1
|
Zhang W, Wu H, Liao Y, Zhu C, Zou Z. Caspase family in autoimmune diseases. Autoimmun Rev 2025; 24:103714. [PMID: 39638102 DOI: 10.1016/j.autrev.2024.103714] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Programmed cell death (PCD) plays a crucial role in maintaining tissue homeostasis, with its primary forms including apoptosis, pyroptosis, and necroptosis. The caspase family is central to these processes, and its complex functions across different cell death pathways and other non-cell death roles have been closely linked to the pathogenesis of autoimmune diseases. This article provides a comprehensive review of the role of the caspase family in autoimmune diseases such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), type 1 diabetes (T1D), and multiple sclerosis (MS). It particularly emphasizes the intricate functions of caspases within various cell death pathways and their potential as therapeutic targets, thereby offering innovative insights and a thorough discussion in this field. In terms of therapy, strategies targeting caspases hold significant promise. We emphasize the importance of a holistic understanding of caspases in the overall concept of cell death, exploring their unique functions and interrelationships across multiple cell death pathways, including apoptosis, pyroptosis, necroptosis, and PANoptosis. This approach transcends the limitations of previous studies that focused on singular cell death pathways. Additionally, caspases play a key role in non-cell death functions, such as immune cell activation, cytokine processing, inflammation regulation, and tissue repair, thereby opening new avenues for the treatment of autoimmune diseases. Regulating caspase activity holds the potential to restore immune balance in autoimmune diseases. Potential therapeutic approaches include small molecule inhibitors (both reversible and irreversible), biological agents (such as monoclonal antibodies), and gene therapies. However, achieving specific modulation of caspases to avoid interference with normal physiological functions remains a major challenge. Future research must delve deeper into the regulatory mechanisms of caspases and their associated complexes linked to PANoptosis to facilitate precision medicine. In summary, this article offers a comprehensive and in-depth analysis, providing a novel perspective on the complex roles of caspases in autoimmune diseases, with the potential to catalyze breakthroughs in understanding disease mechanisms and developing therapeutic strategies.
Collapse
Affiliation(s)
- Wangzheqi Zhang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China; School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Huang Wu
- Basic Medical University, Naval Medical University, Shanghai 200433, China
| | - Yan Liao
- School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Chenglong Zhu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China; School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China.
| | - Zui Zou
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China; School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China.
| |
Collapse
|
2
|
Yu HC, Wang ST, Lu MC. Dysregulated Non-Coding RNA Expression in T Cells from Patients with Ankylosing Spondylitis Contributes to Its Immunopathogenesis. Biomedicines 2024; 12:1873. [PMID: 39200337 PMCID: PMC11351219 DOI: 10.3390/biomedicines12081873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Ankylosing spondylitis (AS) is a chronic inflammatory disorder characterized by inflammatory back pain and bony fusion of vertebral joints. Genetic associations and environmental factors have been proposed to explain the immunopathogenesis of AS. In the past few years, there have been major advances in understanding T cell dysfunction in AS. Clinically, targeting interleukin-17A, a major cytokine secreted by T helper 17 cells, has been approved for treating patients with active AS. Non-coding RNAs (ncRNAs) are RNA transcripts that do not translate into proteins. The ncRNAs regulate both innate and adaptive immunity and participate in the pathogenesis of autoimmune diseases, including AS. The main purpose of this article is to review the up-to-date studies investigating the aberrant expression of ncRNAs in T cells from patients with AS and to summarize their roles in its pathogenesis. After searching PubMed for studies published between January 2013 and June 2024, nine studies investigating the expression of ncRNAs in AS T cells were included. We found that aberrantly expressed ncRNAs in AS T cells could cause abnormal cytokine release, cell signaling abnormalities, and dysregulated cell proliferation and death, which contribute to the immunopathogenesis of AS. We discussed some limitations of these studies and suggested several research fields for further investigation.
Collapse
Affiliation(s)
- Hui-Chun Yu
- Division of Allergy, Immunology and Rheumatology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 622401, Taiwan
| | - Sz-Tsan Wang
- Division of Allergy, Immunology and Rheumatology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 622401, Taiwan
| | - Ming-Chi Lu
- Division of Allergy, Immunology and Rheumatology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 622401, Taiwan
- School of Medicine, Tzu Chi University, Hualien 970374, Taiwan
| |
Collapse
|
3
|
Ai X, Yu H, Cai Y, Guan Y. Interactions Between Extracellular Vesicles and Autophagy in Neuroimmune Disorders. Neurosci Bull 2024; 40:992-1006. [PMID: 38421513 PMCID: PMC11251008 DOI: 10.1007/s12264-024-01183-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 11/15/2023] [Indexed: 03/02/2024] Open
Abstract
Neuroimmune disorders, such as multiple sclerosis, neuromyelitis optica spectrum disorder, myasthenia gravis, and Guillain-Barré syndrome, are characterized by the dysfunction of both the immune system and the nervous system. Increasing evidence suggests that extracellular vesicles and autophagy are closely associated with the pathogenesis of these disorders. In this review, we summarize the current understanding of the interactions between extracellular vesicles and autophagy in neuroimmune disorders and discuss their potential diagnostic and therapeutic applications. Here we highlight the need for further research to fully understand the mechanisms underlying these disorders, and to develop new diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Xiwen Ai
- Department of Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, 200127, China
| | - Haojun Yu
- Department of Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, 200127, China
| | - Yu Cai
- Department of Neurology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA.
| | - Yangtai Guan
- Department of Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, 200127, China.
| |
Collapse
|
4
|
Mohammed OA, Alghamdi M, Adam MIE, BinAfif WF, Alfaifi J, Alamri MMS, Alqarni AA, Alhalafi AH, Bahashwan E, AlQahtani AAJ, Ayed A, Hassan RH, Abdel-Reheim MA, Abdel Mageed SS, Rezigalla AA, Doghish AS. miRNAs dysregulation in ankylosing spondylitis: A review of implications for disease mechanisms, and diagnostic markers. Int J Biol Macromol 2024; 268:131814. [PMID: 38677679 DOI: 10.1016/j.ijbiomac.2024.131814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
Epigenetic processes, including non-coding RNA, histone modifications, and DNA methylation, play a vital role in connecting the environment to the development of a disorder, especially when there is a favorable genetic background. Ankylosing Spondylitis (AS) is a chronic type of spinal arthritis that highlights the significance of epigenetics in diseases related to autoimmunity and inflammation. MicroRNAs (miRNAs) are small non-coding RNAs that are involved in both normal and aberrant pathological and physiological gene expression. This study focuses on the pathophysiological pathways to clarify the role of miRNAs in AS. We have conducted a thorough investigation of the involvement of miRNAs in several processes, including inflammation, the production of new bone, T-cell activity, and the regulation of pathways such as BMP, Wnt, and TGFβ signaling. Undoubtedly, miRNAs play a crucial role in enhancing our comprehension of the pathophysiology of AS, and their promise as a therapeutic strategy is quickly expanding.
Collapse
Affiliation(s)
- Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mushabab Alghamdi
- Department of Internal Medicine, Division of Rheumatology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Masoud I E Adam
- Department of Medical Education and Internal Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Waad Fuad BinAfif
- Department of Internal Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Jaber Alfaifi
- Department of Child Health, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mohannad Mohammad S Alamri
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Abdullah Ali Alqarni
- Department of Internal Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Abdullah Hassan Alhalafi
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Emad Bahashwan
- Department of Internal Medicine, Division of Dermatology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - AbdulElah Al Jarallah AlQahtani
- Department of Internal Medicine, Division of Dermatology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Abdullah Ayed
- Department of Surgery, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Rania H Hassan
- Dermatology Clinic, Abbasseya Psychiatric Hospital, Abbasseya, Cairo 11517, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Assad Ali Rezigalla
- Department of Anatomy, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
5
|
Syed NH, Mussa A, Elmi AH, Jamal Al-Khreisat M, Ahmad Mohd Zain MR, Nurul AA. Role of MicroRNAs in Inflammatory Joint Diseases: A Review. Immunol Invest 2024; 53:185-209. [PMID: 38095847 DOI: 10.1080/08820139.2023.2293095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/03/2023] [Indexed: 03/23/2024]
Abstract
Inflammatory arthritis commonly initiates in the soft tissues lining the joint. This lining swells, as do the cells in it and inside the joint fluid, producing chemicals that induce inflammation signs such as heat, redness, and swelling. MicroRNA (miRNA), a subset of non-coding small RNA molecules, post-transcriptionally controls gene expression by targeting their messenger RNA. MiRNAs modulate approximately 1/3 of the human genome with their multiple targets. Recently, they have been extensively studied as key modulators of the innate and adaptive immune systems in diseases such as allergic disorders, types of cancer, and cardiovascular diseases. However, research on the different inflammatory joint diseases, such as rheumatoid arthritis, gout, Lyme disease, ankylosing spondylitis, and psoriatic arthritis, remains in its infancy. This review presents a deeper understanding of miRNA biogenesis and the functions of miRNAs in modulating the immune and inflammatory responses in the above-mentioned inflammatory joint diseases. According to the literature, it has been demonstrated that the development of inflammatory joint disorders is closely related to different miRNAs and their specific regulatory mechanisms. Furthermore, they may present as possible prognostic and diagnostic biomarkers for all diseases and may help in developing a therapeutic response. However, further studies are needed to determine whether manipulating miRNAs can influence the development and progression of inflammatory joint disorders.
