and rutin combination assists the revival of radiation-induced hematopoietic suppression in lethally irradiated mice. Biochem Biophys Res Commun 2021; 549:214-220. [PMID: 33706191 DOI: 10.1016/j.bbrc.2021.02.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 11/27/2022]
Abstract
Hematopoietic syndrome contributes to mortality after exposure to high doses of low LET radiation. In this context, we have earlier demonstrated the potential of G-003 M (a combination of podophyllotoxin and rutin) in alleviating radiation-induced bone marrow suppression. Similarly, we here demonstrate that G-003 M protected mice from death (>83% protection) and increased the populations of CD 34 (Cluster of differentiation 34) as well as CD 117 (Cluster of differentiation 117) positive cell population and their colony forming capacity. This was accompanied with increase in the serum titre of granulocyte colony stimulating factor (G-CSF), granulocyte-macrophage colony stimulating factor (GM-CSF). Interestingly, G-003 M lowered down the titre of fms-like tyrosine kinase (Flt-3) ligands. Our results furthermore demonstrates that G-003 M facilitated the nuclear translocation of β-catenin and upregulated the expression of Wnt 10b. Conditioning of animal with G-003 M activated the expression of survivin, inhibited the activation of Caspase-3 in CD 34/117+ progenitor stem cells and protected the bone marrow vascularity and splenic colonies in lethally irradiated animals, which collectively promoted hemopoietic recovery in lethally irradiated mice.
Collapse
Affiliation(s)
- Rajiv Ranjan
- Division of Radioprotective Drug Development and Research, Institute of Nuclear Medicine and Allied Sciences, Brig. S.K. Mazumdar Marg, Delhi, 110054, India
| | - Bhargab Kalita
- Division of Radioprotective Drug Development and Research, Institute of Nuclear Medicine and Allied Sciences, Brig. S.K. Mazumdar Marg, Delhi, 110054, India
| | - Abhinav Singh
- Division of Radioprotective Drug Development and Research, Institute of Nuclear Medicine and Allied Sciences, Brig. S.K. Mazumdar Marg, Delhi, 110054, India
| | - M H Yashavarddhan
- Division of Radioprotective Drug Development and Research, Institute of Nuclear Medicine and Allied Sciences, Brig. S.K. Mazumdar Marg, Delhi, 110054, India
| | - Hridayesh Prakash
- Institute of Virology and Immunology, Amity University Campus, Sector -125, Noida, 201313, India
| | - Manju Lata Gupta
- Division of Radioprotective Drug Development and Research, Institute of Nuclear Medicine and Allied Sciences, Brig. S.K. Mazumdar Marg, Delhi, 110054, India.
| |
Collapse
|
8
|
Wang W, Xue C, Mao X. Radioprotective effects and mechanisms of animal, plant and microbial polysaccharides. Int J Biol Macromol 2020; 153:373-384. [PMID: 32087223 DOI: 10.1016/j.ijbiomac.2020.02.203] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 12/11/2022]
Abstract
Ionizing radiation is increasingly used to successfully diagnose many human health problems, but ionizing radiation may cause damage to organs/tissues in the living organisms such as the spleen, liver, skin, and brain. Many radiation protective agents have been discovered, with the deepening of radiation research. Unfortunately, these protective agents have many side effects, which cause drug resistance, nausea, vomiting, osteoporosis, etc. The polysaccharides extracted from natural sources are widely available and low in toxicity. In vivo and in vitro experiments have demonstrated that polysaccharides have anti-radiation activity through anti-oxidation, immune regulation, protection of hematopoietic system and protection against DNA damage. Recently, some studies have shown that polysaccharides were resistant to radiation. In the review, the anti-radiation activities of polysaccharides from different sources are summarized, and the anti-radiation mechanisms are discussed as well. It can be used to develop more effective anti-radiation management drugs.
Collapse
Affiliation(s)
- Wenjie Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China.
