1
|
Sun Q, Wang N, Poelchen J, Peter M, Novak D, Özbay Kurt FG, Bitsch R, Wu H, Wang Y, Pardo S, Han R, Liu S, Gong L, Zhang Y, Wistuba-Hamprecht K, Umansky V, Utikal JS. Neural crest-associated gene FOXD1 induces an immunosuppressive microenvironment by regulating myeloid-derived suppressor cells in melanoma. J Immunother Cancer 2025; 13:e010352. [PMID: 40210238 PMCID: PMC11987097 DOI: 10.1136/jitc-2024-010352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 03/26/2025] [Indexed: 04/12/2025] Open
Abstract
BACKGROUND Neural crest-associated genes play pivotal roles in tumor initiation, progression, and the intricate dynamics of the tumor microenvironment (TME). Myeloid-derived suppressor cells (MDSC) within the TME are important in dampening T cell activity and contributing to resistance against immunotherapeutic interventions. The neural crest-associated gene Forkhead Box D1 (FOXD1) has been identified as an oncogenic factor that induces melanoma dedifferentiation and progression. However, the underlying mechanisms and the impact of FOXD1 on the antitumor immune response remain unclear. METHODS To investigate the impacts of FOXD1 on the melanoma microenvironment, we analyzed publicly available datasets from multiple platforms, including TNMplot, TIMER2.0, etc. In addition, FOXD1 was overexpressed (OE) or knocked down in melanoma cells to identify its biological functions in vitro and in vivo. Flow cytometry and arginase activity assay were used to analyze the phenotype and function of MDSC. Western blot, reverse transcription-PCR, or ELISA assays were employed to analyze the expression of FOXD1 and its downstream effectors. In vivo experiments were conducted to investigate the role of FOXD1 in melanoma progression and the influence on MDSC accumulation within the TME. RESULTS We demonstrate that increased FOXD1 levels inversely correlated with melanoma responsiveness to immunotherapy. Ex-vivo analyses unveiled that monocytes, exposed to conditioned medium from FOXD1-OE melanoma cells, effectively suppressed T cell proliferation and upregulated the expression of programmed death-ligand 1 (PD-L1) and other immunosuppressive factors. FOXD1 was identified as a direct regulator of interleukin 6 (IL6) expression, which is pivotal for MDSC induction. Blocking IL6 reversed MDSC-associated immunosuppression. Additionally, miR-581, a potential negative regulator of FOXD1, attenuated the impact of FOXD1 on IL6 expression and MDSC differentiation. In vivo experiments demonstrated that tumors derived from FOXD1 OE melanoma cells contained a significantly higher frequency of PD-L1+ MDSC compared with controls, while FOXD1 knockdown resulted in reduced tumor growth and diminished MDSC accumulation. CONCLUSION Our study elucidated a novel function of FOXD1 in melanoma pathogenesis, highlighting its role in orchestrating the immunosuppressive TME by promoting the generation of MDSC via IL6 upregulation.
Collapse
Affiliation(s)
- Qian Sun
- Skin Cancer Unit, German Cancer Research Center (DKFZ) and DKFZ Hector Cancer Institute, Heidelberg, Baden-Württemberg, Germany
- Department of Dermatology Venereology and Allergology, Heidelberg University, Mannheim, Baden-Württemberg, Germany
| | - Nina Wang
- Skin Cancer Unit, German Cancer Research Center (DKFZ) and DKFZ Hector Cancer Institute, Heidelberg, Baden-Württemberg, Germany
- Department of Dermatology Venereology and Allergology, Heidelberg University, Mannheim, Baden-Württemberg, Germany
| | - Juliane Poelchen
- Skin Cancer Unit, German Cancer Research Center (DKFZ) and DKFZ Hector Cancer Institute, Heidelberg, Baden-Württemberg, Germany
- Department of Dermatology Venereology and Allergology, Heidelberg University, Mannheim, Baden-Württemberg, Germany
| | - Mareike Peter
- Skin Cancer Unit, German Cancer Research Center (DKFZ) and DKFZ Hector Cancer Institute, Heidelberg, Baden-Württemberg, Germany
- Department of Dermatology Venereology and Allergology, Heidelberg University, Mannheim, Baden-Württemberg, Germany
| | - Daniel Novak
- Skin Cancer Unit, German Cancer Research Center (DKFZ) and DKFZ Hector Cancer Institute, Heidelberg, Baden-Württemberg, Germany
- Department of Dermatology Venereology and Allergology, Heidelberg University, Mannheim, Baden-Württemberg, Germany
| | - Feyza Gül Özbay Kurt
- Skin Cancer Unit, German Cancer Research Center (DKFZ) and DKFZ Hector Cancer Institute, Heidelberg, Baden-Württemberg, Germany
- Department of Dermatology Venereology and Allergology, Heidelberg University, Mannheim, Baden-Württemberg, Germany
| | - Rebekka Bitsch
- Skin Cancer Unit, German Cancer Research Center (DKFZ) and DKFZ Hector Cancer Institute, Heidelberg, Baden-Württemberg, Germany
- Department of Dermatology Venereology and Allergology, Heidelberg University, Mannheim, Baden-Württemberg, Germany
| | - Huizi Wu
- Skin Cancer Unit, German Cancer Research Center (DKFZ) and DKFZ Hector Cancer Institute, Heidelberg, Baden-Württemberg, Germany
- Department of Dermatology Venereology and Allergology, Heidelberg University, Mannheim, Baden-Württemberg, Germany
| | - Yiman Wang
- Skin Cancer Unit, German Cancer Research Center (DKFZ) and DKFZ Hector Cancer Institute, Heidelberg, Baden-Württemberg, Germany
- Department of Dermatology Venereology and Allergology, Heidelberg University, Mannheim, Baden-Württemberg, Germany
| | - Sandra Pardo
- Skin Cancer Unit, German Cancer Research Center (DKFZ) and DKFZ Hector Cancer Institute, Heidelberg, Baden-Württemberg, Germany
- Department of Dermatology Venereology and Allergology, Heidelberg University, Mannheim, Baden-Württemberg, Germany
| | - Rui Han
- Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University, Heidelberg, Baden-Württemberg, Germany
| | - Shibo Liu
- State Key Laboratory of Molecular Oncology, Tsinghua university, School of Basic Medical Sciences, Beijing, China
| | - Lidong Gong
- Peking University Institute of Systems Biomedicine, Beijing, China
| | - Yuxin Zhang
- Skin Cancer Unit, German Cancer Research Center (DKFZ) and DKFZ Hector Cancer Institute, Heidelberg, Baden-Württemberg, Germany
- Department of Dermatology Venereology and Allergology, Heidelberg University, Mannheim, Baden-Württemberg, Germany
| | - Kilian Wistuba-Hamprecht
- Skin Cancer Unit, German Cancer Research Center (DKFZ) and DKFZ Hector Cancer Institute, Heidelberg, Baden-Württemberg, Germany
- Department of Dermatology Venereology and Allergology, Heidelberg University, Mannheim, Baden-Württemberg, Germany
| | - Viktor Umansky
- Skin Cancer Unit, German Cancer Research Center (DKFZ) and DKFZ Hector Cancer Institute, Heidelberg, Baden-Württemberg, Germany
- Department of Dermatology Venereology and Allergology, Heidelberg University, Mannheim, Baden-Württemberg, Germany
| | - Jochen Sven Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ) and DKFZ Hector Cancer Institute, Heidelberg, Baden-Württemberg, Germany
- Department of Dermatology Venereology and Allergology, Heidelberg University, Mannheim, Baden-Württemberg, Germany
| |
Collapse
|
2
|
Tan Q, Gao D, Hu X. FOXD1-activated ANXA3 facilitates cisplatin resistance of lung cancer cells via promoting ANXA4 expression. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04005-1. [PMID: 40095055 DOI: 10.1007/s00210-025-04005-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/28/2025] [Indexed: 03/19/2025]
Abstract
The expression of Annexin A3 (ANXA3) is thought to be associated with chemoresistance in lung cancer. However, the underlying molecular mechanisms of ANXA3-mediated cisplatin (DDP) resistance in lung cancer still need to be further explored. The levels of ANXA3, forkhead box D1 (FOXD1), and Annexin A4 (ANXA4) were examined by qRT-PCR or Western blot. The DDP resistance, viability, apoptosis, invasion, and migration were determined by CCK8 assay, MTT assay, flow cytometry, TUNEL staining, transwell assay, and wound healing assay. The interaction between FOXD1 and ANXA3 promoter was confirmed by dual-luciferase reporter assay and ChIP assay. Co-IP assay and immunofluorescence staining were used to verify ANXA3 and ANXA4 interaction. The effect of ANXA3 on the DDP resistance of tumor tissues was further confirmed by animal experiments. ANXA3 was highly expressed in lung cancer DDP-resistant tissues and cells. ANXA3 knockdown inhibited lung cancer cell growth and metastasis, thereby improving DDP sensitivity. FOXD1 bound to ANXA3 promoter region to activate its transcription. In rescue experiments, silencing of FOXD1 enhanced the DDP sensitivity of lung cancer cells, and this effect was abolished by ANXA3 overexpression. Moreover, ANXA3 interacted with ANXA4 to promote its expression, and ANXA4 overexpression could reverse the promoting effect of ANXA3 knockdown on DDP sensitivity of lung cancer cells. In addition, FOXD1 positively regulated ANXA4 expression by activating ANXA3. Also, ANXA3 silencing could reduce lung cancer tumorigenesis and enhance DDP sensitivity by decreasing ANXA4 expression in vivo. ANXA3, activated by FOXD1, might contribute to the DDP resistance of lung cancer via regulating ANXA4, providing new ideas for overcoming chemoresistance in lung cancer.
Collapse
Affiliation(s)
- Qing Tan
- Department of Respiratory and Critical Care Medicine, No. 926 Hospital, Joint Logistics Support Force of PLA, No. 147 Jianmin Road, Kaiyuan City, Honghe Hani and Yi Autonomous Prefecture, Yunnan Province, China
| | - Dongyun Gao
- Department of Oncology, The Dongtai Hospital of Nantong University, 2 Kangfu West Road Dongtai, Nantong, Jiangsu, 224200, China
| | - Xu Hu
- Department of TCM, Tongde Hospital of Zhejiang Province, 234 Gucui Road, Xihu District, Hangzhou City, Zhejiang Province, China.
| |
Collapse
|
3
|
Gao H, Wang J, Liu J, Wang H, Wang T, Li S, Niu L, Wei Y. FOXD1 activates KIFC1 to modulate aerobic glycolysis and reinforce cisplatin resistance of breast cancer. Reprod Biol 2025; 25:100969. [PMID: 39541848 DOI: 10.1016/j.repbio.2024.100969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/24/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Breast cancer (BC) is the most prevalent invasive malignant tumor. Cisplatin (DDP) is a prototype of platinum-based chemotherapy drugs, its resistance severely hinders its clinical application. This project intended to figure out the exact mechanism of KIFC1 in the DDP resistance of BC. METHODS The levels of KIFC1 and FOXD1 in BC as well as their binding sites were investigated by bioinformatics analysis. The signaling pathways regulated by FOXD1 were analyzed. Chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assays verified the binding relationship between the two. Through quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot (WB), we assessed the expression of FOXD1, KIFC1, and glycolysis-related genes. CCK-8 assay was applied in the determination of cell viability to assess the efficacy of DDP resistance. Extracellular acidification rate (ECAR), glucose consumption, lactate synthesis, Adenosine triphosphate (ATP) content, and oxygen consumption rate (OCR) were measured to evaluate glycolysis. RESULTS FOXD1 and KIFC1 were significantly upregulated in BC, with KIFC1 being significantly enriched in the glycolysis pathway. Overexpression of KIFC1 significantly enhanced the DDP resistance of BC cells, while promoting aerobic glycolysis. Mechanistically, FOXD1 was bound to the promoter of KIFC1 to activate its transcription. Its overexpression counteracted the inhibitory effect of KIFC1 knockdown on the DDP resistance of BC cells. CONCLUSION FOXD1 activates the glycolysis pathway by upregulating KIFC1, thereby facilitating BC cells' DDP resistance. Therefore, the FOXD1/KIFC1 axis linked the glycolysis pathway to DDP resistance and may be a promising new target for reinforcing DDP resistance in BC.
Collapse
Affiliation(s)
- Haitao Gao
- General Surgery Department, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang 455000, China
| | - Jing Wang
- General Surgery Department, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang 455000, China
| | - Jiacai Liu
- General Surgery Department, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang 455000, China
| | - Huihua Wang
- General Surgery Department, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang 455000, China
| | - Tiantian Wang
- General Surgery Department, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang 455000, China
| | - Sha Li
- General Surgery Department, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang 455000, China
| | - Lili Niu
- General Surgery Department, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang 455000, China
| | - Ya Wei
- General Surgery Department, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang 455000, China.
| |
Collapse
|
4
|
Haibo Z, Tianyun L, Xiaoman C, Xiaoyan H. Cell Senescence-Related Genes as Biomarkers for Prognosis and Immunotherapeutic Response in Colon Cancer. Biochem Genet 2025; 63:124-143. [PMID: 38411939 DOI: 10.1007/s10528-024-10690-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/05/2024] [Indexed: 02/28/2024]
Abstract
Colon adenocarcinoma (COAD) stands out as the most prevalent malignancy diagnosed within the gastrointestinal tract, bearing substantial incidence and mortality rates. The processes of ageing and senescence intricately intertwine with tumorigenesis and immune regulation, concurrently exerting influence on the remodelling of the tumor microenvironment (TME). This phenomenon, in turn, significantly impacts the efficacy of immunotherapeutic interventions. Despite this awareness, the comprehensive understanding of the intricate interplay between cellular senescence and TME in the context of COAD remains elusive. Further inquiry is imperative to comprehensively gauge the relevance of cellular senescence-related genes (CSGs) in the realms of immune infiltration and the prognostication of COAD. Differentially expressed cell senescence-related genes (DE-CSGs) within COAD tumors and normal specimens were discerned through analysis of the TCGA-COAD dataset. Leveraging univariate, LASSO, and multivariate Cox regression analyses, we formulated a prognostic risk signature. Subsequent validation utilised two independent GEO datasets. Furthermore, a nomogram was devised to gauge the prognostic significance of this signature. Additionally, the immune landscape of the Cell Senescence-related Signature (CSS) was characterised using CIBERSORT and TIMER algorithms. The expression levels of CSGs were quantified through RT-PCR in COAD specimens. Drawing upon mRNA expression profiles of 191 DE-CSGs, we successfully established a 9-gene CSS, demonstrating its autonomy as a prognostic determinant for COAD patients. Those assigned high-risk scores exhibited an immunosuppressive phenotype, marked by elevated proportions of resting CD4+memory T cells and macrophages M0, correlating with diminished overall survival. Subsequent analyses uncovered that the amalgamation of CSS with the expression profiles of immune checkpoint key genes effectively predicted patient prognosis. Furthermore, patients with low-risk scores demonstrated a potential association with more favourable therapeutic outcomes in the context of immunotherapy. This study has culminated in the development of a prognostic risk signature grounded in cell senescence-related genes for COAD. We posit that the CSS plays a regulatory role in immune infiltration, emerging as a robust biomarker for prognosis and a predictive indicator for immunotherapeutic responsiveness within the COAD landscape.