Collapse
Affiliation(s)
- Nazmul Huda Syed
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Ali Mussa
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
- Department of Biology, Faculty of Education, Omdurman Islamic University, Omdurman, Sudan
| | - Abdirahman Hussein Elmi
- Department of Microbiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Mutaz Jamal Al-Khreisat
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | | | - Asma Abdullah Nurul
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| |
Collapse
|
6
|
Tavasolian F, Lively S, Pastrello C, Tang M, Lim M, Pacheco A, Qaiyum Z, Yau E, Baskurt Z, Jurisica I, Kapoor M, Inman RD. Proteomic and genomic profiling of plasma exosomes from patients with ankylosing spondylitis. Ann Rheum Dis 2023; 82:1429-1443. [PMID: 37532285 DOI: 10.1136/ard-2022-223791] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/14/2023] [Indexed: 08/04/2023]
Abstract
INTRODUCTION Recent advances in understanding the biology of ankylosing spondylitis (AS) using innovative genomic and proteomic approaches offer the opportunity to address current challenges in AS diagnosis and management. Altered expression of genes, microRNAs (miRNAs) or proteins may contribute to immune dysregulation and may play a significant role in the onset and persistence of inflammation in AS. The ability of exosomes to transport miRNAs across cells and alter the phenotype of recipient cells has implicated exosomes in perpetuating inflammation in AS. This study reports the first proteomic and miRNA profiling of plasma-derived exosomes in AS using comprehensive computational biology analysis. METHODS Plasma samples from patients with AS and healthy controls (HC) were isolated via ultracentrifugation and subjected to extracellular vesicle flow cytometry analysis to characterise exosome surface markers by a multiplex immunocapture assay. Cytokine profiling of plasma-derived exosomes and cell culture supernatants was performed. Next-generation sequencing was used to identify miRNA populations in exosomes enriched from plasma fractions. CD4+ T cells were sorted, and the frequency and proliferation of CD4+ T-cell subsets were analysed after treatment with AS-exosomes using flow cytometry. RESULTS The expression of exosome marker proteins CD63 and CD81 was elevated in the patients with AS compared with HC (q<0.05). Cytokine profiling in plasma-derived AS-exosomes demonstrated downregulation of interleukin (IL)-8 and IL-10 (q<0.05). AS-exosomes cocultured with HC CD4+ T cells induced significant upregulation of IFNα2 and IL-33 (q<0.05). Exosomes from patients with AS inhibited the proliferation of regulatory T cells (Treg), suggesting a mechanism for chronically activated T cells in this disease. Culture of CD4+ T cells from healthy individuals in the presence of AS-exosomes reduced the proliferation of FOXP3+ Treg cells and decreased the frequency of FOXP3+IRF4+ Treg cells. miRNA sequencing identified 24 differentially expressed miRNAs found in circulating exosomes of patients with AS compared with HC; 22 of which were upregulated and 2 were downregulated. CONCLUSIONS Individuals with AS have different immunological and genetic profiles, as determined by evaluating the exosomes of these patients. The inhibitory effect of exosomes on Treg in AS suggests a mechanism contributing to chronically activated T cells in this disease.
Collapse
Affiliation(s)
- Fataneh Tavasolian
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Starlee Lively
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
| | - Chiara Pastrello
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
- Krembil Research Institute, - Data Science Discovery Centre for Chronic Diseases, University Health Network, Toronto, Ontario, Canada
| | - Michael Tang
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Melissa Lim
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Addison Pacheco
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Zoya Qaiyum
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Enoch Yau
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Zeynep Baskurt
- Department of Biostatistics, Princess Margaret Cancer Center, 610 University Ave, Toronto, Ontario, Canada
| | - Igor Jurisica
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
- Krembil Research Institute, - Data Science Discovery Centre for Chronic Diseases, University Health Network, Toronto, Ontario, Canada
- Departments of Medical Biophysics and Computer Science, and Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Mohit Kapoor
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
- Department of Surgery, Division of Orthopaedic Surgery and Department of Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Robert D Inman
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Spondylitis Program, Division of Rheumatology, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
7
|
You B, Zhang P, Gu M, Yin H, Fan Y, Yao H, Pan S, Xie H, Cheng T, Liu H, You Y, Liu J. Let-7i-5p promotes a malignant phenotype in nasopharyngeal carcinoma via inhibiting tumor-suppressive autophagy. Cancer Lett 2022; 531:14-26. [DOI: 10.1016/j.canlet.2022.01.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/15/2022] [Accepted: 01/16/2022] [Indexed: 02/08/2023]
|
8
|
Sadri Nahand J, Salmaninejad A, Mollazadeh S, Tamehri Zadeh SS, Rezaee M, Sheida AH, Sadoughi F, Dana PM, Rafiyan M, Zamani M, Taghavi SP, Dashti F, Mirazimi SMA, Bannazadeh Baghi H, Moghoofei M, Karimzadeh M, Vosough M, Mirzaei H. Virus, Exosome, and MicroRNA: New Insights into Autophagy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1401:97-162. [DOI: 10.1007/5584_2022_715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Motta F, Pederzani A, Carena MC, Ceribelli A, Wordsworth PB, De Santis M, Selmi C, Vecellio M. MicroRNAs in Axial Spondylarthritis: an Overview of the Recent Progresses in the Field with a Focus on Ankylosing Spondylitis and Psoriatic Arthritis. Curr Rheumatol Rep 2021; 23:59. [PMID: 34216293 PMCID: PMC8254706 DOI: 10.1007/s11926-021-01027-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2021] [Indexed: 12/18/2022]
Abstract
Purpose of Review To highlight the recent discoveries and lines of evidence on the role of microRNAs in ankylosing spondylitis (AS) and psoriatic arthritis (PsA), focusing on their expression profiling and mechanisms of action. Recent Findings AS and PsA are chronic inflammatory musculoskeletal diseases with axial manifestations and represent an excellent model for studying microRNAs contribution to the disease pathogenesis, particularly through immunomodulation, inflammation, and bone remodelling, or their value as candidate diagnostic and prognostic biomarkers. Summary MicroRNAs are single-stranded nucleotides able to regulate gene expression. They are a key component of the epigenetic machinery, involved in physiological and pathological processes. The contribution of microRNAs in AS and PsA (such as miR-29a in regulating bone metabolism) is highlighted by several works in the field but their utility as possible markers must be still confirmed, particularly in larger patients’ cohorts.
Collapse
Affiliation(s)
- Francesca Motta
- Division of Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Andrea Pederzani
- Division of Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | | | - Angela Ceribelli
- Division of Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Paul B Wordsworth
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Maria De Santis
- Division of Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Carlo Selmi
- Division of Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Matteo Vecellio
- Division of Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy. .,Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK.
| |
Collapse
|
10
|
Sun S, Xu Y, Zhu Z, Kong D, Liu H, Zhou Z, Wang L. MicroRNA let-7i-3p affects osteoblast differentiation in ankylosing spondylitis via targeting PDK1. Cell Cycle 2021; 20:1209-1219. [PMID: 34048311 DOI: 10.1080/15384101.2021.1930680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Ankylosing spondylitis (AS) is a chronic autoimmune disease in which let-7i has been studied to involved. But, whether let-7i-3p could regulate osteoblast differentiation in AS remains unclear. This research targeted to decipher the impact of let-7i-3p on AS progression by modulating pyruvate dehydrogenase kinase 1 (PDK1). The bone mineral density of femur and lumbar vertebra and the maximum loading and bending elastic modulus of tibia, tumor necrosis factor-α (TNF-α), matrix metalloproteinase (MMP)-3, osteoprotegerin (OPG) and receptor activator of nuclear factor-κB ligand (RANKL) in serum of AS mice, the pathological condition of synovial tissue were determined via let-7i-3p inhibitor and OE-PDK1 in animal experiment. Also, the cell viability and ALP activity were measured by let-7i-3p inhibitor and OE-PDK1 in cell experiments. let-7i-3p and PDK1 expression were detected. Let-7i-3p raised and PDK1 declined in AS mice. Depleted let-7i-3p and restored PDK1 increased bone mineral density and maximum loading and bending elastic modulus of tibia, reduced TNF-α, MMP-3 and RANKL contents, attenuated the pathological condition of synovial tissue and raised OPG content in AS mice. In cell experiments, up-regulating PDK1 and down-regulating let-7i-3p enhanced cell viability and ALP activity in AS mice. Low expression of let-7i-3p could enhance osteoblast differentiation in AS by up-regulating PDK1.Abbreviations: AS: Ankylosing spondylitis; PDK1: pyruvate dehydrogenase kinase 1; TNF-α: tumor necrosis factor-α MMP: matrix metalloproteinase; OPG: osteoprotegerin; RANKL: receptor activator of nuclear factor-κB ligand; miRNAs: MicroRNAs; BMD: bone mineral density; PFA: paraformaldehyde; NC: negative control; OE: overexpression; HE: Hematoxylin-eosin; PBS: phosphate-buffered saline; EDTA: ethylene diamine tetraacetic acid; DMEM: Dulbecco's Modified Eagle Medium; RT-qPCR: Reverse transcription quantitative polymerase chain reaction; GAPDH: glyceraldehyde phosphate dehydrogenase; UTR: untranslated region; WT: wild type; MUT: mutant type.
Collapse
Affiliation(s)
- Sixin Sun
- Department of Orthopaedics, Taixing People's Hospital, Taixing, China
| | - Ying Xu
- Department of Rehabilitation, Taixing People's Hospital, Taixing, China
| | - Zhijun Zhu
- Department of Orthopaedics, Taixing People's Hospital, Taixing, China
| | - Dequn Kong
- Department of Orthopaedics, Taixing People's Hospital, Taixing, China
| | - Hongming Liu
- Department of Orthopaedics, Taixing People's Hospital, Taixing, China
| | - Zhao Zhou
- Department of Orthopaedics, Taixing People's Hospital, Taixing, China
| | - Lei Wang
- Department of Orthopedics, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
11
|
MicroRNAs in the regulation of autophagy and their possible use in age-related macular degeneration therapy. Ageing Res Rev 2021; 67:101260. [PMID: 33516915 DOI: 10.1016/j.arr.2021.101260] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 12/14/2022]
Abstract
Age-related macular degeneration (AMD) is a progressive sight-impairing disease of the elderly. The pathogenic mechanisms of AMD are not well understood although both genetic and many environmental factors have been associated with the development of AMD. One clinical hallmark of AMD is the detrimental aggregation of damaged proteins. Recently, it has been suggested that the weakening of autophagy clearance is an important mechanism in the pathogenesis of AMD. Autophagy is important in the removal of damaged or no longer needed cellular material and its recycling. A considerable number of autophagy-targeting microRNAs (miRNAs), small RNA molecules and epigenetic regulators have been found to be either up- or down-regulated in AMD patients and experimental models. The important role of autophagy-targeting miRNAs is supported by several studies and can open the prospect of the use of these miRNAs in the therapy for AMD.