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China.
| |
Collapse
|
9
|
Zhang X, Moriwaki T, Kawabata T, Goto S, Liu KX, Guo CY, Li TS. Nicaraven Attenuates Postoperative Systemic Inflammatory Responses-Induced Tumor Metastasis. Ann Surg Oncol 2019; 27:1068-1074. [PMID: 31873930 PMCID: PMC7060163 DOI: 10.1245/s10434-019-08076-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Inflammation has been demonstrated to promote cancer metastasis. Due to the well-known systemic inflammatory responses (SIR) after major surgery, it is critical to investigate and attenuate SIR-induced tumor metastasis of cancer patients suffering surgical procedures. METHODS C57BL/6 mice were intravenously injected with Lewis lung cancer cells at 6, 24, and 72 h after the induction of intestinal ischemia/reperfusion (I/R) injury. We found that the number of tumor nodules significantly increased in lungs of mice injected with cancer cells at 6 h but not at 24 and 72 h after I/R injury. The administration of nicaraven 30 min before and 24 h after I/R injury effectively attenuated the enhanced tumor metastasis to lungs. Protein array showed the increase of various cytokines in plasma of mice at 6 h after I/R injury, but many of them were attenuated by the administration of nicaraven. Immunostaining indicated the increase of Ly6g-, CD206-, and CD11c-positive inflammatory cells in the lungs, but it was also attenuated by nicaraven administration. CONCLUSIONS Postoperative SIR-induced tumor metastasis have been clearly evidenced in our experimental model, and the administration of nicaraven may ameliorate the SIR-induced tumor metastasis by suppressing inflammatory responses.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Takahito Moriwaki
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Tsuyoshi Kawabata
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Shinji Goto
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Ke-Xiang Liu
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Ziqiang Street 218, Changchun, Jilin, 130041, China
| | - Chang-Ying Guo
- Department of Thoracic Surgery, Jiangxi Cancer Hospital, No. 519 Beijing East Road, Nanchang, 330006, China
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
| |
Collapse
|
10
|
Chen Z, Zhou X, Zhang J, Zhang H, Geng L, Wang Z, Regenstein JM. Structure and radio‐protective effects of sulfated
Auricularia auricula
polysaccharides. J Food Biochem 2018. [DOI: 10.1111/jfbc.12666] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Zhiqiu Chen
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin China
| | - Xintao Zhou
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin China
| | - Jing Zhang
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin China
| | - Hua Zhang
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin China
- School of Materials Science and Engineering Harbin Institute of Technology Harbin China
| | - Lin Geng
- School of Materials Science and Engineering Harbin Institute of Technology Harbin China
| | - Zhenyu Wang
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin China
| | | |
Collapse
|
11
|
Nicaraven reduces cancer metastasis to irradiated lungs by decreasing CCL8 and macrophage recruitment. Cancer Lett 2018; 418:204-210. [DOI: 10.1016/j.canlet.2018.01.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/07/2018] [Accepted: 01/09/2018] [Indexed: 11/24/2022]
|
12
|
Yan C, Luo L, Urata Y, Goto S, Guo CY, Li TS. Nicaraven, a Potential Radioprotective Agent, has Very Limited Effects on the Survival of Cancer Cells and the Growth of Established Tumors. Radiat Res 2017; 187:339. [DOI: 10.1667/rr4614.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Chen Yan
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Lan Luo
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Yoshishige Urata
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Shinji Goto
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Chang-Ying Guo
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| |
Collapse
|
13
|
Doxorubicin-induced mitophagy contributes to drug resistance in cancer stem cells from HCT8 human colorectal cancer cells. Cancer Lett 2016; 388:34-42. [PMID: 27913197 DOI: 10.1016/j.canlet.2016.11.018] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/02/2016] [Accepted: 11/17/2016] [Indexed: 12/14/2022]
Abstract
Cancer stem cells (CSCs) are known to be drug resistant. Mitophagy selectively degrades unnecessary or damaged mitochondria by autophagy during cellular stress. To investigate the potential role of mitophagy in drug resistance in CSCs, we purified CD133+/CD44+ CSCs from HCT8 human colorectal cancer cells and then exposed to doxorubicin (DXR). Compared with parental cells, CSCs were more resistant to DXR treatment. Although DXR treatment enhanced autophagy levels in both cell types, the inhibition of autophagy by ATG7 silencing significantly increased the toxicity of DXR only in parental cells, not in CSCs. Interestingly, the level of mitochondrial superoxide was detected to be significantly lower in CSCs than in parental cells after DXR treatment. Furthermore, the mitophagy level and expression of BNIP3L, a mitophagy regulator, were significantly higher in CSCs than in parental cells after DXR treatment. Silencing BNIP3L significantly halted mitophagy and enhanced the sensitivity to DXR in CSCs. Our data suggested that mitophagy, but not non-selective autophagy, likely contributes to drug resistance in CSCs isolated from HCT8 cells. Further studies in other cancer cell lines will be needed to confirm our findings.
Collapse
|