Collapse
Affiliation(s)
- Zhang Haibo
- Central Laboratory, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Lan Tianyun
- Central Laboratory, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Chen Xiaoman
- Central Laboratory, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Han Xiaoyan
- Central Laboratory, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| |
Collapse
|
5
|
Yang M, Zheng G, Chen F, Tang H, Liu Y, Gao X, Huang Y, Lv Z, Li B, Yang M, Bu Q, Zhu L, Yu P, Huo Z, Wei X, Chen X, Huang Y, He Z, Xia X, Bai J. Molecular characterization of EBV-associated primary pulmonary lymphoepithelial carcinoma by multiomics analysis. BMC Cancer 2025; 25:85. [PMID: 39815193 PMCID: PMC11734413 DOI: 10.1186/s12885-024-13410-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/30/2024] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Primary pulmonary lymphoepithelial carcinoma (pLEC) is a subtype of non-small cell lung cancer (NSCLC) characterized by Epstein-Barr virus (EBV) infection. However, the molecular pathogenesis of pLEC remains poorly understood. METHODS In this study, we explored pLEC using whole-exome sequencing (WES) and RNA-whole-transcriptome sequencing (RNA-seq) technologies. Datasets of normal lung tissue, other types of NSCLC, and EBV-positive nasopharyngeal carcinoma (EBV+-NPC) were obtained from public databases. Furthermore, we described the gene signatures, viral integration, cell quantification, cell death and immune infiltration of pLEC. RESULTS Compared with other types of NSCLC and EBV+-NPC, pLEC patients exhibited a lower somatic mutation burden and extensive copy number deletions, including 1p36.23, 3p21.1, 7q11.23, and 11q23.3. Integration of EBV associated dysregulation of gene expression, with CNV-altered regions coinciding with EBV integration sites. Specifically, ZBTB16 and ERRFI1 were downregulated by CNV loss, and the FOXD family genes were overexpressed with CNV gain. Decreased expression of the FOXD family might be associated with a favorable prognosis in pLEC patients, and these patients exhibited enhanced cytotoxicity. CONCLUSION Compared with other types of NSCLC and NPC, pLEC has distinct molecular characteristics. EBV integration, the aberrant expression of genes, as well as the loss of CNVs, may play a crucial role in the pathogenesis of pLEC. However, further research is needed to assess the potential role of the FOXD gene family as a biomarker.
Collapse
Affiliation(s)
- Meiling Yang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Guixian Zheng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Fukun Chen
- Geneplus-Beijing Institute, Beijing, China
| | - Haijuan Tang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yaoyao Liu
- Geneplus-Beijing Institute, Beijing, China
| | - Xuan Gao
- Geneplus-Beijing Institute, Beijing, China
| | - Yu Huang
- Department of Medical Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Zili Lv
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Benhua Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Maolin Yang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Qing Bu
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Lixia Zhu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Pengli Yu
- Geneplus-Beijing Institute, Beijing, China
| | - Zengyu Huo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xinyan Wei
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xiaoli Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yanbing Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Zhiyi He
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | | | - Jing Bai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
6
|
Wang Y, Su H, Wang X, Tu C, Xiao T, Ren B, Wang S. FOXN3 Regulates Autophagic Activity to Suppress Drug Resistance in Melanoma Cells. Clin Cosmet Investig Dermatol 2024; 17:2505-2518. [PMID: 39530064 PMCID: PMC11552389 DOI: 10.2147/ccid.s462854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/22/2024] [Indexed: 11/16/2024]
Abstract
Background The forkhead box (FOX) family member FOXN3 has been reported to inhibit transcriptional activity associated with regulating tumor development. However, the role of FOXN3 in the pathogenesis of melanoma is not well understood. Objective To investigate the biological functions of FOXN3 in drug resistance of melanoma. Materials and Methods The expression of FOXN3 in melanoma was investigated using Gene Expression profiling interactive analysis (GEPIA) and Linkedomics databases. Melanoma cell proliferation, invasion, and migration were assessed using the colony formation assay, the scratch wound healing test, the Transwell invasion assay, and the nude mice xenograft to determine the effects of FOXN3 over-expression and depletion. The functional role of the transcriptional regulator in melanoma cells was tested through chromatin immunoprecipitation, immunofluorescence. Results FOXN3 was downregulated in melanoma. Over-expression of FOXN3 inhibited the proliferation and motility of melanoma cells, whereas FOXN3 knockdown significantly enhanced the proliferation and motility of melanoma cells. Overexpression of FOXN3 reduced autophagic activity in melanoma cells. Enhanced autophagic activity in drug-resistant melanoma cell lines is related to drug-sensitive cells, and significant differences in FOXN3 localization were observed when comparing melanoma cells that were sensitive and resistant to Vemurafenib. Additionally, FOXN3 has been identified as binding to the promoter region of the cancer antigen Fibrous Sheath Interacting Protein 1 (FSIP1), thereby regulating the expression of this gene. Conclusion FOXN3 functions as an important regulator of the development and progression of Vemurafenib-resistant melanoma cells, partly owing to its binding to the FISP1. As such, FOXN3 may represent a relevant target for therapeutic interventions in patients suffering from drug-resistant melanoma.
Collapse
Affiliation(s)
- Yaqi Wang
- Department of Dermatology, Xi’an Jiaotong University The Second Affiliated Hospital, Xi’an, Shaanxi, People’s Republic of China
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Hui Su
- Department of Dermatology, Xi’an Jiaotong University The Second Affiliated Hospital, Xi’an, Shaanxi, People’s Republic of China
| | - Xiaopeng Wang
- Department of Dermatology, Xi’an Jiaotong University The Second Affiliated Hospital, Xi’an, Shaanxi, People’s Republic of China
| | - Chen Tu
- Department of Dermatology, Xi’an Jiaotong University The Second Affiliated Hospital, Xi’an, Shaanxi, People’s Republic of China
| | - Tong Xiao
- Department of Dermatology, Xi’an Jiaotong University The Second Affiliated Hospital, Xi’an, Shaanxi, People’s Republic of China
| | - Bincheng Ren
- Department of Rheumatology and Immunology, Xi’an Jiaotong University The Second Affiliated Hospital, Xi’an, Shaanxi, People’s Republic of China
| | - Shuang Wang
- Department of Dermatology, Xi’an Jiaotong University The Second Affiliated Hospital, Xi’an, Shaanxi, People’s Republic of China
| |
Collapse
|
7
|
Chen Y, Qiao H, Zhong R, Sun L, Shang B. Forkhead box D subfamily genes in colorectal cancer: potential biomarkers and therapeutic targets. PeerJ 2024; 12:e18406. [PMID: 39494294 PMCID: PMC11529599 DOI: 10.7717/peerj.18406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/05/2024] [Indexed: 11/05/2024] Open
Abstract
Background The forkhead box (FOX) family members regulate gene transcription and expression. FOX family members regulate various biological processes, such as cell proliferation and tumorigenesis. FOXD, a FOX protein subfamily, is associated with poor prognosis for various cancers. However, the potential clinical value of FOXD subfamily members in colorectal cancer (CRC) has not yet been elucidated. Therefore, in this study, we aimed to determine the role of the FOXD subfamily members in CRC development. Methods Using HTSeq-count data, clinical data, and single-nucleotide polymorphisms (obtained from The Cancer Genome Atlas Project), and bioinformatics analyses (using DESEQ2 software), we identified differentially expressed genes (DEGs) in CRC. Next, each DEG expression was validated in vitro using reverse transcription-quantitative polymerase chain reaction, western blotting, and immunohistochemistry (IHC). Results Among the FOXD subfamily members, the area under the receiver operating characteristic curve of FOXD3 was 0.949, indicating that FOXD3 has a high overall diagnostic accuracy for CRC. Gene Set Enrichment Analysis revealed that FOXD-DEGs were mainly related to pathways such as cytokine, cytokine, and extracellular matrix receptor interactions. Kaplan-Meier curves and nomograms showed that FOXD1, FOXD3, and FOXD4 were prognostically significant. In conclusion, FOXD subfamily members (especially FOXD3) could serve as diagnostic and prognostic biomarkers for CRC and an immunotherapy target in patients with CRC.
Collapse
Affiliation(s)
- Ying Chen
- Emergency Department, The Second Hospital of Dalian Medical University, Dalian, China
| | - Haiyan Qiao
- Laboratory Animal Center, Dalian Medical University, Dalian, China
| | - Ruiqi Zhong
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Lei Sun
- Emergency Department, The Second Hospital of Dalian Medical University, Dalian, China
| | - Bingbing Shang
- Emergency Department, The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
8
|
Prasad P, Kannan B, Sriram G, Jaber M, Khair AMB, Ramasubramanian A, Ramani P, Jayaseelan VP, Arumugam P. Waterpipe smoke condensate induces epithelial-mesenchymal transformation and promotes metastasis of oral cancer by FOXD1 expression. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2024; 125:101900. [PMID: 38692456 DOI: 10.1016/j.jormas.2024.101900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 04/27/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND/PURPOSE Smoking is a major contributor to global oral cancer cases, necessitating urgent intervention. FOXD1, involved in developmental processes and various cancers, shows promise as a prognostic marker in oral squamous cell carcinoma (OSCC). This study investigates the impact of waterpipe smoke condensate (WPSC) on OSCC, focusing on FOXD1 role in inducing epithelial-mesenchymal transition (EMT) and metastasis. METHODS The study involved using OSCC cells treated with WPSC to evaluate their proliferation, colony formation, gene expression, and protein levels. The researchers also explored the clinical relevance of their findings using online databases to analyze FOXD1 expression in cancer tissues and its correlation with clinicopathological features and patient survival. Additionally, in silico tools were employed for functional analysis, pathway enrichment, and network exploration. RESULTS The study found that WPSC increased the expression of FOXD1 in OSCC cells, which led to increased cell growth. The study also showed that FOXD1 plays a critical role in the EMT process induced by WPSC, as evidenced by changes in the expression of EMT-related genes and proteins. Clinical analysis revealed that FOXD1 was significantly associated with more aggressive tumor features and poorer prognosis in cancer patients. CONCLUSION The study highlights FOXD1 as a key player in OSCC pathogenesis and a potential prognostic marker and therapeutic target, particularly when influenced by WPSC exposure. Further research is needed to explore FOXD1 molecular mechanisms and clinical implications to enhance OSCC treatment strategies.
Collapse
Affiliation(s)
- Prathibha Prasad
- Medical and Dental Sciences Department, College of Dentistry, Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, UAE; Department of Oral Pathology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India; Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, UAE
| | - Balachander Kannan
- Molecular Biology Lab, Centre for Cellular and Molecular Research, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Gopu Sriram
- Faculty of Dentistry, National University of Singapore, Singapore
| | - Mohamed Jaber
- Medical and Dental Sciences Department, College of Dentistry, Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, UAE; Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, UAE
| | - Al Moutassem Billah Khair
- Medical and Dental Sciences Department, College of Dentistry, Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, UAE; Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, UAE
| | - Abilasha Ramasubramanian
- Department of Oral Pathology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Pratibha Ramani
- Department of Oral Pathology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Vijayashree Priyadharshini Jayaseelan
- Clinical Genetics Lab, Centre for Cellular and Molecular Research, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Paramasivam Arumugam
- Molecular Biology Lab, Centre for Cellular and Molecular Research, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India.
| |
Collapse
|
9
|
Liu X, Min S, Zhang Q, Liu Y, Zou Z, Wang N, Zhou B. Prognostic and clinicopathological significance of FOXD1 in various cancers: a meta and bioinformation analysis. Future Sci OA 2024; 10:FSO901. [PMID: 38827805 PMCID: PMC11140636 DOI: 10.2144/fsoa-2023-0085] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/21/2023] [Indexed: 06/05/2024] Open
Abstract
Aim: To examine both predictive and clinicopathological importance underlying FOXD1 in malignant tumors, our study adopts meta-analysis. Methods: We searched from PubMed, Embase, WOS, Wanfang and CNKI. Stata SE15.1 was used to calculate the risk ratio (HR) as well as relative risk (RR) with 95% of overall CIs to assess FOXD1 and overall survival rate (OS), disease-free survival rate as well as clinicopathological parameters. Results: 3808 individuals throughout 17 trials showed high FOXD1 expression was linked to disadvantaged OS (p < 0.001) and disease-free survival (p < 0.001) and higher TNM stage (p < 0.001). Conclusion: Elevated FOXD1 had worse predictions and clinicopathological parameters in most cancers. The GEPIA database findings also support our results.