Collapse
|
12
|
Yang H, Chen Y, Xu W, Shao M, Deng J, Xu S, Gao X, Guan S, Wang J, Xu S, Shuai Z, Pan F. Epigenetics of ankylosing spondylitis: Recent developments. Int J Rheum Dis 2021; 24:487-493. [PMID: 33608999 DOI: 10.1111/1756-185x.14080] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 12/15/2022]
Abstract
Ankylosing spondylitis (AS) is a chronic inflammatory autoimmune disease which mainly affects the spine, sacroiliac joint and peripheral joints. To date, the exact causes and pathogenesis of AS still remain unknown. It is considered that the pathogenesis of AS is associated with genetic, infection, environment, immunity and other factors. Among them, the role of genetic factors in the pathogenesis of AS has been studied most deeply. However, over the past few years, the function of environmental predisposition and epigenetic modification in the pathogenesis of AS has received extensive attention. This paper summarizes the recent progress in the epigenetics of AS, including abnormal epigenetic modifications at AS-associated genomic loci, such as DNA methylation, histone modification, microRNA, and so on. In summary, the findings of this review attempt to explain the role of epigenetic modification in the occurrence and development of AS. Nevertheless, there are still unknown and complicated aspects worth exploring to deepen our understanding of the pathogenesis of AS.
Collapse
Affiliation(s)
- Hui Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Yuting Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Wei Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Ming Shao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Jixiang Deng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Shanshan Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Xing Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Shiyang Guan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Jinian Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Shengqian Xu
- Department of Rheumatism and Immunity, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zongwen Shuai
- Department of Rheumatism and Immunity, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| |
Collapse
|
13
|
Hu L, Chen X, Qiu S, Yang J, Liu H, Zhang J, Zhang D, Wang F. Intra-Pancreatic Insulin Nourishes Cancer Cells: Do Insulin-Receptor Antagonists such as PGG and EGCG Play a Role? THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:1005-1019. [PMID: 32468825 DOI: 10.1142/s0192415x20500482] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Harboring insulin-producing cells, the pancreas has more interstitial insulin than any other organ. In vitro, insulin activates both insulin receptor (IR) and insulin-like growth factor-1 receptor (IGF1R) to stimulate pancreatic cancer cells. Whether intra-pancreatic insulin nourishes pancreatic cancer cells in vivo remains uncertain. In the present studies, we transplanted human pancreatic cancer cells orthotopically in euglycemic athymic mice whose intra-pancreatic insulin was intact or was decreased following pretreatment with streptozotocin (STZ). In the next eight weeks, the tumor carriers were treated with one of the IR/IGF1R antagonists penta-O-galloyl-[Formula: see text]-D-glucose (PGG) and epigallocatechin gallate (EGCG) or treated with vehicle. When pancreatic tumors were examined, their fraction occupied with living cells was decreased following STZ pretreatment and/or IR/IGF1R antagonism. Using Western blot, we examined tumor grafts for IR/IGF1R expression and activity. We also determined proteins that were downstream to IR/IGF1R and responsible for signal transduction, glycolysis, angiogenesis, and apoptosis. We demonstrated that STZ-induced decrease in intra-pancreatic insulin reduced IR/IGF1R expression and activity, decreased the proteins that promoted cell survival, and increased the proteins that promoted apoptosis. These suggest that intra-pancreatic insulin supported local cancer cells. When tumor carriers were treated with PGG or EGCG, the results were similar to those seen following STZ pretreatment. Thus, the biggest changes in examined proteins were usually seen when STZ pretreatment and PGG/EGCG treatment concurred. This suggests that intra-pancreatic insulin normally combated pharmacologic effects of PGG and EGCG. In conclusion, intra-pancreatic insulin nourishes pancreatic cancer cells and helps the cells resist IR/IGF1R antagonism.
Collapse
Affiliation(s)
- Lijuan Hu
- The Laboratory of Acute Abdomen Disease Associated, Organ Injury and Repair, Nankai Hospital Affiliated to Nankai University, Tianjin 300100, P. R. China
| | - Xijuan Chen
- The Graduate School, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Shuai Qiu
- The Graduate School, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Jing Yang
- The Graduate School, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Hongyi Liu
- The Laboratory of Acute Abdomen Disease Associated, Organ Injury and Repair, Nankai Hospital Affiliated to Nankai University, Tianjin 300100, P. R. China
| | - Jie Zhang
- The Laboratory of Acute Abdomen Disease Associated, Organ Injury and Repair, Nankai Hospital Affiliated to Nankai University, Tianjin 300100, P. R. China
| | - Dapeng Zhang
- The Laboratory of Acute Abdomen Disease Associated, Organ Injury and Repair, Nankai Hospital Affiliated to Nankai University, Tianjin 300100, P. R. China
| | - Feng Wang
- The Laboratory of Acute Abdomen Disease Associated, Organ Injury and Repair, Nankai Hospital Affiliated to Nankai University, Tianjin 300100, P. R. China
| |
Collapse
|
14
|
Liu Y, Jiang Y, Li W, Han C, Qi Z. MicroRNA and mRNA analysis of angiotensin II-induced renal artery endothelial cell dysfunction. Exp Ther Med 2020; 19:3723-3737. [PMID: 32346437 PMCID: PMC7185074 DOI: 10.3892/etm.2020.8613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 01/17/2020] [Indexed: 12/17/2022] Open
Abstract
Continuous activation of angiotensin II (Ang II) induces renal vascular endothelial dysfunction, inflammation and oxidative stress, all of which may contribute to renal damage. MicroRNAs (miRs/miRNAs) play a crucial regulatory role in the pathogenesis of hypertensive nephropathy (HN). The present study aimed to assess the differential expression profiles of potential candidate genes involved in Ang II-induced rat renal artery endothelial cell (RRAEC) dysfunction and explore their possible functions. In the present study, the changes in energy metabolism and autophagy function in RRAECs were evaluated using the Seahorse XF Glycolysis Stress Test and dansylcadaverine/transmission electron microscopy following exposure to Ang II. Subsequently, mRNA-miRNA sequencing experiments were performed to determine the differential expression profiles of mRNAs and miRNAs. Integrated bioinformatics analysis was applied to further explore the molecular mechanisms of Ang II on endothelial injury induced by Ang II. The present data supported the notion that Ang II upregulated glycolysis levels and promoted autophagy activation in RRAECs. The sequencing data demonstrated that 443 mRNAs and 58 miRNAs were differentially expressed (DE) in response to Ang II exposure, where 66 mRNAs and 55 miRNAs were upregulated, while 377 mRNAs and 3 miRNAs were downregulated (fold change >1.5 or <0.67; P<0.05). Functional analysis indicated that DE mRNA and DE miRNA target genes were mainly associated with cell metabolism (metabolic pathways), differentiation (Th1 and Th2 cell differentiation), autophagy (autophagy-animal and autophagy-other) and repair (RNA-repair). To the best of the authors' knowledge, this is the first report on mRNA-miRNA integrated profiles of Ang II-induced RRAECs. The present results provided evidence suggesting that the miRNA-mediated effect on the ‘mTOR signaling pathway’ might play a role in Ang II-induced RRAEC injury by driving glycolysis and autophagy activation. Targeting miRNAs and their associated pathways may provide valuable insight into the clinical management of HN and may improve patient outcome.
Collapse
Affiliation(s)
- Yao Liu
- Department of Clinical Chinese Medicine integrated with Western Medicine, First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| | - Yuehua Jiang
- Central Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| | - Wei Li
- Nephropathy Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| | - Cong Han
- Department of Clinical Chinese Medicine integrated with Western Medicine, First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| | - Zhenqiang Qi
- Department of Clinical Chinese Medicine integrated with Western Medicine, First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
15
|
Emamgolizadeh Gurt Tapeh B, Mosayyebi B, Samei M, Beyrampour Basmenj H, Mohammadi A, Alivand MR, Hassanpour P, Solali S. microRNAs involved in T-cell development, selection, activation, and hemostasis. J Cell Physiol 2020; 235:8461-8471. [PMID: 32324267 DOI: 10.1002/jcp.29689] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 03/12/2020] [Accepted: 03/23/2020] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) characterized by small, noncoding RNAs have a fundamental role in the regulation of gene expression at the post-transcriptional level. Additionally, miRNAs have recently been identified as potential regulators of various genes involved in the pathogenesis of the autoimmune and inflammatory disease. So far, the interaction between miRNAs and T lymphocytes in the immune response as a new and significant topic has not been emphasized substantially. The role of miRNAs in different biological processes including apoptosis, immune checkpoints and the activation of immune cells is still unclear. Aberrant miRNA expression profile affects various aspects of T-cell function. Accordingly, in this literature review, we summarized the role of significant miRNAs in T-cell development processes. Consequently, we demonstrated precise mechanisms that candidate miRNAs interfere in Immune response mediated by different types of T cells. We believe that a good understanding of the interaction between miRNAs and immune response contributes to the new therapeutic strategies in relation to disease with an immunological origin.