Collapse
Affiliation(s)
- Xiaohan Liu
- Department of general surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, P.R. China
- Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Shengyun Min
- Department of general surgery, Changzheng Hospital, Nanchang, Jiangxi, 330100, P.R. China
| | - Qin Zhang
- Department of general surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, P.R. China
- Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Yan Liu
- Department of general surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, P.R. China
- Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Zhenhong Zou
- Department of general surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, P.R. China
| | - Nanye Wang
- Department of ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, P.R. China
| | - Bin Zhou
- Department of orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
10
|
Sun D, Wei S, Wang D, Zeng M, Mo Y, Li H, Liang C, Li L, Zhang JW, Wang L. Integrative analysis of potential diagnostic markers and therapeutic targets for glomerulus-associated diabetic nephropathy based on cellular senescence. Front Immunol 2024; 14:1328757. [PMID: 38390397 PMCID: PMC10881763 DOI: 10.3389/fimmu.2023.1328757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/14/2023] [Indexed: 02/24/2024] Open
Abstract
Introduction Diabetic nephropathy (DN), distinguished by detrimental changes in the renal glomeruli, is regarded as the leading cause of death from end-stage renal disease among diabetics. Cellular senescence plays a paramount role, profoundly affecting the onset and progression of chronic kidney disease (CKD) and acute kidney injuries. This study was designed to delve deeply into the pathological mechanisms between glomerulus-associated DN and cellular senescence. Methods Glomerulus-associated DN datasets and cellular senescence-related genes were acquired from the Gene Expression Omnibus (GEO) and CellAge database respectively. By integrating bioinformatics and machine learning methodologies including the LASSO regression analysis and Random Forest, we screened out four signature genes. The receiver operating characteristic (ROC) curve was performed to evaluate the diagnostic performance of the selected genes. Rigorous experimental validations were subsequently conducted in the mouse model to corroborate the identification of three signature genes, namely LOX, FOXD1 and GJA1. Molecular docking with chlorogenic acids (CGA) was further established not only to validate LOX, FOXD1 and GJA1 as diagnostic markers but also reveal their potential therapeutic effects. Results and discussion In conclusion, our findings pinpointed three diagnostic markers of glomerulus-associated DN on the basis of cellular senescence. These markers could not only predict an increased risk of DN progression but also present promising therapeutic targets, potentially ushering in innovative treatments for DN in the elderly population.
Collapse
Affiliation(s)
- Donglin Sun
- Department of Urology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Shuqi Wei
- Center for Cancer and Immunology Research, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Dandan Wang
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Min Zeng
- Nephrology Department, Affiliated Hospital of Southern Medical University: Shenzhen Longhua New District People’s Hospital, Shenzhen, China
| | - Yihao Mo
- Nephrology Department, Affiliated Hospital of Southern Medical University: Shenzhen Longhua New District People’s Hospital, Shenzhen, China
| | - Huafeng Li
- Nephrology Department, Affiliated Hospital of Southern Medical University: Shenzhen Longhua New District People’s Hospital, Shenzhen, China
| | - Caixing Liang
- Nephrology Department, Affiliated Hospital of Southern Medical University: Shenzhen Longhua New District People’s Hospital, Shenzhen, China
| | - Lu Li
- Publicity Department, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Jun Wei Zhang
- Nephrology Department, Affiliated Hospital of Southern Medical University: Shenzhen Longhua New District People’s Hospital, Shenzhen, China
| | - Li Wang
- Nephrology Department, Affiliated Hospital of Southern Medical University: Shenzhen Longhua New District People’s Hospital, Shenzhen, China
| |
Collapse
|
11
|
Cheng W, Cai C, Xu Y, Xiao X, Shi T, Liao Y, Wang X, Chen S, Zhou M, Liao Z. The TRIM21-FOXD1-BCL-2 axis underlies hyperglycaemic cell death and diabetic tissue damage. Cell Death Dis 2023; 14:825. [PMID: 38092733 PMCID: PMC10719266 DOI: 10.1038/s41419-023-06355-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 11/26/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
Chronic hyperglycaemia is a devastating factor that causes diabetes-induced damage to the retina and kidney. However, the precise mechanism by which hyperglycaemia drives apoptotic cell death is incompletely known. Herein, we found that FOXD1, a FOX family transcription factor specifically expressed in the retina and kidney, regulated the transcription of BCL-2, a master regulator of cell survival. Intriguingly, the protein level of FOXD1, which responded negatively to hyperglycaemic conditions, was controlled by the TRIM21-mediated K48-linked polyubiquitination and subsequent proteasomal degradation. The TRIM21-FOXD1-BCL-2 signalling axis was notably active during diabetes-induced damage to murine retinal and renal tissues. Furthermore, we found that tartary buckwheat flavonoids effectively reversed the downregulation of FOXD1 protein expression and thus restored BCL-2 expression and facilitated the survival of retinal and renal tissues. In summary, we identified a transcription factor responsible for BCL-2 expression, a signalling axis (TRM21-FOXD1-BCL-2) underlying hyperglycaemia-triggered apoptosis, and a potential treatment for deleterious diabetic complications.
Collapse
Affiliation(s)
- Wenwen Cheng
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Cifeng Cai
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Yifan Xu
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Xueqi Xiao
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Tiantian Shi
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Yueling Liao
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Xiaoyi Wang
- First Affiliated Hospital of Huzhou University, Huzhou, 313000, China
| | - Shasha Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| | - Meiliang Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Zhiyong Liao
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
12
|
Cheng L, Yan H, Liu Y, Guan G, Cheng P. Dissecting multifunctional roles of forkhead box transcription factor D1 in cancers. Biochim Biophys Acta Rev Cancer 2023; 1878:188986. [PMID: 37716516 DOI: 10.1016/j.bbcan.2023.188986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/18/2023]
Abstract
As a member of the forkhead box (FOX) family of transcription factors (TF), FOXD1 has recently been implicated as a crucial regulator in a variety of human cancers. Accumulating evidence has established dysregulated and aberrant FOXD1 signaling as a prominent feature in cancer development and progression. However, there is a lack of systematic review on this topic. Here, we summarized the present understanding of FOXD1 functions in cancer biology and reviewed the downstream targets and upstream regulatory mechanisms of FOXD1 as well as the related signaling pathways within the context of current reports. We highlighted the functional features of FOXD1 in cancers to identify the future research consideration of this multifunctional transcription factor and potential therapeutic strategies targeting its oncogenic activity.
Collapse
Affiliation(s)
- Lin Cheng
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Haixu Yan
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang Liu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Gefei Guan
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China.
| | - Peng Cheng
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China; Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
13
|
Sadaf, Hazazi A, Alkhalil SS, Alsaiari AA, Gharib AF, Alhuthali HM, Rana S, Aloliqi AA, Eisa AA, Hasan MR, Dev K. Role of Fork-Head Box Genes in Breast Cancer: From Drug Resistance to Therapeutic Targets. Biomedicines 2023; 11:2159. [PMID: 37626655 PMCID: PMC10452497 DOI: 10.3390/biomedicines11082159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/17/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Breast cancer has been acknowledged as one of the most notorious cancers, responsible for millions of deaths around the globe. Understanding the various factors, genetic mutations, comprehensive pathways, etc., that are involved in the development of breast cancer and how these affect the development of the disease is very important for improving and revitalizing the treatment of this global health issue. The forkhead-box gene family, comprising 19 subfamilies, is known to have a significant impact on the growth and progression of this cancer. The article looks into the various forkhead genes and how they play a role in different types of cancer. It also covers their impact on cancer drug resistance, interaction with microRNAs, explores their potential as targets for drug therapies, and their association with stem cells.
Collapse
Affiliation(s)
- Sadaf
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India;
| | - Ali Hazazi
- Department of Pathology and Laboratory Medicine, Security Forces Hospital Program, Riyadh 11481, Saudi Arabia;
| | - Samia S. Alkhalil
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah 11961, Saudi Arabia;
| | - Ahad Amer Alsaiari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (A.A.A.); (A.F.G.); (H.M.A.)
| | - Amal F. Gharib
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (A.A.A.); (A.F.G.); (H.M.A.)
| | - Hayaa M. Alhuthali
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (A.A.A.); (A.F.G.); (H.M.A.)
| | - Shanika Rana
- School of Biosciences, Apeejay Stya University, Gurugram 122003, India;
| | - Abdulaziz A. Aloliqi
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Alaa Abdulaziz Eisa
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Medina 30002, Saudi Arabia;
| | - Mohammad Raghibul Hasan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah 11961, Saudi Arabia;
| | - Kapil Dev
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India;
| |
Collapse
|
14
|
Kumegawa K, Yang L, Miyata K, Maruyama R. FOXD1 is associated with poor outcome and maintains tumor-promoting enhancer-gene programs in basal-like breast cancer. Front Oncol 2023; 13:1156111. [PMID: 37234983 PMCID: PMC10206236 DOI: 10.3389/fonc.2023.1156111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Breast cancer biology varies markedly among patients. Basal-like breast cancer is one of the most challenging subtypes to treat because it lacks effective therapeutic targets. Despite numerous studies on potential targetable molecules in this subtype, few targets have shown promise. However, the present study revealed that FOXD1, a transcription factor that functions in both normal development and malignancy, is associated with poor prognosis in basal-like breast cancer. We analyzed publicly available RNA sequencing data and conducted FOXD1-knockdown experiments, finding that FOXD1 maintains gene expression programs that contribute to tumor progression. We first conducted survival analysis of patients grouped via a Gaussian mixture model based on gene expression in basal-like tumors, finding that FOXD1 is a prognostic factor specific to this subtype. Then, our RNA sequencing and chromatin immunoprecipitation sequencing experiments using the basal-like breast cancer cell lines BT549 and Hs578T with FOXD1 knockdown revealed that FOXD1 regulates enhancer-gene programs related to tumor progression. These findings suggest that FOXD1 plays an important role in basal-like breast cancer progression and may represent a promising therapeutic target.
Collapse
Affiliation(s)
- Kohei Kumegawa
- Cancer Cell Diversity Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Liying Yang
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kenichi Miyata
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Reo Maruyama
- Cancer Cell Diversity Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo, Japan
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
15
|
Hutten SJ, de Bruijn R, Lutz C, Badoux M, Eijkman T, Chao X, Ciwinska M, Sheinman M, Messal H, Herencia-Ropero A, Kristel P, Mulder L, van der Waal R, Sanders J, Almekinders MM, Llop-Guevara A, Davies HR, van Haren MJ, Martin NI, Behbod F, Nik-Zainal S, Serra V, van Rheenen J, Lips EH, Wessels LFA, Wesseling J, Scheele CLGJ, Jonkers J. A living biobank of patient-derived ductal carcinoma in situ mouse-intraductal xenografts identifies risk factors for invasive progression. Cancer Cell 2023; 41:986-1002.e9. [PMID: 37116492 PMCID: PMC10171335 DOI: 10.1016/j.ccell.2023.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 02/21/2023] [Accepted: 04/04/2023] [Indexed: 04/30/2023]
Abstract
Ductal carcinoma in situ (DCIS) is a non-obligate precursor of invasive breast cancer (IBC). Due to a lack of biomarkers able to distinguish high- from low-risk cases, DCIS is treated similar to early IBC even though the minority of untreated cases eventually become invasive. Here, we characterized 115 patient-derived mouse-intraductal (MIND) DCIS models reflecting the full spectrum of DCIS observed in patients. Utilizing the possibility to follow the natural progression of DCIS combined with omics and imaging data, we reveal multiple prognostic factors for high-risk DCIS including high grade, HER2 amplification, expansive 3D growth, and high burden of copy number aberrations. In addition, sequential transplantation of xenografts showed minimal phenotypic and genotypic changes over time, indicating that invasive behavior is an intrinsic phenotype of DCIS and supporting a multiclonal evolution model. Moreover, this study provides a collection of 19 distributable DCIS-MIND models spanning all molecular subtypes.
Collapse
Affiliation(s)
- Stefan J Hutten
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands
| | - Roebi de Bruijn
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands; Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Catrin Lutz
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands
| | - Madelon Badoux
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands
| | - Timo Eijkman
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands
| | - Xue Chao
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands
| | - Marta Ciwinska
- Center for Cancer Biology, VIB, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Michael Sheinman
- Oncode Institute, Amsterdam, the Netherlands; Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Hendrik Messal
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands
| | - Andrea Herencia-Ropero
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, 08035 Barcelona, Spain; Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Barcelona, Spain
| | - Petra Kristel
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Lennart Mulder
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Rens van der Waal
- Core Facility Molecular Pathology & Biobanking, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Joyce Sanders
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Mathilde M Almekinders
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Alba Llop-Guevara
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, 08035 Barcelona, Spain
| | - Helen R Davies
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, CB2 0QQ Cambridge, UK; Early Cancer Institute, University of Cambridge, CB2 0XZ Cambridge, UK
| | - Matthijs J van Haren
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2302 BH Leiden, the Netherlands
| | - Nathaniel I Martin
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2302 BH Leiden, the Netherlands
| | - Fariba Behbod
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Serena Nik-Zainal
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, CB2 0QQ Cambridge, UK; Early Cancer Institute, University of Cambridge, CB2 0XZ Cambridge, UK
| | - Violeta Serra
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, 08035 Barcelona, Spain
| | - Jacco van Rheenen
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands
| | - Esther H Lips
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Lodewyk F A Wessels
- Oncode Institute, Amsterdam, the Netherlands; Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Jelle Wesseling
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Division of Diagnostic Oncology, Netherlands Cancer Institute - Antonie van Leeuwenhoek Hospital, 1066 CX Amsterdam, the Netherlands; Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Colinda L G J Scheele
- Center for Cancer Biology, VIB, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Jos Jonkers
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands.
| |
Collapse
|
16
|
Jiang W, Li Y, Li R, Chen W, Song M, Zhang Q, Chen S. The Prognostic Significance of FOXD1 Expression in Head and Neck Squamous Cell Carcinoma. J Pers Med 2023; 13:530. [PMID: 36983712 PMCID: PMC10053205 DOI: 10.3390/jpm13030530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
It has been reported that forkhead box D1 (FOXD1) plays an established role in human early embryonic development and is broadly involved in various malignancies. However, there is limited information regarding FOXD1 expression in head and neck squamous cell carcinoma (HNSCC). This present study aimed to explore the clinical significance of FOXD1 in patients with HNSCC. Tissue microarrays of 334 primary HNSCC patients who underwent surgery between 2008 and 2010 at Sun Yat-sen University Cancer Center were investigated by immunohistochemistry regarding FOXD1 expression. χ2 test was used to estimate the relationship of FOXD1 expression with clinicopathologic characteristics. Univariate and multivariate analyses were performed to identify FOXD1 expression as an independent prognostic indicator of overall survival (OS) and disease-free survival (DFS). FOXD1 expression is closely associated with postoperative recurrence. HNSCC patients with high FOXD1 expression have poorer prognoses than the low-expression group (p < 0.05). According to multivariate analysis, FOXD1 was an independent prognostic factor for OS and DFS. The results revealed that FOXD1 could be a prognostic factor for HNSCC and might serve as a potential target for novel therapies.