Collapse
Affiliation(s)
- Behnam Emamgolizadeh Gurt Tapeh
- Division of Hematology and Transfusion Medicine, Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bashir Mosayyebi
- Department of Medical Biotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdieh Samei
- Department of Immunology, Gorgan University of Medical Sciences, Gorgan, Iran
| | | | - Ali Mohammadi
- Department of cancer and inflammation, University of Southern Denmark, Odense, Denmark
| | - Mohammad R Alivand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parviz Hassanpour
- Department of Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Solali
- Division of Hematology and Transfusion Medicine, Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
16
|
Motta F, Carena MC, Selmi C, Vecellio M. MicroRNAs in ankylosing spondylitis: Function, potential and challenges. J Transl Autoimmun 2020; 3:100050. [PMID: 32743531 PMCID: PMC7388379 DOI: 10.1016/j.jtauto.2020.100050] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 03/16/2020] [Indexed: 12/24/2022] Open
Abstract
Epigenetic mechanisms such as DNA methylation, histone modifications and non-coding RNA, are considered the essential connection between a disorder's onset and the environment, on a permissive genetic background. Among autoimmune and inflammatory-mediated disorders, Ankylosing Spondylitis (AS), a chronic arthritis of the spine, is a very good example for the weight of epigenetics' contribution. MicroRNAs (miRNAs) are single-stranded nucleotides which regulate gene expression and are involved in pathological and physiological processes. In this manuscript we provide a clarification on the role of microRNAs in AS, with a focus on the mechanisms of pathogenesis. In specific, we have examined the contribution of miRNAs in the processes of inflammation, new bone formation and T-cell function, and the pathways (i.e. Wnt, BMP, TGFβ signalling etc.) they regulate. The utility of miRNAs in better understanding AS pathogenesis is undisputed and their utility as therapeutic opportunity is strongly increasing.
Collapse
Affiliation(s)
- Francesca Motta
- Division of Rheumatology and Clinical Immunology, Humanitas Research Hospital, IRCCS, Rozzano, Milan, Italy
| | - Maria Cristina Carena
- Humanitas Research Hospital, Rozzano, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Carlo Selmi
- Division of Rheumatology and Clinical Immunology, Humanitas Research Hospital, IRCCS, Rozzano, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Italy
| | - Matteo Vecellio
- Division of Rheumatology and Clinical Immunology, Humanitas Research Hospital, IRCCS, Rozzano, Milan, Italy.,Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
17
|
Akkoc Y, Gozuacik D. MicroRNAs as major regulators of the autophagy pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118662. [PMID: 32001304 DOI: 10.1016/j.bbamcr.2020.118662] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/13/2020] [Accepted: 01/23/2020] [Indexed: 01/17/2023]
Abstract
Autophagy is a cellular stress response mechanism activation of which leads to degradation of cellular components, including proteins as well as damaged organelles in lysosomes. Defects in autophagy mechanisms were associated with several pathologies (e.g. cancer, neurodegenerative diseases, and rare genetic diseases). Therefore, autophagy regulation is under strict control. Transcriptional and post-translational mechanisms that control autophagy in cells and organisms studied in detail. Recent studies introduced non-coding small RNAs, and especially microRNAs (miRNAs) in the post-translational orchestration of the autophagic activity. In this review article, we analyzed in detail the current status of autophagy-miRNA connections. Comprehensive documentation of miRNAs that were directly involved in autophagy regulation resulted in the emergence of common themes and concepts governing these complex and intricate interactions. Hence, a better and systematic understanding of these interactions reveals a central role for miRNAs in the regulation of autophagy.
Collapse
Affiliation(s)
- Yunus Akkoc
- Sabanci University, Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Orhanli-Tuzla 34956, Istanbul, Turkey
| | - Devrim Gozuacik
- Sabanci University, Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Orhanli-Tuzla 34956, Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center, Sabanci University, Istanbul 34956, Turkey.
| |
Collapse
|
18
|
Hui Y, Wei PJ, Xia J, Wang YT, Zheng CH. MECoRank: cancer driver genes discovery simultaneously evaluating the impact of SNVs and differential expression on transcriptional networks. BMC Med Genomics 2019; 12:140. [PMID: 31888623 PMCID: PMC6936061 DOI: 10.1186/s12920-019-0582-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 09/10/2019] [Indexed: 01/09/2023] Open
Abstract
Background Although there are huge volumes of genomic data, how to decipher them and identify driver events is still a challenge. The current methods based on network typically use the relationship between genomic events and consequent changes in gene expression to nominate putative driver genes. But there may exist some relationships within the transcriptional network. Methods We developed MECoRank, a novel method that improves the recognition accuracy of driver genes. MECoRank is based on bipartite graph to propagates the scores via an iterative process. After iteration, we will obtain a ranked gene list for each patient sample. Then, we applied the Condorcet voting method to determine the most impactful drivers in a population. Results We applied MECoRank to three cancer datasets to reveal candidate driver genes which have a greater impact on gene expression. Experimental results show that our method not only can identify more driver genes that have been validated than other methods, but also can recognize some impactful novel genes which have been proved to be more important in literature. Conclusions We propose a novel approach named MECoRank to prioritize driver genes based on their impact on the expression in the molecular interaction network. This method not only assesses mutation’s effect on the transcriptional network, but also assesses the differential expression’s effect within the transcriptional network. And the results demonstrated that MECoRank has better performance than the other competing approaches in identifying driver genes.
Collapse
Affiliation(s)
- Ying Hui
- Key Lab of Intelligent Computing and Signal Processing of Ministry of Education, College of Computer Science and Technology, Anhui University, Hefei, China
| | - Pi-Jing Wei
- Key Lab of Intelligent Computing and Signal Processing of Ministry of Education, College of Computer Science and Technology, Anhui University, Hefei, China
| | - Junfeng Xia
- Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Yu-Tian Wang
- School of Software Engineering, Qufu Normal University, Qufu, China
| | - Chun-Hou Zheng
- Key Lab of Intelligent Computing and Signal Processing of Ministry of Education, College of Computer Science and Technology, Anhui University, Hefei, China.
| |
Collapse
|
19
|
Pu Q, Lin P, Wang Z, Gao P, Qin S, Cui L, Wu M. Interaction among inflammasome, autophagy and non-coding RNAs: new horizons for drug. PRECISION CLINICAL MEDICINE 2019; 2:166-182. [PMID: 31598387 PMCID: PMC6770284 DOI: 10.1093/pcmedi/pbz019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/22/2019] [Accepted: 08/25/2019] [Indexed: 02/07/2023] Open
Abstract
Autophagy and inflammasomes are shown to interact in various situations including
infectious disease, cancer, diabetes and neurodegeneration. Since multiple layers of
molecular regulators contribute to the interplay between autophagy and inflammasome
activation, the detail of such interplay remains largely unknown. Non-coding RNAs
(ncRNAs), which have been implicated in regulating an expanding list of cellular processes
including immune defense against pathogens and inflammatory response in cancer and
metabolic diseases, may join in the crosstalk between inflammasomes and autophagy in
physiological or disease conditions. In this review, we summarize the latest research on
the interlink among ncRNAs, inflammasomes and autophagy and discuss the emerging role of
these three in multiple signaling transduction pathways involved in clinical conditions.
By analyzing these intriguing interconnections, we hope to unveil the mechanism
inter-regulating these multiple processes and ultimately discover potential drug targets
for some refractory diseases.
Collapse
Affiliation(s)
- Qinqin Pu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA.,State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ping Lin
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Zhihan Wang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Pan Gao
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shugang Qin
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Luqing Cui
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| |
Collapse
|
20
|
Duan S, Yu S, Yuan T, Yao S, Zhang L. Exogenous Let-7a-5p Induces A549 Lung Cancer Cell Death Through BCL2L1-Mediated PI3Kγ Signaling Pathway. Front Oncol 2019; 9:808. [PMID: 31508368 PMCID: PMC6716507 DOI: 10.3389/fonc.2019.00808] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 08/07/2019] [Indexed: 01/07/2023] Open
Abstract
Elevated expression of let-7a-5p contributes to suppression of lung cancer, in which let-7a-5p, as exosome cargo, can be transported from macrophages to lung cancer cells, yet the role of let-7a-5p remains unclear. Utilizing bioinformatics methods and cellular experiments, this study was designed and conducted to identify let-7a-5p regulatory network in lung cancer. Bioinformatics analysis and Kaplan-Meier survival analysis revealed that let-7a-5p could directly target BCL2L1, and aberrant expression of let-7a-5p affects the survival of lung cancer patients, which was confirmed in A549 lung cancer cells using luciferase reporter assay. Moreover, let-7a-5p inhibited BCL2L1 expression and suppressed lung cancer cell proliferation, migration, and invasion. Functionally, overexpression of let-7a-5p promoted both autophagy and cell death in A549 lung cancer cells through PI3Kγ signaling pathway, whereas the apoptosis and pyroptosis of A549 lung cancer cells were unaffected. Furthermore, aberrant expression of BCL2L1 significantly altered the expression of lung cancer biomarkers such as MYC, EGFR, and Vimentin. To sum up, these data demonstrate that exogenous let-7a-5p induces A549 lung cancer cell death through BCL2L1-mediated PI3Kγ signaling pathway, which may be a useful target for lung cancer treatment.
Collapse
Affiliation(s)
- Shuyin Duan
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Maternal and Child Health Care Hospital, Jinan, China
- School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Songcheng Yu
- School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Teng Yuan
- College of Jitang, North China University of Science and Technology, Tangshan, China
| | - Sanqiao Yao
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Lin Zhang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Maternal and Child Health Care Hospital, Jinan, China
- School of Public Health and Management, Weifang Medical University, Weifang, China
| |
Collapse
|
21
|
Li F, Si D, Guo X, Guo N, Li D, Zhang L, Jian X, Ma J. Aberrant expression of miR‑130a‑3p in ankylosing spondylitis and its role in regulating T‑cell survival. Mol Med Rep 2019; 20:3388-3394. [PMID: 31432140 DOI: 10.3892/mmr.2019.10573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 03/06/2019] [Indexed: 11/09/2022] Open
Abstract
Ankylosing spondylitis (AS) is a chronic inflammatory rheumatic disease. MicroRNAs (miRNAs) are a group of endogenous small non‑coding RNAs that regulate target genes, and play a critical role in many biological processes. However, the underlying mechanism of specific miRNA, miR‑130a‑3p, in AS remains largely unknown. Therefore, the present study aimed to explore the underlying mechanism of miR‑130a‑3p in the development of AS. In the present study, it was revealed that miR‑130a‑3p was downregulated in T cells from HLA‑B27‑positive AS patients compared with the HLA‑B27‑negative healthy controls. Next, bioinformatics software TargetScan 7.2 was used to predict the target genes of miR‑130a‑3p, and a luciferase reporter assay indicated that HOXB1 was the direct target gene of miR‑130a‑3p. Furthermore, it was determined that HOXB1 expression was upregulated in T cells from HLA‑B27‑positive AS patients. In addition, the results of the present study indicated that miR‑130a‑3p inhibitor significantly inhibited cell proliferation ability and induced cell apoptosis of Jurkat T cells, while the miR‑130a‑3p mimic promoted proliferation ability and inhibited cell apoptosis of Jurkat T cells. Notably, all the effects of the miR‑130a‑3p mimic on Jurkat T cells were reversed by HOXB1‑plasmid. Collectively, our data indicated that miR‑130a‑3p was decreased in T cells from AS patients and it could regulate T‑cell survival by targeting HOXB1.
Collapse
Affiliation(s)
- Fengju Li
- Department of Rheumatism and Immunology, Puyang Oilfield General Hospital, Puyang, Henan 457001, P.R. China
| | - Dingran Si
- Department of Cardiovascular Medicine, Puyang Oilfield General Hospital, Puyang, Henan 457001, P.R. China
| | - Xuejun Guo
- Department of Hematology, Puyang Oilfield General Hospital, Puyang, Henan 457001, P.R. China
| | - Ningru Guo
- Department of Rheumatism and Immunology, Puyang Oilfield General Hospital, Puyang, Henan 457001, P.R. China
| | - Dandan Li
- Department of Rheumatism and Immunology, Puyang Oilfield General Hospital, Puyang, Henan 457001, P.R. China
| | - Liujing Zhang
- Department of Rheumatism and Immunology, Puyang Oilfield General Hospital, Puyang, Henan 457001, P.R. China
| | - Xianan Jian
- Department of Rheumatism and Immunology, Puyang Oilfield General Hospital, Puyang, Henan 457001, P.R. China
| | - Jiasheng Ma
- Department of Rheumatism and Immunology, Puyang Oilfield General Hospital, Puyang, Henan 457001, P.R. China
| |
Collapse
|
22
|
Zhao Z, Wen J, Peng L, Liu H. Upregulation of Insulin-Like Growth Factor-1 Receptor (IGF-1R) Reverses the Inhibitory Effect of Let-7g-5p on Migration and Invasion of Nasopharyngeal Carcinoma. Med Sci Monit 2019; 25:5747-5756. [PMID: 31374070 PMCID: PMC6689202 DOI: 10.12659/msm.914555] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Let-7 microRNAs (miRNAs) have the effects of inhibiting tumor growth and metastasis, however, the research in nasopharyngeal carcinoma (NPC) is limited. This study focused on the effects of Let-7 on NPC migration and invasion and the mechanism of action. Material/Methods Plasmid transfection was used to upregulate the expression levels of Let-7g-5p and insulin-like growth factor-1 receptor (IGF-1R). Cell counting kit-8 (CCK-8) assay was applied to test the cell viability. Scratch assay and Transwell assay were performed to detect the migration and invasion abilities. Bioinformatics prediction and luciferase reporter assay were used to determine and verify the downstream target genes for Let-7g-5p. Protein and mRNA were detected by western blot and real-time quantitative polymerase chain reaction (RT-qPCR), respectively. Results Let-7g-5p was under-expressed in human NPC cells. Overexpression of Let-7g-5p could inhibit cell viability and inhibit the migration and invasion of SUNE1 cells. The dual-luciferase reporter assay showed that IGF-1R was a direct target gene of Let-7g-5p, which was directly regulated IGF-1R expression by 3′UTR. Let-7g-5p overexpression could inhibit the expression of IGF-1R gene, and upregulation of IGF-1R gene expression reversed the inhibitory effect of Let-7g-5p on cell viability and epithelial-mesenchymal transition processes. Conclusions Let-7g-5p is lowly expressed in NPC and it was the first to discover that IGF-1R was a target gene of let-7g-5p in NPC. Upregulation of IGF-1R reversed the inhibitory effect of Let-7g-5p on epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Zhecheng Zhao
- Department of Otolaryngology Head and Neck Surgery, Zhuzhou Central Hospital, Zhuzhou, Hunan, China (mainland)
| | - Jianxue Wen
- Department of Otolaryngology Head and Neck Surgery, Zhuzhou Central Hospital, Zhuzhou, Hunan, China (mainland)
| | - Lihua Peng
- Department of Otolaryngology Head and Neck Surgery, Zhuzhou Central Hospital, Zhuzhou, Hunan, China (mainland)
| | - Hanbo Liu
- Department of Otolaryngology Head and Neck Surgery, Zhuzhou Central Hospital, Zhuzhou, Hunan, China (mainland)
| |
Collapse
|
23
|
Noncoding RNAs Involved in the Pathogenesis of Ankylosing Spondylitis. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6920281. [PMID: 31360722 PMCID: PMC6642776 DOI: 10.1155/2019/6920281] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/25/2019] [Indexed: 12/12/2022]
Abstract
Ankylosing spondylitis (AS) is a form of arthritis that can lead to fusion of vertebrae and sacroiliac joints following syndesmophyte formation. The etiology of this painful disease remains poorly defined due to its complex genetic background. There are no commonly accepted methods for early diagnosis of AS, nor are there any effective or efficient clinical treatments. Several noncoding RNAs (ncRNAs) have been linked to AS pathogenesis and inflammation via selective binding of their downstream targets. However, major gaps in knowledge remain to be filled before such findings can be translated into clinical treatments for AS. In this review, we outline recent findings that demonstrate essential roles of ncRNAs in AS mediated via multiple signaling pathways such as the Wnt, transforming growth factor-β/bone morphogenetic protein, inflammatory, T-cell prosurvival, and nuclear factor-κB pathways. The summary of these findings provides insight into the molecular mechanisms by which ncRNAs can be targeted for AS diagnosis and the development of therapeutic drugs against a variety of autoimmune diseases.
Collapse
|
24
|
Perez-Sanchez C, Font-Ugalde P, Ruiz-Limon P, Lopez-Pedrera C, Castro-Villegas MC, Abalos-Aguilera MC, Barbarroja N, Arias-de la Rosa I, Lopez-Montilla MD, Escudero-Contreras A, Lopez-Medina C, Collantes-Estevez E, Jimenez-Gomez Y. Circulating microRNAs as potential biomarkers of disease activity and structural damage in ankylosing spondylitis patients. Hum Mol Genet 2019; 27:875-890. [PMID: 29329380 DOI: 10.1093/hmg/ddy008] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/30/2017] [Indexed: 12/15/2022] Open
Abstract
Ankylosing spondylitis (AS) remains difficult to diagnose before irreversible damage to sacroiliac joint is noticeable. Circulating microRNAs have demonstrated to serve as diagnostic tools for several human diseases. Here, we analysed plasma microRNAs to identify potential AS biomarkers. Higher expression levels of microRNA (miR)-146a-5p, miR-125a-5p, miR-151a-3p and miR-22-3p, and lower expression of miR-150-5p, and miR-451a were found in AS versus healthy donors. Interestingly, higher miR-146a-5p, miR-125a-5p, miR-151a-3p, miR-22-3p and miR-451a expression was also observed in AS than psoriatic arthritis patients. The areas under the curve, generated to assess the accuracy of microRNAs as diagnostic biomarkers for AS, ranged from 0.614 to 0.781; the six-microRNA signature reached 0.957. Bioinformatics analysis revealed that microRNAs targeted inflammatory and bone remodeling genes, underlying their potential role in this pathology. Indeed, additional studies revealed an association between these six microRNAs and potential target proteins related to AS pathophysiology. Furthermore, miR-146a-5p, miR-125a-5p and miR-22-3p expression was increased in active versus non-active patients. Moreover, miR-125a-5p, miR-151a-3p, miR-150-5p and miR-451a expression was related to the presence of syndesmophytes in AS patients. Overall, this study identified a six-plasma microRNA signature that could be attractive candidates as non-invasive biomarkers for the AS diagnosis, and may help to elucidate the disease pathogenesis.