Collapse
Affiliation(s)
| | | | | | | | | | - Quan Zhang
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China (M.S.)
| | - Shuwei Chen
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China (M.S.)
| |
Collapse
|
17
|
Long Y, Chong T, Lyu X, Chen L, Luo X, Faleti OD, Deng S, Wang F, He M, Qian Z, Zhao H, Zhou W, Guo X, Chen C, Li X. FOXD1-dependent RalA-ANXA2-Src complex promotes CTC formation in breast cancer. J Exp Clin Cancer Res 2022; 41:301. [PMID: 36229838 PMCID: PMC9558416 DOI: 10.1186/s13046-022-02504-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/27/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Early metastasis is a key factor contributing to poor breast cancer (BC) prognosis. Circulating tumor cells (CTCs) are regarded as the precursor cells of metastasis, which are ultimately responsible for the main cause of death in BC. However, to date molecular mechanisms underlying CTC formation in BC have been insufficiently defined. METHODS RNA-seq was carried out in primary tissues from early-stage BC patients (with CTCs≥5 and CTCs = 0, respectively) and the validation study was conducted in untreated 80 BC patients. Multiple in vitro and in vivo models were used in functional studies. Luciferase reporter, ChIP-seq, CUT&Tag-seq, and GST-pulldown, etc. were utilized in mechanistic studies. CTCs were counted by the CanPatrol™ CTC classification system or LiquidBiospy™ microfluidic chips. ERK1/2 inhibitor SCH772984 was applied to in vivo treatment. RESULTS Highly expressed FOXD1 of primary BC tissues was observed to be significantly associated with increased CTCs in BC patients, particularly in early BC patients. Overexpressing FOXD1 enhanced the migration capability of BC cells, CTC formation and BC metastasis, via facilitating epithelial-mesenchymal transition of tumor cells. Mechanistically, FOXD1 was discovered to induce RalA expression by directly bound to RalA promotor. Then, RalA formed a complex with ANXA2 and Src, promoting the interaction between ANXA2 and Src, thus increasing the phosphorylation (Tyr23) of ANXA2. Inhibiting RalA-GTP form attenuated the interaction between ANXA2 and Src. This cascade culminated in the activation of ERK1/2 signal that enhanced metastatic ability of BC cells. In addition, in vivo treatment with SCH772984, a specific inhibitor of ERK1/2, was used to dramatically inhibit the CTC formation and BC metastasis. CONCLUSION Here, we report a FOXD1-dependent RalA-ANXA2-Src complex that promotes CTC formation via activating ERK1/2 signal in BC. FOXD1 may serve as a prognostic factor in evaluation of BC metastasis risks. This signaling cascade is druggable and effective for overcoming CTC formation from the early stages of BC.
Collapse
Affiliation(s)
- Yufei Long
- grid.284723.80000 0000 8877 7471Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong China ,grid.284723.80000 0000 8877 7471The Third School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong China
| | - Tuotuo Chong
- grid.284723.80000 0000 8877 7471Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong China ,grid.284723.80000 0000 8877 7471The Third School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong China
| | - Xiaoming Lyu
- grid.284723.80000 0000 8877 7471Department of laboratory medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong China
| | - Lujia Chen
- grid.284723.80000 0000 8877 7471Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong China
| | - Xiaomin Luo
- grid.284723.80000 0000 8877 7471Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong China ,grid.284723.80000 0000 8877 7471The Third School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong China
| | - Oluwasijibomi Damola Faleti
- grid.284723.80000 0000 8877 7471Department of laboratory medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong China ,grid.35030.350000 0004 1792 6846Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Simin Deng
- grid.284723.80000 0000 8877 7471Department of laboratory medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong China
| | - Fei Wang
- grid.284723.80000 0000 8877 7471Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong China
| | - Mingliang He
- grid.35030.350000 0004 1792 6846Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Zhipeng Qian
- Guangzhou SaiCheng Bio Co. Ltd, Guangzhou, Guangdong China
| | - Hongli Zhao
- grid.284723.80000 0000 8877 7471Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong China
| | - Wenyan Zhou
- grid.284723.80000 0000 8877 7471Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong China
| | - Xia Guo
- grid.284723.80000 0000 8877 7471Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong China ,grid.284723.80000 0000 8877 7471The Third School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong China
| | - Ceshi Chen
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences Kunming, Kunming, Yunnan China ,grid.285847.40000 0000 9588 0960Academy of Biomedical Engineering, Kunming Medical University, Kunming, Yunnan China ,grid.285847.40000 0000 9588 0960The Third Affiliated Hospital, Kunming Medical University, Kunming, Yunnan China
| | - Xin Li
- grid.284723.80000 0000 8877 7471Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong China ,grid.284723.80000 0000 8877 7471The Third School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong China
| |
Collapse
|
18
|
Zhang Q, Chen Z, Tang Q, Wang Z, Lu J, You Y, Wang H. USP21 promotes self-renewal and tumorigenicity of mesenchymal glioblastoma stem cells by deubiquitinating and stabilizing FOXD1. Cell Death Dis 2022; 13:712. [PMID: 35974001 PMCID: PMC9381540 DOI: 10.1038/s41419-022-05163-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/09/2022] [Accepted: 08/04/2022] [Indexed: 01/21/2023]
Abstract
Recent studies suggest that Forkhead box D1 (FOXD1) plays an indispensable role in maintaining the mesenchymal (MES) properties of glioblastoma (GBM) stem cells (GSCs). Thus, understanding the mechanisms that control FOXD1 protein expression is critical for guiding GBM treatment, particularly in patients with therapy-resistant MES subtypes. In this study, we identify the ubiquitin-specific peptidase 21 (USP21) as a critical FOXD1 deubiquitinase in MES GSCs. We find that USP21 directly interacts with and stabilizes FOXD1 by reverting its proteolytic ubiquitination. Silencing of USP21 enhances polyubiquitination of FOXD1, promotes its proteasomal degradation, and ultimately attenuates MES identity in GSCs, while these effects could be largely restored by reintroduction of FOXD1. Remarkably, we show that disulfiram, a repurposed drug that could block the enzymatic activities of USP21, suppresses GSC tumorigenicity in MES GSC-derived GBM xenograft model. Additionally, we demonstrate that USP21 is overexpressed and positively correlated with FOXD1 protein levels in GBM tissues, and its expression is inversely correlated with patient survival. Collectively, our work reveals that USP21 maintains MES identity by antagonizing FOXD1 ubiquitination and degradation, suggesting that USP21 is a potential therapeutic target for the MES subtype of GBM.
Collapse
Affiliation(s)
- Qixiang Zhang
- grid.412676.00000 0004 1799 0784Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Zhengxin Chen
- grid.412676.00000 0004 1799 0784Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Qikai Tang
- grid.412676.00000 0004 1799 0784Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Zhangjie Wang
- grid.412676.00000 0004 1799 0784Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Jiacheng Lu
- grid.412676.00000 0004 1799 0784Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Yongping You
- grid.412676.00000 0004 1799 0784Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Huibo Wang
- grid.412676.00000 0004 1799 0784Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| |
Collapse
|
19
|
Bond KH, Sims-Lucas S, Oxburgh L. Targets for Renal Carcinoma Growth Control Identified by Screening FOXD1 Cell Proliferation Pathways. Cancers (Basel) 2022; 14:cancers14163958. [PMID: 36010951 PMCID: PMC9406217 DOI: 10.3390/cancers14163958] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/02/2022] [Accepted: 08/14/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary FOXD1 regulates the proliferation of clear cell renal cell carcinoma (ccRCC) cells, and ccRCC cells in which FOXD1 has been inactivated do not form tumors efficiently in an animal model. Reproducing growth inhibition in tumor cells by inhibiting FOXD1 pathways presents a possible therapeutic approach for ccRCC and other cancers. We have established an analysis strategy to identify FOXD1-regulated target pathways that may be therapeutically tractable, and compounds that modulate these pathways were selected for testing. Targets in three pathways were identified: FOXM1, PME1, and TMEM167A, which were inhibited by compounds FDI-6, AMZ-30, and silibinin, respectively. The effects of these compounds on the growth of tumor cells from patients cultured in a novel 3D tumor-replica culture environment revealed that FDI-6 and silibinin had strong growth inhibitory effects. This investigation informs new therapeutic targets to control ccRCC tumor growth, and provides a strategy to compare the responsiveness of individual patient tumor replicas to growth-inhibitory compounds. Abstract Clinical association studies suggest that FOXD1 is a determinant of patient outcome in clear cell renal cell carcinoma (ccRCC), and laboratory investigations have defined a role for this transcription factor in controlling the growth of tumors through regulation of the G2/M cell cycle transition. We hypothesized that the identification of pathways downstream of FOXD1 may define candidates for pharmacological modulation to suppress the G2/M transition in ccRCC. We developed an analysis pipeline that utilizes RNA sequencing, transcription factor binding site analysis, and phenotype validation to identify candidate effectors downstream from FOXD1. Compounds that modulate candidate pathways were tested for their ability to cause growth delay at G2/M. Three targets were identified: FOXM1, PME1, and TMEM167A, which were targeted by compounds FDI-6, AMZ-30, and silibinin, respectively. A 3D ccRCC tumor replica model was used to investigate the effects of these compounds on the growth of primary cells from five patients. While silibinin reduced 3D growth in a subset of tumor replicas, FDI-6 reduced growth in all. This study identifies tractable pathways to target G2/M transition and inhibit ccRCC growth, demonstrates the applicability of these strategies across patient tumor replicas, and provides a platform for individualized patient testing of compounds that inhibit tumor growth.
Collapse
Affiliation(s)
- Kyle H. Bond
- Rogosin Institute, Room 2-43, 310 East 67th St., New York, NY 10065, USA
| | - Sunder Sims-Lucas
- Children’s Hospital of Pittsburgh, Rangos Research Building, 4401 Penn Ave, Pittsburgh, PA 15224, USA
| | - Leif Oxburgh
- Rogosin Institute, Room 2-43, 310 East 67th St., New York, NY 10065, USA
- Correspondence:
| |
Collapse
|
20
|
Donmez C, Konac E. Silencing effects of FOXD1 inhibit metastatic potentials of the PCa via N-cadherin - Wnt/β-catenin crosstalk. Gene 2022; 836:146680. [PMID: 35738443 DOI: 10.1016/j.gene.2022.146680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/03/2022] [Accepted: 06/10/2022] [Indexed: 11/18/2022]
Abstract
The elucidation of the mechanisms controlling the metastatic processes is important for the development of new treatment methods to prevent the progression of localized disease to metastasis. Forkhead box D1 (FOXD1) is a member of the FOX transcription factor family and has been reported to play an important role in the development and progression of various cancers. However, its role in prostate cancer (PCa) remains only partially understood. Therefore, we aimed to explore the effects on the associated regulatory signal pathway of FOXD1 in prostate cancer. To clarify the roles of FOXD1 in prostate cancer, we used siRNA to suppress its expression in 22Rv1 cells with relatively higher expression of FOXD1. The effects of FOXD1 silencing on cell proliferation, migration and invasion were determined. WST-1 assays were used to determine cell proliferation. Cell migration and invasion were evaluated through wound healing and transwell assays. The possible underlying mechanism of FOXD1 silencing on 22Rv1 was evaluated by determining the expression of proteins related to EMT and Wnt/β-catenin signaling pathway. Our results showed that FOXD1 was highly expressed in prostate cancer cell lines -PC-3, DU145, LNCaP and 22Rv1- compared to normal prostate epithelial cell line RWPE-1. Additionally, silencing of FOXD1 significantly reduced proliferation, migration and invasion of 22Rv1 cells. Furthermore, silencing of FOXD1 decreased the expression of β-catenin and cyclin D1, which are involved in the Wnt/β-catenin signaling pathway. However, it did not appear to affect the expression of EMT-related proteins other than N-cadherin. Our results suggest that silencing of FOXD1 suppresses metastatic potentials of the PCa via N-cadherin - Wnt/β-catenin crosstalk. Therefore, the expression status of FOXD1 may be a new prognostic factor as well as a potential therapeutic target in prostate cancer treatment.
Collapse
Affiliation(s)
- Cigdem Donmez
- Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Besevler, 06500 Ankara, Turkey; Department of Medical Biology, Faculty of Medicine, Zonguldak Bulent Ecevit University, Esenkoy, Kozlu, 67600 Zonguldak, Turkey
| | - Ece Konac
- Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Besevler, 06500 Ankara, Turkey.
| |
Collapse
|
21
|
Wang X, Wang N, Zhong LLD, Su K, Wang S, Zheng Y, Yang B, Zhang J, Pan B, Yang W, Wang Z. Development and Validation of a Risk Prediction Model for Breast Cancer Prognosis Based on Depression-Related Genes. Front Oncol 2022; 12:879563. [PMID: 35619902 PMCID: PMC9128552 DOI: 10.3389/fonc.2022.879563] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/01/2022] [Indexed: 12/15/2022] Open
Abstract
Background Depression plays a significant role in mediating breast cancer recurrence and metastasis. However, a precise risk model is lacking to evaluate the potential impact of depression on breast cancer prognosis. In this study, we established a depression-related gene (DRG) signature that can predict overall survival (OS) and elucidate its correlation with pathological parameters and sensitivity to therapy in breast cancer. Methods The model training and validation assays were based on the analyses of 1,096 patients from The Cancer Genome Atlas (TCGA) database and 2,969 patients from GSE96058. A risk signature was established through univariate and multivariate Cox regression analyses. Results Ten DRGs were determined to construct the risk signature. Multivariate analysis revealed that the signature was an independent prognostic factor for OS. Receiver operating characteristic (ROC) curves indicated good performance of the model in predicting 1-, 3-, and 5-year OS, particularly for patients with triple-negative breast cancer (TNBC). In the high-risk group, the proportion of immunosuppressive cells, including M0 macrophages, M2 macrophages, and neutrophils, was higher than that in the low-risk group. Furthermore, low-risk patients responded better to chemotherapy and endocrine therapy. Finally, a nomogram integrating risk score, age, tumor-node-metastasis (TNM) stage, and molecular subtypes were established, and it showed good agreement between the predicted and observed OS. Conclusion The 10-gene risk model not only highlights the significance of depression in breast cancer prognosis but also provides a novel gene-testing tool to better prevent the potential adverse impact of depression on breast cancer prognosis.
Collapse
Affiliation(s)
- Xuan Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Neng Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Linda L D Zhong
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China.,School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Kexin Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shengqi Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yifeng Zheng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bowen Yang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Juping Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bo Pan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Yang
- Atrius Health, Harvard Vanguard Medical Associates, Burlington, MA, United States
| | - Zhiyu Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
22
|
Zong Y, Miao Y, Li W, Zheng M, Xu Z, Gao H, Feng W, Xu Z, Zhao J, Shen L, Lu A. Combination of FOXD1 and Plk2: A novel biomarker for predicting unfavourable prognosis of colorectal cancer. J Cell Mol Med 2022; 26:3471-3482. [PMID: 35579380 PMCID: PMC9189346 DOI: 10.1111/jcmm.17361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 11/29/2022] Open
Abstract
Colorectal cancer (CRC) is a worldwide disease with worse survival. Our objective is to identify previously unrecognized prognostic factors to better evaluate disease progression. Seven GEO datasets were collected and analysed using R software, followed by KEGG enrichment analysis and TFs network construction. LASSO‐COX analysis was performed to select the most useful prognostic features. COX model was used to analyse prognostic factors associated with OS. The survival curve was constructed using Kaplan–Meier analysis. A Nomogram model was also constructed to predict prognosis. A total of 3559 differentially expressed genes (DEGs) and 66 differentially expressed transcription factors were identified. FOXD1 was identified as the most differentially expressed factor of TFs covering the most downstream DEGs and independent risk prognostic factor. Next, FOXD1 expression was detected using immunohistochemical staining in 131 CRC patients’ tissue and the association between FOXD1 expression and clinicopathologic features was analysed. High expression of FOXD1 was correlated with TNM stage and pathological differentiation. Multivariate COX regression analyses confirmed that FOXD1 high‐expression, TNM stage and tumour differentiation were independent prognostic risk factor of OS and DFS. Patients with high expression of FOXD1 were more likely to have poor overall survival and disease‐free survival. The combination of FOXD1 and Plk2 which we have previously reported allowed us to predict the survival of post‐surgical CRC patients more accurately, adding to the former prognostic model based on the TNM Stage. The results showed that patients with high expression of both FOXD1 and Plk2 have the worst survival. A combination of FOXD1 and Plk2 can better evaluate patients’ survival.
Collapse
Affiliation(s)
- Yaping Zong
- Department of General Surgery, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China.,Shanghai Minimally Invasive Surgery Center, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Yiming Miao
- Department of General Surgery, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China.,Shanghai Minimally Invasive Surgery Center, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Wenchang Li
- Department of General Surgery, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China.,Shanghai Minimally Invasive Surgery Center, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Minhua Zheng
- Department of General Surgery, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China.,Shanghai Minimally Invasive Surgery Center, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Zhuoqing Xu
- Department of General Surgery, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China.,Shanghai Minimally Invasive Surgery Center, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Han Gao
- Department of General Surgery, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China.,Shanghai Minimally Invasive Surgery Center, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Wenqing Feng
- Department of General Surgery, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China.,Shanghai Minimally Invasive Surgery Center, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Zifeng Xu
- Department of General Surgery, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China.,Shanghai Minimally Invasive Surgery Center, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Jingkun Zhao
- Department of General Surgery, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China.,Shanghai Minimally Invasive Surgery Center, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Lifei Shen
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Aiguo Lu
- Department of General Surgery, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China.,Shanghai Minimally Invasive Surgery Center, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| |
Collapse
|
23
|
The Expression and Survival Significance of FOXD1 in Lung Squamous Cell Carcinoma: A Meta-Analysis, Immunohistochemistry Validation, and Bioinformatics Analysis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7798654. [PMID: 35607308 PMCID: PMC9124105 DOI: 10.1155/2022/7798654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/21/2022] [Indexed: 12/24/2022]
Abstract
Accumulating evidence demonstrated that FOXD1 dysregulation was correlated with a broad spectrum of malignancies. However, litter is known about the role of FOXD1 in the progression of lung squamous cell carcinoma (LUSC). We conducted the comprehensive bioinformatics analysis to investigate FOXD1 expression in LUSC from TCGA and GEO datasets, and validated the FOXD1 expression pattern in clinical samples using immunohistochemistry method. ESTIMATE and CIBERSORT algorithms were performed to assess the relationship of FOXD1 and tumor microenvironment and immune cell infiltration. Our study showed that FOXD1 expression was significantly upregulated in LUSC tissues in TCGA dataset, validated by GEO datasets and clinical samples. In TCGA dataset, Kaplan-Meier curves showed that high FOXD1 expression was significantly correlated with favorable prognosis in LUSC patients. Moreover, FOXD1 expression has an impact on immune score and the proportions of immune cell infiltration subgroups. Finally, we predicted FOXD1 may be involved in many immune-related biological functions and cancer-related signaling pathways. Taken together, FOXD1 was upregulated in LUSC tissues, and FOXD1 expression could be a potential prognostic marker. FOXD1 might be associated with tumor microenvironment and perhaps a potential target in the tumor immunotherapy.
Collapse
|
24
|
Li J, Yan T, Wu X, Ke X, Li X, Zhu Y, Yang J, Li Z. Aberrant overexpression of transcription factor Forkhead box D1 predicts poor prognosis and promotes cancer progression in HNSCC. BMC Cancer 2021; 21:1205. [PMID: 34772357 PMCID: PMC8588630 DOI: 10.1186/s12885-021-08868-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 08/28/2021] [Indexed: 01/01/2023] Open
Abstract
Objectives Forkhead box D1, the core transcription factor member of FOX family, has gradually seen as a key cancerous regulatory. However, its expression and carcinogenicity in head and neck squamous cell carcinoma (HNSCC) have not been reported yet. This study was to investigate its expression pattern, clinicopathological significance and biological roles in HNSCC. Methods HNSCC data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) was used to indicate the detailed expression pattern and outcome association of FOXD1, while Western Blot assay to detect FOXD1 level in a panel of HNSCC cell lines as well as immunocytochemistry to explore FOXD1 protein abundance and sublocation. Series of siRNA-mediated FOXD1 knock-down experiments to assess the proliferation, migration, invasion and anti- apoptosis ability after FOXD1 down-regulation. Bioinformatic analysis to find out which biological function and cancer-related pathways of FOXD1 associated genes involved in. Results FOXD1 mRNA was significantly overexpressed in TCGA-HNSCC, GSE6631, GSE12452, GSE25099 and GSE30784. Besides, IHC results shown that nuclear location FOXD1 protein was significantly higher in primary HNSCC specimens from cohort involved in this study. Also, FOXD1 abundance was significantly correlated with cervical node metastasis and poor over-all/disease-free survival after combination analysis with patient pathological information. siRNA-mediated FOXD1 knock-down significantly inhibited cell proliferation, migration and invasion and induced apoptosis in HNSCC cells. Further analysis of GSEA, GO and KEGG showed that FOXD1 expression was significantly associated with oncological function and cancer-related pathways. Conclusions Taken together, our study implies that the potential oncogene, FOXD1, facilitates oncological behavior who can be identified as a brand-new HNSCC biomarker with diagnostic and prognostic significance. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08868-4.
Collapse
Affiliation(s)
- Jin Li
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, Jiangsu, China.,Jiangsu Province Engineering Research Canter of Stomatological Translation Medicine, Nanjing, Jiangsu, China
| | - Tingyuan Yan
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, Jiangsu, China.,Jiangsu Province Engineering Research Canter of Stomatological Translation Medicine, Nanjing, Jiangsu, China
| | - Xiang Wu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Xueping Ke
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Xin Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Yumin Zhu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Jianrong Yang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Zhongwu Li
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, People's Republic of China. .,Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, Jiangsu, China. .,Jiangsu Province Engineering Research Canter of Stomatological Translation Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
25
|
FOXD1 expression in head and neck squamous carcinoma: a study based on TCGA, GEO and meta-analysis. Biosci Rep 2021; 41:229252. [PMID: 34269372 PMCID: PMC8319493 DOI: 10.1042/bsr20210158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 01/19/2023] Open
Abstract
Forkhead box D1 (FOXD1) is a new member of FOX transcription factor family. FOXD1 has demonstrated multi-level roles during normal development and several diseases' pathogenesis. However, litter is known about the role of FOXD1 in the progression of head and neck squamous cancer (HNSC). In the present study, we analyzed FOXD1 expression pattern using TCGA dataset, GEO datasets, HNSC cell lines and HNSC tissues. Then, we analyzed the correlation between FOXD1 expression and clinical characteristics, and evaluated the prognostic value of FOXD1 in HNSC. Moreover, we assessed the relationship between FOXD1 expression and tumor environment (TME) and immune cell infiltration using ESTIMATE and CIBERSORT algorithms. Finally, we predicted the FOXD1-related biological processes and signal pathways. FOXD1 was up-regulated in HNSC tissues in TCGA datasets, validated by GEO datasets, HNSC cell lines and HNSC tissues. FOXD1 expression was significantly associated with tumor site and HPV infection. Univariate and multivariate Cox regression analyses showed that FOXD1 expression was an independent prognostic factor. Moreover, we found that the proportions of naïve B cells, plasma cells, and resting dendritic cells were negatively correlated with FOXD1 expression, otherwise, the proportion of activated mast cells was positively correlated with FOXD1 expression using CIBERSORT algorithm. GSEA analyses revealed that FOXD1 was mainly involved in cancer-related signaling pathway and metabolism-related pathways. FOXD1 was a potential oncogene, and might represent an indicator for predicting overall survival of HNSC patients. Moreover, many cancer-related pathways and metabolism-related processes may be regulated by FOXD1.
Collapse
|
26
|
Liu Z, Mi M, Zheng X, Zhang C, Zhu F, Liu T, Wu G, Zhang L. miR-30a/SOX4 Double Negative Feedback Loop is modulated by Disulfiram and regulates EMT and Stem Cell-like properties in Breast Cancer. J Cancer 2021; 12:5053-5065. [PMID: 34234874 PMCID: PMC8247377 DOI: 10.7150/jca.57752] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 05/30/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Both epithelial-to-mesenchymal transition (EMT) and cancer stem cells play important roles in development and progression of breast cancer. MicroRNA (miR)-30 family members have been reported to be associated with the regulation of EMT and stem cell phenotypes, however, the underlying molecular mechanisms are not well understood. Methods: miR-30a stable transfectants of breast cancer cell lines were created using a lentiviral system. Bioinformatics analysis was performed to explore miR-30a target genes and SOX4 was selected and identified by dual luciferase reporter assay. The effects of miR-30a and target gene SOX4 on EMT and CSC phenotypes in breast cancer were explored in vitro and in vivo. Results: Overexpression of miR-30a in breast cancer cells inhibited EMT and CSC phenotypes by targeting SOX4. Luciferase reporter assay confirmed that miR-30a directly targeted 3'UTR of SOX4, and formed a double-negative feedback loop with SOX4. Functional experiments demonstrated that knockdown of SOX4 suppressed EMT and CSC phenotypes of breast cancer cells through TGF-β/SMAD pathway, which was consistent with the inhibitory effects by overexpression of miR-30a. Additionally, we found disulfiram can upregulate miR-30a expression, and high miR-30a expression was associated with a good prognosis in breast cancer patients through TCGA database. Conclusion: Our findings suggest a novel double-negative loop between miR-30a and SOX4 mediated regulation of EMT and CSC features in breast cancer through TGF-β/SMAD pathway, highlighting a novel therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Zijian Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mi Mi
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Zheng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Caijiao Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Zhu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liling Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
27
|
Zhang D, Zhang Y, Sun X. LINC01133 promotes the progression of cervical cancer via regulating miR-30a-5p/FOXD1. Asia Pac J Clin Oncol 2021; 17:253-263. [PMID: 33078907 DOI: 10.1111/ajco.13451] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 07/30/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The prognosis of patients with recurrent or metastatic cervical cancer (CC) remains poor, and its incidence is especially high in developing countries. Multiple long noncoding RNAs are recently identified as crucial oncogenic factors or tumor suppressors. In this study, we explored the function and mechanism of LINC01133 during the progression of CC. METHODS Expression levels of LINC01133 and miR-30a-5p in 50 CC tissue samples were measured using quantitative real-time polymerase chain reaction. Immunohistochemistry and Western blot analysis were used to detect the expression of oncogene forkhead box D1 (FOXD1). The association between pathological indices and the expression level of LINC01133 was also analyzed. Human CC cell lines HeLa and SiHa were used as cell models. CCK-8 and bromodeoxyuridine assays were used to assess the effect of LINC01133 on CC cell line proliferation. Flow cytometry was used to study the effect of LINC01133 on CC apoptosis. Transwell assay was conducted to detect the effect of LINC01133 on migration and invasion. Furthermore, luciferase reporter assay was used to confirm the targeting relationship between miR-30a-5p to LINC01133. RESULTS We observed that LINC01133 expression in CC clinical samples was significantly increased, with high expression associated with higher T stage and negative HPV infection of the patients. Its overexpression remarkably accelerated proliferation and metastasis of CC cells, with reduced apoptosis. LINC01133 knockdown suppressed the malignant phenotypes of CC cells. Overexpression of LINC01133 significantly reduced the expression of miR-30a-5p by sponging it and enhanced the expression of FOXD1. CONCLUSIONS We report the overexpression of LINC01133 in CC sample and cell lines, which correlated with unfavorable pathological indices. LINC01133 was a sponge of tumor suppressor miR-30a-5p, and it enhanced the expression of FOXD1 indirectly and functioned as an oncogenic lncRNA in CC.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Gynecology, General Hospital of Fushun Mining Bureau of Liaoning Health Industry Group, Fushun, Liaoning Province, China
| | - Yuyang Zhang
- The Second Department of Oncology, General Hospital of Fushun Mining Bureau of Liaoning Health Industry Group, Fushun, Liaoning Province, China
| | - Xiuyun Sun
- Department of Gynecology, General Hospital of Fushun Mining Bureau of Liaoning Health Industry Group, Fushun, Liaoning Province, China
| |
Collapse
|
28
|
FOXD1 is a prognostic biomarker and correlated with macrophages infiltration in head and neck squamous cell carcinoma. Biosci Rep 2021; 41:228730. [PMID: 34028536 PMCID: PMC8255535 DOI: 10.1042/bsr20202929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023] Open
Abstract
Background: Forkhead Box D1 (FOXD1) is differentially expressed in various tumors. However, its role and correlation with immune cell infiltration remains uncertain in head and neck squamous cell carcinoma (HNSC). Methods: FOXD1 expression was analyzed in The Cancer Genome Atlas (TCGA) pan-cancer data. The clinical prognosis influence of FOXD1 was evaluated by clinical survival data of TCGA. Enrichment analysis of FOXD1 was performed using R packages ‘clusterProfiler’. We downloaded the immune cell infiltration score of TCGA samples from published articles, and analyzed the correlation between immune cell infiltration level and FOXD1 expression. Results: FOXD1 was highly expressed and associated with poorer overall survival (OS, P<0.0001), disease-specific survival (DSS, P=0.00011), and progression-free interval (PFI, P<0.0001) in HNSC and some other tumors. In addition, FOXD1 expression was significantly correlated with infiltration of immune cells. Tumor-associated macrophages (TAMs) infiltration increased in tissues with high FOXD1 expression in HNSC. Immunosuppressive genes such as PD-L1, IL-10, TGFB1, and TGFBR1 were significantly positively correlated with FOXD1. Conclusions: Our study suggests FOXD1 to be an oncogene and act as an indicator of poor prognosis in HNSC. FOXD1 might contribute to the TAM infiltration in HNSC. High FOXD1 may be associated with tumor immunosuppression status.