Collapse
Affiliation(s)
- Carlos Perez-Sanchez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba 14004, Spain.,Unidad de Gestión Clínica Reumatología, Hospital Universitario Reina Sofía, Córdoba 14004, Spain.,Departamento de Medicina (Medicina, Dermatología y Otorrinolaringología), Universidad de Córdoba, Córdoba 14004, Spain
| | - Pilar Font-Ugalde
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba 14004, Spain.,Unidad de Gestión Clínica Reumatología, Hospital Universitario Reina Sofía, Córdoba 14004, Spain.,Departamento de Medicina (Medicina, Dermatología y Otorrinolaringología), Universidad de Córdoba, Córdoba 14004, Spain
| | - Patricia Ruiz-Limon
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba 14004, Spain.,Unidad de Gestión Clínica Reumatología, Hospital Universitario Reina Sofía, Córdoba 14004, Spain.,Departamento de Medicina (Medicina, Dermatología y Otorrinolaringología), Universidad de Córdoba, Córdoba 14004, Spain
| | - Chary Lopez-Pedrera
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba 14004, Spain.,Unidad de Gestión Clínica Reumatología, Hospital Universitario Reina Sofía, Córdoba 14004, Spain.,Departamento de Medicina (Medicina, Dermatología y Otorrinolaringología), Universidad de Córdoba, Córdoba 14004, Spain
| | - Maria C Castro-Villegas
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba 14004, Spain.,Unidad de Gestión Clínica Reumatología, Hospital Universitario Reina Sofía, Córdoba 14004, Spain.,Departamento de Medicina (Medicina, Dermatología y Otorrinolaringología), Universidad de Córdoba, Córdoba 14004, Spain
| | - Maria C Abalos-Aguilera
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba 14004, Spain.,Unidad de Gestión Clínica Reumatología, Hospital Universitario Reina Sofía, Córdoba 14004, Spain.,Departamento de Medicina (Medicina, Dermatología y Otorrinolaringología), Universidad de Córdoba, Córdoba 14004, Spain
| | - Nuria Barbarroja
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba 14004, Spain.,Unidad de Gestión Clínica Reumatología, Hospital Universitario Reina Sofía, Córdoba 14004, Spain.,Departamento de Medicina (Medicina, Dermatología y Otorrinolaringología), Universidad de Córdoba, Córdoba 14004, Spain
| | - Ivan Arias-de la Rosa
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba 14004, Spain.,Unidad de Gestión Clínica Reumatología, Hospital Universitario Reina Sofía, Córdoba 14004, Spain.,Departamento de Medicina (Medicina, Dermatología y Otorrinolaringología), Universidad de Córdoba, Córdoba 14004, Spain
| | - Maria D Lopez-Montilla
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba 14004, Spain.,Unidad de Gestión Clínica Reumatología, Hospital Universitario Reina Sofía, Córdoba 14004, Spain.,Departamento de Medicina (Medicina, Dermatología y Otorrinolaringología), Universidad de Córdoba, Córdoba 14004, Spain
| | - Alejandro Escudero-Contreras
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba 14004, Spain.,Unidad de Gestión Clínica Reumatología, Hospital Universitario Reina Sofía, Córdoba 14004, Spain.,Departamento de Medicina (Medicina, Dermatología y Otorrinolaringología), Universidad de Córdoba, Córdoba 14004, Spain
| | - Clementina Lopez-Medina
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba 14004, Spain.,Unidad de Gestión Clínica Reumatología, Hospital Universitario Reina Sofía, Córdoba 14004, Spain.,Departamento de Medicina (Medicina, Dermatología y Otorrinolaringología), Universidad de Córdoba, Córdoba 14004, Spain
| | - Eduardo Collantes-Estevez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba 14004, Spain.,Unidad de Gestión Clínica Reumatología, Hospital Universitario Reina Sofía, Córdoba 14004, Spain.,Departamento de Medicina (Medicina, Dermatología y Otorrinolaringología), Universidad de Córdoba, Córdoba 14004, Spain
| | - Yolanda Jimenez-Gomez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba 14004, Spain.,Unidad de Gestión Clínica Reumatología, Hospital Universitario Reina Sofía, Córdoba 14004, Spain.,Departamento de Medicina (Medicina, Dermatología y Otorrinolaringología), Universidad de Córdoba, Córdoba 14004, Spain
| |
Collapse
|
25
|
Lai NS, Yu HC, Tung CH, Huang KY, Huang HB, Lu MC. Aberrant expression of interleukin-23-regulated miRNAs in T cells from patients with ankylosing spondylitis. Arthritis Res Ther 2018; 20:259. [PMID: 30463609 PMCID: PMC6247500 DOI: 10.1186/s13075-018-1754-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/25/2018] [Indexed: 02/06/2023] Open
Abstract
Background Interleukin (IL)-23 can facilitate the differentiation of IL-17-producing helper T cells (Th17). The IL-23/IL-17 axis is known to play a key role in the immunopathogenesis of ankylosing spondylitis (AS). We hypothesized that the expression of microRNAs (miRNAs, miRs) would be regulated by IL-23 and that these miRNAs could participate in the immunopathogenesis of AS. Methods Expression profiles of human miRNAs in K562 cells, cultured in the presence or absence of IL-23 for 3 days, were analyzed by microarray. Potentially aberrantly expressed miRNAs were validated using T-cell samples from 24 patients with AS and 16 control subjects. Next-generation sequencing (NGS) was conducted to search for gene expression and biological functions regulated by specific miRNAs in the IL-23-mediated signaling pathway. Results Initial analysis revealed that the expression levels of 12 miRNAs were significantly higher, whereas those of 4 miRNAs were significantly lower, in K562 cells after coculture with IL-23 for 3 days. Among these IL-23-regulated miRNAs, the expression levels of miR-29b-1-5p, miR-4449, miR-211-3p, miR-1914-3p, and miR-7114-5p were found to be higher in AS T cells. The transfection of miR-29b-1-5p mimic suppressed IL-23-mediated signal transducer and activator of transcription 3 (STAT3) phosphorylation in K562 cells. After NGS analysis and validation, we found that miR-29b-1-5p upregulated the expression of angiogenin, which was also upregulated in K562 cells after coculture with IL-23. Increased expression of miR-29b-1-5p or miR-211-3p could enhance interferon-γ expression. Conclusions Among the miRNAs regulated by IL-23, expression levels of five miRNAs were increased in T cells from patients with AS. The transfection of miR-29b-1-5p mimic could inhibit the IL-23-mediated STAT3 phosphorylation and might play a role in negative feedback control in the immunopathogenesis of AS.
Collapse
Affiliation(s)
- Ning-Sheng Lai
- Division of Allergy, Immunology and Rheumatology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 2, Minsheng Road, Dalin, Chiayi, 62247, Taiwan.,School of Medicine, Tzu Chi University, Hualien City, Taiwan
| | - Hui-Chun Yu
- Division of Allergy, Immunology and Rheumatology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 2, Minsheng Road, Dalin, Chiayi, 62247, Taiwan
| | - Chien-Hsueh Tung
- Division of Allergy, Immunology and Rheumatology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 2, Minsheng Road, Dalin, Chiayi, 62247, Taiwan.,School of Medicine, Tzu Chi University, Hualien City, Taiwan
| | - Kuang-Yung Huang
- Division of Allergy, Immunology and Rheumatology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 2, Minsheng Road, Dalin, Chiayi, 62247, Taiwan.,School of Medicine, Tzu Chi University, Hualien City, Taiwan
| | - Hsien-Bin Huang
- Department of Life Science and Institute of Molecular Biology, National Chung Cheng University, Minxiong, Chiayi, Taiwan
| | - Ming-Chi Lu
- Division of Allergy, Immunology and Rheumatology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 2, Minsheng Road, Dalin, Chiayi, 62247, Taiwan. .,School of Medicine, Tzu Chi University, Hualien City, Taiwan.
| |
Collapse
|
26
|
Lam IKY, Chow JX, Lau CS, Chan VSF. MicroRNA-mediated immune regulation in rheumatic diseases. Cancer Lett 2018; 431:201-212. [PMID: 29859876 DOI: 10.1016/j.canlet.2018.05.044] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/11/2018] [Accepted: 05/28/2018] [Indexed: 12/20/2022]
Abstract
MicroRNAs (miRNAs) are endogenous small, non-coding RNAs that regulate genome expression at the post-transcriptional level. They are involved in a wide range of physiological processes including the maintenance of immune homeostasis and normal function. Accumulating evidence from animal studies show that alterations in pan or specific miRNA expression would break immunological tolerance, leading to autoimmunity. Differential miRNA expressions have also been documented in patients of many autoimmune disorders. In this review, we highlight the evidence that signifies the critical role of miRNAs in autoimmunity, specifically on their regulatory roles in the pathogenesis of several rheumatic diseases including systemic lupus erythematosus, rheumatoid arthritis and spondyloarthritis. The potential of miRNAs as biomarkers and therapeutic targets is also discussed. Manipulation of dysregulated miRNAs in vivo through miRNA delivery or inhibition offers promise for new therapeutic strategies in treating rheumatic diseases.
Collapse
Affiliation(s)
- Ian Kar Yin Lam
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Jia Xin Chow
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Chak Sing Lau
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Vera Sau Fong Chan
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
27
|
Lin F, Pei L, Zhang Q, Han W, Jiang S, Lin Y, Dong B, Cui L, Li M. Ox-LDL induces endothelial cell apoptosis and macrophage migration by regulating caveolin-1 phosphorylation. J Cell Physiol 2018; 233:6683-6692. [PMID: 29323707 DOI: 10.1002/jcp.26468] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 01/05/2018] [Indexed: 12/16/2022]
Abstract
Oxidative low-density lipoprotein (ox-LDL) is a risk factor for atherosclerosis. Ox-LDL leads to endothelial injury in the initial stage of atherosclerosis. In this study, we investigated the role of ox-LDL in endothelial injury and macrophage recruitment. We demonstrated that ox-LDL promoted a dose-dependent phosphorylation of caveolin-1 in human umbilical vein endothelial cells. Phosphorylated caveolin-1 increased ox-LDL uptake. Intracellular accumulation of ox-LDL induced NF-κB p65 phosphorylation, promoted HMGB1 translocation from nucleus to cytoplasm and cytochrome C release from mitochondria to cytoplasm, and activated caspase 3, resulting in cell apoptosis. NF-κB activation also facilitated cavolin-1 phosphorylation and HMGB1 expression. In addition, caveolin-1 phosphorylation favored HMGB1 release and nuclear translocation of EGR1. Nuclear translocation of EGR1 contributed to cytoplasmic translocation of HMGB1. The extracellular HMGB1 induced the migration of PMBC-derived macrophages toward HUVECs in a TLR4-dependent manner. Our results suggested that ox-LDL promoted HUVECs apoptosis and macrophage recruitment by regulating caveolin-1 phosphorylation.
Collapse
Affiliation(s)
- Fei Lin
- Department of Cardiology, Shandong Energy Zibo Mining Group Co., Ltd Central Hospital, Zibo, China
| | - Likai Pei
- Department of Cardiology, Shandong Energy Zibo Mining Group Co., Ltd Central Hospital, Zibo, China
| | - Qingbin Zhang
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Weizhong Han
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Shiliang Jiang
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Yanliang Lin
- Department of Center Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Bo Dong
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Lianqun Cui
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Min Li
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
28
|
Mohammadi H, Hemmatzadeh M, Babaie F, Gowhari Shabgah A, Azizi G, Hosseini F, Majidi J, Baradaran B. MicroRNA implications in the etiopathogenesis of ankylosing spondylitis. J Cell Physiol 2018; 233:5564-5573. [PMID: 29377110 DOI: 10.1002/jcp.26500] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 01/24/2018] [Indexed: 02/06/2023]
Abstract
Ankylosing spondylitis (AS) is a chronic immune-mediated inflammatory disease that affects both axial and peripheral skeletons as well as soft tissues. Recent investigations offer that disease pathogenesis is ascribed to a complex interplay of genetic, environmental, and immunological factors. Until now, there is no appropriate method for early diagnosis of AS and the successful available therapy for AS patients stay largely undefined. MicroRNAs (miRNAs), endogenous small noncoding RNAs controlling the functions of target mRNAs and cellular processes, are present in human plasma in a stable form and have appeared as possible biomarkers for activity, pathogenesis, and prognosis of the disease. In the present review, we have tried to summarize the recent findings related to miRNAs in AS development and discuss the possible utilization of these molecules as prognostic biomarkers or important therapeutic strategies for AS. Further examinations are needed to determine the unique miRNAs signatures in AS and characterize the mechanisms mediated by miRNAs in the pathology of this disease.