Collapse
|
29
|
Sun Q, Novak D, Hüser L, Poelchen J, Wu H, Granados K, Federico A, Liu K, Steinfass T, Vierthaler M, Umansky V, Utikal J. FOXD1 promotes dedifferentiation and targeted therapy resistance in melanoma by regulating the expression of connective tissue growth factor. Int J Cancer 2021; 149:657-674. [PMID: 33837564 DOI: 10.1002/ijc.33591] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022]
Abstract
Metastatic melanoma is an aggressive skin cancer and associated with a poor prognosis. In clinical terms, targeted therapy is one of the most important treatments for patients with BRAFV600E -mutated advanced melanoma. However, the development of resistance to this treatment compromises its therapeutic success. We previously demonstrated that forkhead box D1 (FOXD1) regulates melanoma migration and invasion. Here, we found that FOXD1 was highly expressed in melanoma cells and was associated with a poor survival of patients with metastatic melanoma. Upregulation of FOXD1 expression enhanced melanoma cells' resistance to vemurafenib (BRAF inhibitor [BRAFi]) or vemurafenib and cobimetinib (MEK inhibitor) combination treatment whereas loss of FOXD1 increased the sensitivity to treatment. By comparing gene expression levels between FOXD1 knockdown (KD) and overexpressing (OE) cells, we identified the connective tissue growth factor (CTGF) as a downstream factor of FOXD1. Chromatin immunoprecipitation and luciferase assay demonstrated the direct binding of FOXD1 to the CTGF promoter. Similar to FOXD1, knockdown of CTGF increased the sensitivity of BRAFi-resistant cells to vemurafenib. FOXD1 KD cells treated with recombinant CTGF protein were less sensitive towards vemurafenib compared to untreated FOXD1 KD cells. Based on these findings, we conclude that FOXD1 might be a promising new diagnostic marker and a therapeutic target for the treatment of targeted therapy resistant melanoma.
Collapse
Affiliation(s)
- Qian Sun
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht Karl University of Heidelberg, Mannheim, Germany
| | - Daniel Novak
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht Karl University of Heidelberg, Mannheim, Germany
| | - Laura Hüser
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht Karl University of Heidelberg, Mannheim, Germany
| | - Juliane Poelchen
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht Karl University of Heidelberg, Mannheim, Germany
| | - Huizi Wu
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht Karl University of Heidelberg, Mannheim, Germany.,BGI Genomics, Beijing Genomics Institute, Shenzhen, China
| | - Karol Granados
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht Karl University of Heidelberg, Mannheim, Germany.,Department of Biochemistry, School of Medicine, University of Costa Rica (UCR), San Jose, Costa Rica
| | - Aniello Federico
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht Karl University of Heidelberg, Mannheim, Germany
| | - Ke Liu
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht Karl University of Heidelberg, Mannheim, Germany.,Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tamara Steinfass
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht Karl University of Heidelberg, Mannheim, Germany
| | - Marlene Vierthaler
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht Karl University of Heidelberg, Mannheim, Germany
| | - Viktor Umansky
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht Karl University of Heidelberg, Mannheim, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht Karl University of Heidelberg, Mannheim, Germany
| |
Collapse
|
30
|
Zhang Y, Zhang W. FOXD1, negatively regulated by miR-186, promotes the proliferation, metastasis and radioresistance of nasopharyngeal carcinoma cells. Cancer Biomark 2021; 28:511-521. [PMID: 32568181 DOI: 10.3233/cbm-191311] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Foxhead box D1 (FOXD1) is validated to be over-expressed in a variety of human malignancies and promotes cancer progression. Nevertheless, the role of FOXD1 and the associated mechanism in nasopharyngeal carcinoma (NPC) remain largely unknown. METHODS A total of seventy-five cases of NPC tissue samples were collected. FOXD1 expression in NPC tissues and cells (SUNE1, CNE1, CNE2, and HONE1) was detected using immunohistochemistry and Western blot, respectively. The relationship between FOXD1 expression and clinicopathological parameters of NPC patients was analyzed. FOXD1 mRNA and miR-186 expression in NPC tissues and cells was detected using quantitative polymerase chain reaction (qPCR). The cell viability of NPC cells was detected using CCK-8 assay. Colony survival of NPC cells exposed to different doses of radiation was detected using colony formation assay. Transwell assay was used to evaluate the migration and invasion of NPC cells. The dual-luciferase reporter gene assay was employed to verify the targeting relationship between miR-186 and FOXD1. RESULTS FOXD1 was over-expressed in NPC tissues (average fold change on mRNA level = 4.72), and its high expression was correlated to NPC positive lymph node metastasis and tissue differentiation. The over-expression of FOXD1 promoted the proliferation, migration, invasion and radio-resistance of NPC cells. On the contrary, the knock-down of FOXD1 inhibited the malignant phenotypes of the above cells. It was verified that FOXD1 was one of the downstream targets of miR-186 and was negatively regulated by it. CONCLUSION FOXD1, which is negatively regulated by miR-186, acts as a novel oncogene in NPC and serves as potential biomarker and therapeutic target for NPC. The research will provide great theoretical basis for further clinical diagnosis and therapy.
Collapse
|
31
|
Bond KH, Fetting JL, Lary CW, Emery IF, Oxburgh L. FOXD1 regulates cell division in clear cell renal cell carcinoma. BMC Cancer 2021; 21:312. [PMID: 33761914 PMCID: PMC7988646 DOI: 10.1186/s12885-021-07957-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 02/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Forkhead transcription factors control cell growth in multiple cancer types. Foxd1 is essential for kidney development and mitochondrial metabolism, but its significance in renal cell carcinoma (ccRCC) has not been reported. METHODS Transcriptome data from the TCGA database was used to correlate FOXD1 expression with patient survival. FOXD1 was knocked out in the 786-O cell line and known targets were analyzed. Reduced cell growth was observed and investigated in vitro using growth rate and Seahorse XF metabolic assays and in vivo using a xenograft model. Cell cycle characteristics were determined by flow cytometry and immunoblotting. Immunostaining for TUNEL and γH2AX was used to measure DNA damage. Association of the FOXD1 pathway with cell cycle progression was investigated through correlation analysis using the TCGA database. RESULTS FOXD1 expression level in ccRCC correlated inversely with patient survival. Knockout of FOXD1 in 786-O cells altered expression of FOXD1 targets, particularly genes involved in metabolism (MICU1) and cell cycle progression. Investigation of metabolic state revealed significant alterations in mitochondrial metabolism and glycolysis, but no net change in energy production. In vitro growth rate assays showed a significant reduction in growth of 786-OFOXD1null. In vivo, xenografted 786-OFOXD1null showed reduced capacity for tumor formation and reduced tumor size. Cell cycle analysis showed that 786-OFOXD1null had an extended G2/M phase. Investigation of mitosis revealed a deficiency in phosphorylation of histone H3 in 786-OFOXD1null, and increased DNA damage. Genes correlate with FOXD1 in the TCGA dataset associate with several aspects of mitosis, including histone H3 phosphorylation. CONCLUSIONS We show that FOXD1 regulates the cell cycle in ccRCC cells by control of histone H3 phosphorylation, and that FOXD1 expression governs tumor formation and tumor growth. Transcriptome analysis supports this role for FOXD1 in ccRCC patient tumors and provides an explanation for the inverse correlation between tumor expression of FOXD1 and patient survival. Our findings reveal an important role for FOXD1 in maintaining chromatin stability and promoting cell cycle progression and provide a new tool with which to study the biology of FOXD1 in ccRCC.
Collapse
Affiliation(s)
- Kyle H Bond
- The Rogosin Institute, 310 East 67th Street, New York, NY, 10065, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, 168 College Ave, Orono, 04469, ME, USA
| | - Jennifer L Fetting
- Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, 04074, USA
- Current affiliation: ICON Plc, 2100 Pembrook Parkway, North Wales, 19446, PA, USA
| | - Christine W Lary
- Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, 04074, USA
| | - Ivette F Emery
- Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, 04074, USA
| | - Leif Oxburgh
- The Rogosin Institute, 310 East 67th Street, New York, NY, 10065, USA.
| |
Collapse
|
32
|
Fan C, Du J, Liu N. Identification of a Transcription Factor Signature That Can Predict Breast Cancer Survival. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:2649123. [PMID: 33688372 PMCID: PMC7914092 DOI: 10.1155/2021/2649123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 01/06/2021] [Accepted: 01/27/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND The expression pattern of transcription factors (TFs) can be used to develop potential prognostic biomarkers for cancer. In this study, we aimed to identify and validate a TF signature for predicting disease-free survival (DFS) of breast cancer (BRCA) patients. METHODS Lasso and the Cox regression analyses were applied to construct a TF signature based on a gene expression dataset from TCGA. The prognosis value of the TF signature was investigated in the TCGA database, and its reliability was further validated in 3 independent datasets from Gene Expression Omnibus (GEO). The prognosis performance of the TF signature was compared with 4 previously published gene signatures. To investigate the association between the TF signature and hallmarks of cancer, Gene Set Enrichment Analysis (GSEA) was carried out. The correlations of the TF signature and the levels of immune infiltration were also investigated. RESULTS An 11-TF prognostic signature was constructed with good survival prediction performance for BRCA patients. By using the risk score model based on the 11-TF signature, BRCA patients were stratified into low- and high-risk groups and showed good and poor disease-free survival (DFS), respectively. The risk score was an independent prediction indicator when adjusting for other clinicopathological factors. Furthermore, the 11-TF signature had a better survival prediction performance compared to 4 previously published gene signatures. Moreover, the risk score was a cancer hallmark. Finally, a high-risk score was associated with higher infiltration of M0 and M2 macrophages and was associated with a lower infiltration of resting memory CD4+ T cells and CD8+ T cells. CONCLUSION The findings in this study identified and validated a novel prognostic TF signature, which is an independent biomarker for the prediction of DFS in BRCA patients.
Collapse
Affiliation(s)
- Chunni Fan
- Department of Breast Surgery, The Third Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Jianshi Du
- Department of Vascular Surgery, The Third Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Ning Liu
- Department of Breast Surgery, The Third Hospital of Jilin University, Changchun, Jilin 130033, China
| |
Collapse
|
33
|
Qiu S, Li D, Shen Z, Li Q, Shen Y, Deng H, Wu Y, Zhou C. Diagnostic and prognostic value of FOXD1 expression in head and neck squamous cell carcinoma. J Cancer 2021; 12:693-702. [PMID: 33403027 PMCID: PMC7778536 DOI: 10.7150/jca.47978] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 11/04/2020] [Indexed: 01/23/2023] Open
Abstract
FOXD1 has been reported to function as an oncogene in several types of cancer. This study evaluated the expression of FOXD1 and its role in head and neck squamous cell carcinoma (HNSCC). We mined the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases for expression profiles, clinical significance, and potential mechanisms of FOXD1in HNSCC. Our validation cohort consisted of FOXD1 mRNA expression in 162 paired HNSCC and adjacent normal tissues, as determined using quantitative real-time polymerase chain reaction. FOXD1 expression was upregulated in HNSCC in the public databases and in the validation cohort. The expression level of FOXD1 was associated with DNA amplification and methylation level. The areas under the curves (AUC) of TCGA cohort and the validation cohort were 0.855 and 0.843, respectively. Furthermore, higher FOXD1 expression was significantly associated with worse overall survival (hazard ratio [HR]: 1.849, 95% confidence interval [CI]: 1.280-2.670, P = 0.001) and a lower rate of recurrence-free survival (HR: 1.650, 95% CI: 1.058-2.575, P = 0.027) in patients with HNSCC. Moreover, gene set enrichment analysis showed that cases of HNSCC with FOXD1 overexpression were enriched in bladder cancer, cell cycle, DNA replication, glycosaminoglycan biosynthesis chondroitin sulfate, homologous recombination, glycan biosynthesis, nucleotide excision repair, p53 signaling pathway, pyrimidine metabolism, and spliceosome pathways. In summary, FOXD1 was significantly upregulated in HNSCC and was a good diagnostic biomarker and an independent predictor of poor survival and low rate of recurrence-free survival in patients with HNSCC.
Collapse
Affiliation(s)
- Shijie Qiu
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China.,Department of Otorhinolaryngology Head and Neck Surgery, Lihuili Hospital affiliated to Ningbo University, Ningbo, Zhejiang, China
| | - Dan Li
- Department of Cardiology, The Second Hospital of Yinzhou, Ningbo, Zhejiang, China
| | - Zhisen Shen
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China.,Department of Otorhinolaryngology Head and Neck Surgery, Lihuili Hospital affiliated to Ningbo University, Ningbo, Zhejiang, China
| | - Qun Li
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China.,Department of Otorhinolaryngology Head and Neck Surgery, Lihuili Hospital affiliated to Ningbo University, Ningbo, Zhejiang, China
| | - Yi Shen
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China.,Department of Otorhinolaryngology Head and Neck Surgery, Lihuili Hospital affiliated to Ningbo University, Ningbo, Zhejiang, China
| | - Hongxia Deng
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China.,Department of Otorhinolaryngology Head and Neck Surgery, Lihuili Hospital affiliated to Ningbo University, Ningbo, Zhejiang, China
| | - Yidong Wu
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China.,Department of Otorhinolaryngology Head and Neck Surgery, Lihuili Hospital affiliated to Ningbo University, Ningbo, Zhejiang, China
| | - Chongchang Zhou
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China.,Department of Otorhinolaryngology Head and Neck Surgery, Lihuili Hospital affiliated to Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
34
|
Wu Q, Ma J, Wei J, Meng W, Wang Y, Shi M. FOXD1-AS1 regulates FOXD1 translation and promotes gastric cancer progression and chemoresistance by activating the PI3K/AKT/mTOR pathway. Mol Oncol 2021; 15:299-316. [PMID: 32460412 PMCID: PMC7782086 DOI: 10.1002/1878-0261.12728] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 02/11/2020] [Accepted: 05/20/2020] [Indexed: 12/30/2022] Open
Abstract
Gastric cancer (GC) is a common gastrointestinal cancer with a high global mortality. Recent reports have suggested that long noncoding RNA (lncRNA) are implicated in multiple aspects of GC, including pathogenesis, progression, and therapeutic response. Herein, we investigated the function of FOXD1-AS1 in GC progression and chemoresistance. Expression of FOXD1-AS1 was low in normal stomach tissues but was upregulated in GC cell lines. Silencing of FOXD1-AS1 impaired GC cell proliferation and motility in vitro, and repressed tumor growth and metastasis in vivo. Importantly, FOXD1-AS1 upregulation increased the resistance of GC cells to cisplatin. Moreover, we found that FOXD1-AS1 promoted FOXD1 protein translation through the eIF4G-eIF4E-eIF4A translational complex. We also demonstrated that FOXD1-AS1 released eIF4E from phosphorylated 4E-BP1 and thereby strengthened the interaction of eIF4E with eIF4G by activating the PI3K/AKT/mTOR pathway. Activation of the PI3K/AKT/mTOR pathway was due to the post-transcriptional upregulation of PIK3CA, in turn induced by FOXD1-AS1-mediated sequestering of microRNA (miR)-466. Furthermore, we verified that FOXD1-AS1 facilitated GC progression and cisplatin resistance in a FOXD1-dependent manner. In conclusion, FOXD1-AS1 aggravates GC progression and chemoresistance by promoting FOXD1 translation via PIK3CA/PI3K/AKT/mTOR signaling. These findings highlight a novel target for treatment of patients GC, particularly patients with cisplatin resistance.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/metabolism
- Base Sequence
- Cell Cycle Proteins/metabolism
- Cell Line, Tumor
- Cell Movement
- Cell Proliferation
- Cisplatin/pharmacology
- Cisplatin/therapeutic use
- Disease Progression
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Models, Biological
- Neoplasm Metastasis
- Phenotype
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphorylation/drug effects
- Protein Biosynthesis/drug effects
- Proto-Oncogene Proteins c-akt/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Signal Transduction/drug effects
- Stomach Neoplasms/drug therapy
- Stomach Neoplasms/genetics
- Stomach Neoplasms/pathology
- TOR Serine-Threonine Kinases/metabolism
- Up-Regulation/drug effects
- Up-Regulation/genetics
Collapse
Affiliation(s)
- Qiong Wu
- Department of GastroenterologyTongren HospitalShanghai Jiao Tong University School of MedicineChina
| | - Jiali Ma
- Department of GastroenterologyTongren HospitalShanghai Jiao Tong University School of MedicineChina
| | - Jue Wei
- Department of GastroenterologyTongren HospitalShanghai Jiao Tong University School of MedicineChina
| | - Wenying Meng
- Department of GastroenterologyTongren HospitalShanghai Jiao Tong University School of MedicineChina
| | - Yugang Wang
- Department of GastroenterologyTongren HospitalShanghai Jiao Tong University School of MedicineChina
| | - Min Shi
- Department of GastroenterologyTongren HospitalShanghai Jiao Tong University School of MedicineChina
| |
Collapse
|
35
|
Liu Q, Song X, Liu Z, Yu Z. Investigation of Candidate Genes and Pathways in Basal/TNBC Patients by Integrated Analysis. Technol Cancer Res Treat 2021; 20:15330338211019506. [PMID: 34184566 PMCID: PMC8246569 DOI: 10.1177/15330338211019506] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/09/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022] Open
Abstract
PURPOSE This study aims to identify the key pathway and related genes and to further explore the potential molecular mechanisms of triple negative breast cancer (TNBC). METHODS The transcriptome data and clinical information of breast cancer patients were downloaded from the TCGA database, including 94 cases of paracancerous tissue, 225 cases of Basal like type, 151 cases of Her2 type, 318 cases of Luminal type A, 281 cases of Luminal type B, and 89 cases of Normal Like type. The differentially expressed genes (DEGs) were identified based on the criteria of |logFC|≥1.5 and adjust P < 0.001.Their functions were annotated by gene ontology (GO) analysis and Kyoto Encyclopedia of differentially expressed genes & Genomes (KEGG) pathway analysis. Cox regression univariate analysis and Kaplan-Meier survival curves (Log-rank method) were used for survival analysis. FOXD1, DLL3 and LY6D were silenced in breast cancer cell lines, and cell viability was assessed by CCK-8 assay. Further, the expression of FOXD1, DLL3 and LY6D were explored by immunohistochemistry on triple negative breast tumor tissue and normal breast tissue. RESULTS A total of 533 DEGs were identified. Functional annotation showed that DEGs were significantly enriched in intermediate filament cytoskeleton, DNA-binding transcription activator activity, epidermis development, and Neuroactive ligand-receptor interaction. Survival analysis found that FOXD1, DLL3, and LY6D showed significant correlation with the prognosis of patients with the Basal-like type (P < 0.05). CCK-8 assay showed that compared with Doxorubicin alone group, the cytotoxicity of Doxorubicin combined with siRNA-knockdown of FOXD1, DLL3, or LY6D was much significant. CONCLUSION The DEGs and their enriched functions and pathways identified in this study contribute to the understanding of the molecular mechanisms of TNBC. In addition, FOXD1, DLL3, and LY6D may be defined as the prognostic markers and potential therapeutic targets for TNBC patients.
Collapse
Affiliation(s)
- Qi Liu
- School of Medicine, Shandong University, Jinan, People’s Republic of China
- Department of Breast Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
- Department of Breast and Thyroid Surgery, Weifang Traditional Chinese Hospital, Weifang, Shandong, People’s Republic of China
| | - Xiang Song
- Department of Breast Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
| | - Zhaoyun Liu
- School of Medicine, Shandong University, Jinan, People’s Republic of China
- Department of Breast Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
| | - Zhiyong Yu
- Department of Breast Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
| |
Collapse
|
36
|
Chen S, Yang M, Wang C, Ouyang Y, Chen X, Bai J, Hu Y, Song M, Zhang S, Zhang Q. Forkhead box D1 promotes EMT and chemoresistance by upregulating lncRNA CYTOR in oral squamous cell carcinoma. Cancer Lett 2020; 503:43-53. [PMID: 33352248 DOI: 10.1016/j.canlet.2020.11.046] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/12/2020] [Accepted: 11/27/2020] [Indexed: 12/13/2022]
Abstract
Chemotherapy regimens containing cisplatin remain the first-line treatments for patients with oral squamous cell cancer (OSCC); however, the treatment effect is often transient because of chemoresistance and recurrence. Understanding the mechanisms of chemoresistance in OSCC might provide novel targetable vulnerabilities. In the present study, we revealed that Forkhead box D1 (FOXD1) is upregulated in OSCC and predicted poor prognosis. Moreover, ectopic expression of FOXD1 promoted, while silencing of FOXD1 inhibited, the epithelial-mesenchymal transition (EMT) and chemoresistance of OSCC, both in vitro and in vivo. Mechanistically, FOXD1 binds to the promoter of long non-coding RNA Cytoskeleton Regulator RNA (CYTOR) and activates its transcription. CYTOR then acts as a competing endogenous RNA to inhibit miR-1252-5p and miR-3148, thus upregulating lipoma preferred partner (LPP) expression. Importantly, the CYTOR/LPP axis was proven to be essential for FOXD1-induced EMT and chemoresistance in OSCC. These findings reveal a novel mechanism for the chemotherapy resistance of OSCC, suggesting that FOXD1 might be a potential prognostic marker and anti-resistance therapeutic target.
Collapse
Affiliation(s)
- Shuwei Chen
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China; State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Muwen Yang
- State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China; Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Chunyang Wang
- Zhujiang New Town Dental Clinic, Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510060, PR China
| | - Ying Ouyang
- State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China; Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xiangfu Chen
- State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China; Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Jiewen Bai
- State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China; Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yameng Hu
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, PR China
| | - Ming Song
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China; State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China.
| | - Siyi Zhang
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China; Department of Otorhinolaryngology, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.
| | - Quan Zhang
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China; State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
37
|
Li Z, Yan T, Wu X, Zhang W, Li J, Wang L, Yang J. Increased expression of FOXD1 is associated with cervical node metastasis and unfavorable prognosis in oral squamous cell carcinoma. J Oral Pathol Med 2020; 49:1030-1036. [PMID: 32808339 DOI: 10.1111/jop.13098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/20/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Previous studies suggest that FOXD1 is involved in tumorigenesis and closely related to the patients' poor outcome in human cancer. However, its expression pattern in primary oral squamous cell carcinoma (OSCC) remains uncovered. In this study, we tried to explore the expression pattern of FOXD1 and its clinicopathological significance in primary OSCC. METHODS Data mining and analysis on FOXD1 mRNA expression in OSCC samples were performed using publicly available databases. Its protein expression was supervised by immunohistochemistry in a retrospective cohort containing 58 primary OSCC samples. Furthermore, the potential associations between FOXD1 expression and various clinicopathological characteristics and patients' survival were further investigated. RESULTS Bioinformatic analysis indicated that FOXD1 mRNA abundance was obviously up-regulated in OSCC cohorts. Immunohistochemical staining results showed that FOXD1 protein was significantly up-regulated in OSCC specimens as compared to normal counterparts and its aberrant up-regulation was remarkably related to cervical lymph node metastasis (P = .0198) and decreased overall survival (P = .0281) and disease-free survival (P = .0312). Both univariate and multivariate Cox regression analysis further revealed the expression pattern of FOXD1 as an independent prognostic factor for overall survival of patients. CONCLUSION Taken together, these findings indicate that the aberrant up-regulation of FOXD1 is related to cervical node metastasis and unfavorable prognosis in OSCC and it also may play a key role during OSCC tumorigenesis and regard as a novel diagnostic and prognostic biomarker for OSCC.
Collapse
Affiliation(s)
- Zhongwu Li
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, China
| | - Tingyuan Yan
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, China
| | - Xiang Wu
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, China
| | - Wei Zhang
- Department of Oral Pathology, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, China
| | - Jin Li
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, China
| | - Laijie Wang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, China
| | - Jianrong Yang
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
38
|
Lin CH, Lee HH, Chang WM, Lee FP, Chen LC, Lu LS, Lin YF. FOXD1 Repression Potentiates Radiation Effectiveness by Downregulating G3BP2 Expression and Promoting the Activation of TXNIP-Related Pathways in Oral Cancer. Cancers (Basel) 2020; 12:cancers12092690. [PMID: 32967107 PMCID: PMC7563336 DOI: 10.3390/cancers12092690] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Radioresistance remains a critical issue in treating oral cancer patients. This study was thus aimed to identify a potential drug target for enhancing the therapeutic effectiveness of irradiation and uncover a possible mechanism for radioresistance in oral cancer. Here we show that FOXD1, a gene encoding forkhead box d1 (Foxd1), is significantly upregulated in primary tumors compared to normal tissues and serves as a poor prognostic marker in oral cancer patients receiving radiotherapy. FOXD1 repression by a gene knockdown experiment dramatically enhanced the cytotoxic efficacy of irradiation probably via activating the p53-related DNA repairing pathways and reinforcing the T cell-mediated immune responses in oral cancer cells. Our findings demonstrate that FOXD1 may play a pivotal role in conferring radioresistance, which might provide a new strategy to combat the irradiation-insensitive oral cancer cells via therapeutically targeting FOXD1 activity. Abstract Radiotherapy is commonly used to treat oral cancer patients in the current clinics; however, a subpopulation of patients shows poor radiosensitivity. Therefore, the aim of this study is to identify a biomarker or druggable target to enhance the effectiveness of radiotherapy on oral cancer patients. By performing an in silico analysis against public databases, we found that the upregulation of FOXD1, a gene encoding forkhead box d1 (Foxd1), is extensively detected in primary tumors compared to normal tissues and associated with a poor outcome in oral cancer patients receiving irradiation treatment. Moreover, our data showed that the level of FOXD1 transcript is causally relevant to the effective dosage of irradiation in a panel of oral cancer cell lines. The FOXD1 knockdown (FOXD1-KD) dramatically suppressed the colony-forming ability of oral cancer cells after irradiation treatment. Differentially expressed genes analysis showed that G3BP2, a negative regulator of p53, is predominantly repressed after FOXD1-KD and transcriptionally regulated by Foxd1, as judged by a luciferase-based promoter assay in oral cancer cells. Gene set enrichment analysis significantly predicted the inhibition of E2F-related signaling pathway but the activation of the interferons (IFNs) and p53-associated cellular functions, which were further validated by luciferase reporter assays in the FOXD1-KD oral cancer cells. Robustly, our data showed that FOXD1-KD fosters the expression of TXNIP, a downstream effector of IFN signaling and activator of p53, in oral cancer cells. These findings suggest that FOXD1 targeting might potentiate the anti-cancer effectiveness of radiotherapy and promote immune surveillance on oral cancer.