Collapse
Affiliation(s)
- Hamed Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Hemmatzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Babaie
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.,Department of Laboratory Medicine, Imam Hassan Mojtaba Hospital, Alborz University of Medical Sciences, Karaj, Iran
| | - Fatemeh Hosseini
- Cancer Research Center and Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Jafar Majidi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
29
|
Xia J, Kong L, Zhou LJ, Wu SZ, Yao LJ, He C, He CY, Peng HJ. Genome-Wide Bimolecular Fluorescence Complementation-Based Proteomic Analysis of Toxoplasma gondii ROP18's Human Interactome Shows Its Key Role in Regulation of Cell Immunity and Apoptosis. Front Immunol 2018; 9:61. [PMID: 29459857 PMCID: PMC5807661 DOI: 10.3389/fimmu.2018.00061] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 01/10/2018] [Indexed: 11/13/2022] Open
Abstract
Toxoplasma gondii rhoptry protein ROP18 (TgROP18) is a key virulence factor secreted into the host cell during invasion, where it modulates the host cell response by interacting with its host targets. However, only a few TgROP18 targets have been identified. In this study, we applied a high-throughput protein-protein interaction (PPI) screening in human cells using bimolecular fluorescence complementation (BiFC) to identify the targets of Type I strain ROP18 (ROP18I) and Type II strain ROP18 (ROP18II). From a pool of more than 18,000 human proteins, 492 and 141 proteins were identified as the targets of ROP18I and ROP18II, respectively. Gene ontology, search tool for the retrieval of interacting genes/proteins PPI network, and Ingenuity pathway analyses revealed that the majority of these proteins were associated with immune response and apoptosis. This indicates a key role of TgROP18 in manipulating host's immunity and cell apoptosis, which might contribute to the immune escape and successful parasitism of the parasite. Among the proteins identified, the immunity-related proteins N-myc and STAT interactor, IL20RB, IL21, ubiquitin C, and vimentin and the apoptosis-related protein P2RX1 were further verified as ROP18I targets by sensitized emission-fluorescence resonance energy transfer (SE-FRET) and co-immunoprecipitation. Our study substantially contributes to the current limited knowledge on human targets of TgROP18 and provides a novel tool to investigate the function of parasite effectors in human cells.
Collapse
Affiliation(s)
- Jing Xia
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Ling Kong
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Li-Juan Zhou
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Shui-Zhen Wu
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Li-Jie Yao
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Cheng He
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Cynthia Y He
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Hong-Juan Peng
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
30
|
Kimura K, Hohjoh H, Fukuoka M, Sato W, Oki S, Tomi C, Yamaguchi H, Kondo T, Takahashi R, Yamamura T. Circulating exosomes suppress the induction of regulatory T cells via let-7i in multiple sclerosis. Nat Commun 2018; 9:17. [PMID: 29295981 PMCID: PMC5750223 DOI: 10.1038/s41467-017-02406-2] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 11/17/2017] [Accepted: 11/29/2017] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis (MS) is a T cell-mediated autoimmune disease of the central nervous system. Foxp3+ regulatory T (Treg) cells are reduced in frequency and dysfunctional in patients with MS, but the underlying mechanisms of this deficiency are unclear. Here, we show that induction of human IFN-γ−IL-17A−Foxp3+CD4+ T cells is inhibited in the presence of circulating exosomes from patients with MS. The exosomal miRNA profile of patients with MS differs from that of healthy controls, and let-7i, which is markedly increased in patients with MS, suppresses induction of Treg cells by targeting insulin like growth factor 1 receptor (IGF1R) and transforming growth factor beta receptor 1 (TGFBR1). Consistently, the expression of IGF1R and TGFBR1 on circulating naive CD4+ T cells is reduced in patients with MS. Thus, our study shows that exosomal let-7i regulates MS pathogenesis by blocking the IGF1R/TGFBR1 pathway. MiRNAs are small RNA molecules that can regulate gene expression. Here the authors show that expression of several exosomal miRNAs are altered in patients with multiple sclerosis, and that let-7i modulates regulatory T cell homeostasis to contribute to pathogenesis.
Collapse
Affiliation(s)
- Kimitoshi Kimura
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo, 187-8502, Japan.,Department of Neurology, Kyoto University Graduate School of Medicine, Yoshida-konoe-cho, Sakyo, Kyoto, 606-8501, Japan
| | - Hirohiko Hohjoh
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo, 187-8502, Japan
| | - Masashi Fukuoka
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo, 187-8502, Japan
| | - Wakiro Sato
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo, 187-8502, Japan.,Multiple Sclerosis Center, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo, 187-8551, Japan
| | - Shinji Oki
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo, 187-8502, Japan
| | - Chiharu Tomi
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo, 187-8502, Japan
| | - Hiromi Yamaguchi
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo, 187-8502, Japan
| | - Takayuki Kondo
- Department of Neurology, Kyoto University Graduate School of Medicine, Yoshida-konoe-cho, Sakyo, Kyoto, 606-8501, Japan.,Department of Neurology, Kansai Medical University Medical Center, 10-15 Fumizono, Moriguchi, Osaka, 570-8507, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Yoshida-konoe-cho, Sakyo, Kyoto, 606-8501, Japan
| | - Takashi Yamamura
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo, 187-8502, Japan. .,Multiple Sclerosis Center, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo, 187-8551, Japan.
| |
Collapse
|
31
|
Oxidized low-density lipoprotein promotes osteoclast differentiation from CD68 positive mononuclear cells by regulating HMGB1 release. Biochem Biophys Res Commun 2018; 495:1356-1362. [PMID: 29146189 DOI: 10.1016/j.bbrc.2017.11.083] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 11/11/2017] [Indexed: 11/19/2022]
|
32
|
Abstract
Macroautophagy/autophagy is a catabolic process that is widely found in nature. Over the past few decades, mounting evidence has indicated that noncoding RNAs, ranging from small noncoding RNAs to long noncoding RNAs (lncRNAs) and even circular RNAs (circRNAs), mediate the transcriptional and post-transcriptional regulation of autophagy-related genes by participating in autophagy regulatory networks. The differential expression of noncoding RNAs affects autophagy levels at different physiological and pathological stages, including embryonic proliferation and differentiation, cellular senescence, and even diseases such as cancer. We summarize the current knowledge regarding noncoding RNA dysregulation in autophagy and investigate the molecular regulatory mechanisms underlying noncoding RNA involvement in autophagy regulatory networks. Then, we integrate public resources to predict autophagy-related noncoding RNAs across species and discuss strategies for and the challenges of identifying autophagy-related noncoding RNAs. This article will deepen our understanding of the relationship between noncoding RNAs and autophagy, and provide new insights to specifically target noncoding RNAs in autophagy-associated therapeutic strategies.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Peiyuan Wang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lin Wan
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shouping Xu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China,CONTACT Da Pang ; Shouping Xu Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, No. 150 Haping Road, Harbin, China 150040
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China,Heilongjiang Academy of Medical Sciences, Harbin, China,CONTACT Da Pang ; Shouping Xu Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, No. 150 Haping Road, Harbin, China 150040
| |
Collapse
|
33
|
Xu Y, Huang X, Xie J, Chen Y, Fu J, Wang L. Let-7i-Induced Atg4B Suppression Is Essential for Autophagy of Placental Trophoblast in Preeclampsia. J Cell Physiol 2017; 232:2581-2589. [PMID: 27770612 DOI: 10.1002/jcp.25661] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/20/2016] [Accepted: 10/21/2016] [Indexed: 12/30/2022]
Abstract
Autophagy, identified as type II programmed cell death, has already been known to be involved in the pathophysiology of preeclampsia (PE), which is a gestational disease with high morbidity. The present study aims to investigate the functional role of let-7i, a miRNA, in trophoblastic autophagy. Placental tissue used in this study was collected from patients with severe preeclampsia (SPE) or normal pregnant women. A decreased level of let-7i was found in placenta of SPE. In addition, autophagic vacuoles were observed in SPE and the expression of microtubule associated protein 1 light chain 3 (LC3) II/I was elevated. In vitro, let-7i mimics suppressed the autophagic activities in human HTR-8/SVneo trophoblast cell line (HTR-8) and human placental choriocarcinoma cell line JEG-3, whereas let-7i inhibitor enhanced the activities. As a potential target of let-7i, autophagy-related 4B cysteine peptidase (Atg4B) had an increased expression level in SPE. As expected, the increased expression of Atg4B was negatively regulated by let-7i using dual luciferase reporter assay. Furthermore, these trophoblast-like cells transfected with the let-7i mimic or inhibitors resulted in a significant change of Atg4B in both mRNA and protein level. More importantly, Atg4B overexpression could partly reverse let-7i mimic-reduced LC3II/I levels; whereas Atg4B silencing partly attenuated let-7i inhibitor-induced the level of LC3II/I expression. Taken together, these findings suggest that let-7i is able to regulate autophagic activity via regulating Atg4B expression, which might contribute to the pathogenesis of PE. J. Cell. Physiol. 232: 2581-2589, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yinyan Xu
- State key Laboratory of Reproductive Medicine, Nanjing Maternity and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Xinyan Huang
- State key Laboratory of Reproductive Medicine, Nanjing Maternity and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Juan Xie
- State key Laboratory of Reproductive Medicine, Nanjing Maternity and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Yanni Chen
- State key Laboratory of Reproductive Medicine, Nanjing Maternity and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Jing Fu
- State key Laboratory of Reproductive Medicine, Nanjing Maternity and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Li Wang
- State key Laboratory of Reproductive Medicine, Nanjing Maternity and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| |
Collapse
|
34
|
Dimitrieva S, Schlapbach R, Rehrauer H. Prognostic value of cross-omics screening for kidney clear cell renal cancer survival. Biol Direct 2016; 11:68. [PMID: 27993167 PMCID: PMC5168807 DOI: 10.1186/s13062-016-0170-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 11/29/2016] [Indexed: 12/14/2022] Open
Abstract
Background Kidney renal clear cell carcinoma (KIRC) is a type of cancer that is resistant to chemotherapy and radiotherapy and has limited treatment possibilities. Large-scale molecular profiling of KIRC tumors offers a great potential to uncover the genetic and epigenetic changes underlying this disease and to improve the clinical management of KIRC patients. However, in practice the clinicians and researchers typically focus on single-platform molecular data or on a small set of genes. Using molecular and clinical data of over 500 patients, we have systematically studied which type of molecular data is the most informative in predicting the clinical outcome of KIRC patients, as a standalone platform and integrated with clinical data. Results We applied different computational approaches to preselect on survival-predictive genomic markers and evaluated the usability of mRNA/miRNA/protein expression data, copy number variation (CNV) data and DNA methylation data in predicting survival of KIRC patients. Our analyses show that expression and methylation data have statistically significant predictive powers compared to a random guess, but do not perform better than predictions on clinical data alone. However, the integration of molecular data with clinical variables resulted in improved predictions. We present a set of survival associated genomic loci that could potentially be employed as clinically useful biomarkers. Conclusions Our study evaluates the survival prediction of different large-scale molecular data of KIRC patients and describes the prognostic relevance of such data over clinical-variable-only models. It also demonstrates the survival prognostic importance of methylation alterations in KIRC tumors and points to the potential of epigenetic modulators in KIRC treatment. Reviewers An extended abstract of this research paper was selected for the CAMDA Satellite Meeting to ISMB 2015 by the CAMDA Programme Committee. The full research paper then underwent one round of Open Peer Review under a responsible CAMDA Programme Committee member, Djork-Arné Clevert, PhD (Bayer AG, Germany). Open Peer Review was provided by Martin Otava, PhD (Janssen Pharmaceutica, Belgium) and Hendrik Luuk, PhD (The Centre for Disease Models and Biomedical Imaging, University of Tartu, Estonia). The Reviewer comments section shows the full reviews and author responses. Electronic supplementary material The online version of this article (doi:10.1186/s13062-016-0170-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Slavica Dimitrieva
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland.
| | - Ralph Schlapbach
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
| | - Hubert Rehrauer
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
| |
Collapse
|
35
|
Zhou J, Yao W, Liu K, Wen Q, Wu W, Liu H, Li Q. MicroRNA let-7g regulates mouse granulosa cell autophagy by targeting insulin-like growth factor 1 receptor. Int J Biochem Cell Biol 2016; 78:130-140. [PMID: 27417237 DOI: 10.1016/j.biocel.2016.07.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 07/05/2016] [Accepted: 07/11/2016] [Indexed: 01/07/2023]
Abstract
As an important type of somatic cell, granulosa cells play a major role in deciding the fate of follicles. Therefore, analyses of granulosa cell apoptosis and follicular atresia have become hotspots of animal research. Autophagy is a cellular catabolic mechanism that protects cells from stress conditions, including starvation, hypoxia, and accumulation of misfolded proteins. However, the relationship between autophagy and apoptosis in granulosa cells is not well known. Here, we demonstrate that let-7g regulates the mouse granulosa cell autophagy signaling pathway by inhibiting insulin-like growth factor 1 receptor expression and affecting the phosphorylation of protein kinase B/mammalian target of rapamycin. Small interference-mediated knockdown of insulin-like growth factor 1 receptor significantly promoted autophagy signaling of mouse granulosa cells. In contrast, overexpression of insulin-like growth factor 1 receptor in mouse granulosa cells attenuated autophagy activity in the presence of let-7g. In addition, overexpression of let-7g increased the apoptosis rate, as indicated by an increased number of terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling-positive cells. Finally, 3-methyladenine as well as the lysosomal enzyme inhibitor chloroquine partially blocked apoptosis. In summary, this study demonstrates that let-7g regulates autophagy in mouse granulosa cells by targeting insulin-like growth factor 1 receptor and downregulating protein kinase B/mammalian target of rapamycin signaling, and that mouse granulosa cell autophagy induced by let-7g participates in apoptosis.
Collapse
Affiliation(s)
- Jilong Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wang Yao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Kaiqing Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiannan Wen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangjun Wu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Honglin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Qifa Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
36
|
Abstract
Ankylosing spondylitis (AS) is a common and genetically heterozygous inflammatory rheumatic disease characterized by new bone formation, ankylosis and inflammation of hip, sacroiliac joints and spine. Until now, there is no method for early diagnosis of AS and the effective treatment available for AS patients remain largely undefined.We searched articles indexed in PubMed (MEDLINE) database using Medical Subject Heading (MeSH) or Title/Abstract words ("microRNA" and "ankylosing spondylitis") from inception up to November 2015.Genetic polymorphisms of miRNAs and their targets might alter the risk of AS development whereas certain miRNAs exhibit correlation with inflammatory index.Let-7i and miR-124 were upregulated whereas miR-130a was downregulated in circulating immune cells of AS patients. These deregulated miRNAs could modulate key immune cell functions, such as cytokine response and T-cell survival.miRNA deregulation is key to AS pathogenesis. However, clinical utilization of miRNAs for management of AS patients requires further support from future translational studies.
Collapse
Affiliation(s)
- Zheng Li
- From the Department of Orthopedics Surgery Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (ZL, JS); State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences and Department of Medicine & Therapeutics (SHW, WKKW); and Department of Anaesthesia and Intensive Care (MTVC), The Chinese University of Hong Kong, Hong Kong, China
| | | | | | | | | |
Collapse
|
37
|
Abstract
Mechanistic target of rapamycin (mTOR, also known as mammalian target of rapamycin) is a ubiquitous serine/threonine kinase that regulates cell growth, proliferation and survival. These effects are cell-type-specific, and are elicited in response to stimulation by growth factors, hormones and cytokines, as well as to internal and external metabolic cues. Rapamycin was initially developed as an inhibitor of T-cell proliferation and allograft rejection in the organ transplant setting. Subsequently, its molecular target (mTOR) was identified as a component of two interacting complexes, mTORC1 and mTORC2, that regulate T-cell lineage specification and macrophage differentiation. mTORC1 drives the proinflammatory expansion of T helper (TH) type 1, TH17, and CD4(-)CD8(-) (double-negative, DN) T cells. Both mTORC1 and mTORC2 inhibit the development of CD4(+)CD25(+)FoxP3(+) T regulatory (TREG) cells and, indirectly, mTORC2 favours the expansion of T follicular helper (TFH) cells which, similarly to DN T cells, promote B-cell activation and autoantibody production. In contrast to this proinflammatory effect of mTORC2, mTORC1 favours, to some extent, an anti-inflammatory macrophage polarization that is protective against infections and tissue inflammation. Outside the immune system, mTORC1 controls fibroblast proliferation and chondrocyte survival, with implications for tissue fibrosis and osteoarthritis, respectively. Rapamycin (which primarily inhibits mTORC1), ATP-competitive, dual mTORC1/mTORC2 inhibitors and upstream regulators of the mTOR pathway are being developed to treat autoimmune, hyperproliferative and degenerative diseases. In this regard, mTOR blockade promises to increase life expectancy through treatment and prevention of rheumatic diseases.
Collapse
Affiliation(s)
- Andras Perl
- Division of Rheumatology, Departments of Medicine, Microbiology and Immunology, and Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, College of Medicine, 750 East Adams Street, Syracuse, New York 13210, USA
| |
Collapse
|
38
|
Xia Y, Chen K, Zhang MH, Wang LC, Ma CY, Lin YL, Zhao YR. MicroRNA-124 involves in ankylosing spondylitis by targeting ANTXR2. Mod Rheumatol 2015; 25:784-9. [PMID: 25736362 DOI: 10.3109/14397595.2015.1023887] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES A recent genome-wide association study or GWAS identified that anthrax roxin receptor 2 (ANTXR2) was one of the risk loci for ankylosing spondylitis (AS). Previous study also showed that ANTXR2 could potentially affect new bone formation. This study aimed to investigate the possible mechanisms of ANTXR2 involved in AS pathogenesis. METHODS The expression level of ANTXR2 and miR-124 in peripheral blood was detected by quantitative real-time polymerase chain reaction or qRT-PCR. ANTXR2 was predicted to be a target gene of miR-124 by TargetScan, which was confirmed by luciferase reporter assays. Western blot analysis was used to further investigate the effect of miR-124 on c-Jun N-terminal kinase (JNK) activation and evaluate the activated status of autophagy. RESULTS We evidenced that ANTXR2 was downregulated and miR-124 was upregulated in peripheral blood from AS patients. Intriguingly, miR-124 targeted ANTXR2 and overexpression of miR-124 in Jurkat cells notably inhibited ANTXR2 expression. ANTXR2 inhibition by miR-124 promoted JNK activation and induced autophagy. CONCLUSIONS Our results suggested that miR-124 might induce autophagy to participate in AS by targeting ANTXR2, which might be implicated in pathological process of AS.
Collapse
Affiliation(s)
- Yu Xia
- a Department of Central Laboratory , Shandong Provincial Hospital affiliated to Shandong University , Jinan , China
| | | | | | | | | | | | | |
Collapse
|
39
|
WU DONGKAI, JIANG HAIHE, CHEN SHENGXI, ZHANG HENG. Inhibition of microRNA-101 attenuates hypoxia/reoxygenation-induced apoptosis through induction of autophagy in H9c2 cardiomyocytes. Mol Med Rep 2015; 11:3988-94. [DOI: 10.3892/mmr.2015.3215] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 12/12/2014] [Indexed: 11/06/2022] Open
|