Collapse
Affiliation(s)
- Che-Hsuan Lin
- Department of Otolaryngology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (C.-H.L.); (F.-P.L.); (L.-C.C.)
- Department of Otolaryngology, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsun-Hua Lee
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Neurology, Vertigo and Balance Impairment Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
| | - Wei-Min Chang
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan;
| | - Fei-Peng Lee
- Department of Otolaryngology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (C.-H.L.); (F.-P.L.); (L.-C.C.)
- Department of Otolaryngology, Shuang-Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
| | - Lung-Che Chen
- Department of Otolaryngology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (C.-H.L.); (F.-P.L.); (L.-C.C.)
- Department of Otolaryngology, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Long-Sheng Lu
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan;
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Yuan-Feng Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Correspondence: ; Tel.: +886-2-2736-1661 (ext. 3106)
| |
Collapse
|
39
|
Chen C, Tang J, Xu S, Zhang W, Jiang H. miR-30a-5p Inhibits Proliferation and Migration of Lung Squamous Cell Carcinoma Cells by Targeting FOXD1. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2547902. [PMID: 32351986 PMCID: PMC7174912 DOI: 10.1155/2020/2547902] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 03/23/2020] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To investigate the mechanism of miR-30a-5p inhibiting proliferation and migration of lung squamous cell carcinoma (LSCC) cells by targeting FOXD1. METHODS Bioinformatics was used to analyze differentially expressed genes in the TCGA_LUSC database. qRT-PCR was used to detect the expression levels of miR-30a-5p and FOXD1 in human normal lung epithelial cell line and human LSCC cell lines. The protein expression of FOXD1 was detected by western blot. The cell viability and colony formation abilities were examined by CCK-8 and colony formation assays, respectively. Wound healing and Transwell assays were performed to examine the migration and invasion abilities of cells. The targeted binding sites of miR-30a-5p and FOXD1 were predicted by bioinformatics, and dual luciferase assay was used to verify the targeted binding relationship between miR-30a-5p and FOXD1. RESULT miR-30a-5p was downregulated in LSCC tissues and cells, while FOXD1 was highly expressed. Overexpression of miR-30a-5p or silencing FOXD1 inhibited cell viability, colony formation ability, migration, and invasion of LSCC cells. miR-30a-5p inhibited the proliferation and migration of LSCC cells by downregulating the expression of FOXD1. CONCLUSION miR-30a-5p can downregulate the expression of FOXD1 and inhibit the proliferation and migration of LSCC.
Collapse
Affiliation(s)
- Chunhua Chen
- Department of Pulmonary and Critical Care Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Junhua Tang
- Department of Respiratory Medicine, First People's Hospital of Fuyang, Hangzhou 311400, China
| | - Shan Xu
- Department of Pulmonary and Critical Care Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Wenxia Zhang
- Department of Pulmonary and Critical Care Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Hanliang Jiang
- Department of Pulmonary and Critical Care Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| |
Collapse
|
40
|
Gao Y, Liu J, Mao X, He Z, Zhu T, Wang Z, Li X, Yin J, Zhang W, Zhou H, Liu Z. LncRNA FOXD1-AS1 acts as a potential oncogenic biomarker in glioma. CNS Neurosci Ther 2020; 26:66-75. [PMID: 31102349 PMCID: PMC6930828 DOI: 10.1111/cns.13152] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/25/2019] [Accepted: 04/28/2019] [Indexed: 12/14/2022] Open
Abstract
AIMS Altered activities of long noncoding RNAs (lncRNAs) have been associated with cancer development, and lncRNA FOXD1-AS1 (FOXD1-AS1) is the antisense transcript of the gene encoding for FOXD1, known for its role as an oncogene in several tumor types including glioma. However, the role of FOXD1-AS1 in the differentiation and progression of glioma is not well known. METHODS Expression profile chip and qPCR were used to screen and identify FOXD1-AS1. Glioma cells were transfected with siRNA or eukaryotic expression vector to observe FOXD1-AS1 function in vitro and in vivo. Dual luciferase reporter gene analysis, Western blot, and ChIRP-MS were used to detect microRNAs and protein that combine with FOXD1-AS1. RESULTS FOXD1-AS1 was upregulated and directly correlated with the glioma grade, and it was localized in both the nucleus and the cytoplasm of the glioma cell. FOXD1-AS1 silencing caused tumor suppressive effects via inhibiting cell proliferation, migration, and apoptosis, while FOXD1-AS1 overexpression resulted in opposite effects. Additionally, in vivo experiments showed that FOXD1-AS1 knockdown reduced tumor volume and weight. More importantly, mechanical studies revealed that FOXD1-AS1 targeted both miR339-5p and miR342-3p (miR339/342). Furthermore, protein eukaryotic translation initiation factor 5 subunit A (eIF5a) resulted a direct target of FOXD1-AS1. CONCLUSIONS These data indicated that FOXD1-AS1, a miR339/342 target, affected biological processes via protein eIF5a; thus, it might be considered as a new therapeutic target for glioblastoma.
Collapse
Affiliation(s)
- Yuan‐Feng Gao
- Department of Clinical Pharmacology, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical PharmacologyCentral South UniversityChangshaChina
- Department of PharmacyThe First Hospital of Hunan University of Chinese MedicineChangshaChina
| | - Jun‐Yan Liu
- Department of OrthopaedicsThe First Affiliated Hospital of the University of South ChinaHengyangChina
| | - Xiao‐Yuan Mao
- Department of Clinical Pharmacology, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical PharmacologyCentral South UniversityChangshaChina
| | - Zheng‐Wen He
- Department of Neurosurgery, The Affiliated Cancer Hospital of XiangYa School of MedicineCentral South UniversityChangshaChina
| | - Tao Zhu
- Department of Clinical Pharmacology, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical PharmacologyCentral South UniversityChangshaChina
| | - Zhi‐Bin Wang
- Department of Clinical Pharmacology, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical PharmacologyCentral South UniversityChangshaChina
| | - Xi Li
- Department of Clinical Pharmacology, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical PharmacologyCentral South UniversityChangshaChina
| | - Ji‐Ye Yin
- Department of Clinical Pharmacology, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical PharmacologyCentral South UniversityChangshaChina
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical PharmacologyCentral South UniversityChangshaChina
| | - Hong‐Hao Zhou
- Department of Clinical Pharmacology, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical PharmacologyCentral South UniversityChangshaChina
| | - Zhao‐Qian Liu
- Department of Clinical Pharmacology, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical PharmacologyCentral South UniversityChangshaChina
| |
Collapse
|
41
|
Li CH, Chang YC, Hsiao M, Liang SM. FOXD1 and Gal-3 Form a Positive Regulatory Loop to Regulate Lung Cancer Aggressiveness. Cancers (Basel) 2019; 11:cancers11121897. [PMID: 31795213 PMCID: PMC6966623 DOI: 10.3390/cancers11121897] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 01/15/2023] Open
Abstract
Dysregulation of forkhead box D1 (FOXD1) is known to promote tumor progression; however, its molecular mechanism of action is unclear. Based on microarray analysis, we identified galectin-3/LGALS3 (Gal-3) as a potential downstream target of FOXD1, as FOXD1 transactivated Gal-3 by interacting with the Gal-3 promoter to upregulate Gal-3 in FOXD1-overexpressing CL1-0 lung cancer cells. Ectopic expression of FOXD1 increased the expression of Gal-3 and the growth and motility of lung cancer cells, whereas depletion of Gal-3 attenuated FOXD1-mediated tumorigenesis. ERK1/2 interacted with FOXD1 in the cytosol and translocated FOXD1 into the nucleus to activate Gal-3. Gal-3 in turn upregulated FOXD1 via the transcription factor proto-oncogene 1 (ETS-1) to transactivate FOXD1. The increase in ETS-1/FOXD1 expression by Gal-3 was through Gal-3-mediated integrin-β1 (ITGβ1) signaling. The overexpression of both FOXD1 and Gal-3 form a positive regulatory loop to promote lung cancer aggressiveness. Moreover, both FOXD1 and Gal-3 were positively correlated in human lung cancer tissues. Our findings demonstrated that FOXD1 and Gal-3 form a positive feedback loop in lung cancer, and interference of this loop may serve as an effective therapeutic target for the treatment of lung cancers, particularly those related to dysregulation of Gal-3.
Collapse
Affiliation(s)
- Chien-Hsiu Li
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan;
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yu-Chan Chang
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan;
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan;
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (M.H.); (S.-M.L.); Tel.: +886-227-871-243 (M.H.); +886-227-872-082 (S.-M.L.)
| | - Shu-Mei Liang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan;
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
- Correspondence: (M.H.); (S.-M.L.); Tel.: +886-227-871-243 (M.H.); +886-227-872-082 (S.-M.L.)
| |
Collapse
|
42
|
Li Y, Zu X, Hu X, Wang L, He W. Forkhead Box R2 Knockdown Decreases Chemoresistance to Cisplatin via MYC Pathway in Bladder Cancer. Med Sci Monit 2019; 25:8928-8939. [PMID: 31761897 PMCID: PMC6894368 DOI: 10.12659/msm.917345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Bladder cancer is a very common urological cancer globally, and cisplatin- or gemcitabine-based chemotherapy is essential for advanced bladder cancer patients. Many patients with bladder cancer have a relatively poor response to chemotherapy, leading to failure of clinical treatment. We mined the GSE77883 GEO dataset, identifying FoxR2 as being a significantly upregulated gene in T24 chemoresistant cells. Herein, we assessed how FoxR2 functions in bladder cancer cell chemoresistance. Material/Methods Cisplatin-resistant T24 (T24/DDP) cells were constructed by administering increasing concentrations of cisplatin, and differences in expression of FoxR2 were examined in T24/DDP and T24 cells. FoxR2 loss- and gain-of-function cells models were established in T24/DDP and T24 cells, respectively. Cell survival, clone formation, cell cycle, and cell apoptosis were assessed, and the MYC pathway was verified. Results FoxR2 was significantly upregulated in T24/DDP cells compared to T24 cells. Knockdown of FoxR2 in T24/DDP cells, survival rate, and clone formation were decreased, G1/S phase transition was suppressed, and cell apoptosis was promoted. These results were reversed by restoration of FoxR2 levels in T24 cells. We found that FoxR2 knockdown enhanced sensitivity to cisplatin, whereas MYC overexpression antagonized chemosensitivity in T24/DDP cells. Conclusions FoxR2 knockdown decreases chemoresistance to cisplatin via the MYC pathway in bladder cancer cells, and this may be a target for overcoming chemoresistance in bladder cancer.
Collapse
Affiliation(s)
- Yangle Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Xiongbing Zu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Xiheng Hu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Long Wang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Wei He
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| |
Collapse
|
43
|
Zhou L, Jia S, Ding G, Zhang M, Yu W, Wu Z, Cao L. Down-regulation of miR-30a-5p is Associated with Poor Prognosis and Promotes Chemoresistance of Gemcitabine in Pancreatic Ductal Adenocarcinoma. J Cancer 2019; 10:5031-5040. [PMID: 31602254 PMCID: PMC6775620 DOI: 10.7150/jca.31191] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 08/06/2019] [Indexed: 02/06/2023] Open
Abstract
MicroRNA-30a-5p (miR-30a-5p) plays an important role in many biological and pathological processes, and therefore has been studied extensively. However, its expression and function in pancreatic ductal adenocarcinoma (PDAC) remain unclear. Furthermore, whether miR-30a-5p affects sensitivity of PDAC cells to gemcitabine (GEM) is worthy of further exploration. The results showed that miR-30a-5p expression in pancreatic cancer was decreased and the down-regulated expression correlated with poor prognosis, while up-regulating miR-30a-5p suppressed tumor cell proliferation, cell cycle and increased apoptosis. MiRNA expression profiles between gemcitabine-resistant pancreatic cancer cells and parental pancreatic cancer cells showed significant change of miR-30a-5p expression. Besides, up-regulating miR-30a-5p in PDAC significantly increased the chemosensitivity of gemcitabine. Furthermore, FOXD1 is a direct target of miR-30a-5p and the miR-30a-5p/FOXD1/ERK axis may play an important role in the development of gemcitabine resistance in pancreatic cancer. In summary, our study showed that miR-30a-5p increases the sensitivity of pancreatic cancer to gemcitabine, and it may be a potential therapeutic target to overcome gemcitabine resistance.
Collapse
Affiliation(s)
- Liangjing Zhou
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3, Qingchun Road, Hangzhou, Zhejiang province, China
| | - Shengnan Jia
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3, Qingchun Road, Hangzhou, Zhejiang province, China
| | - Guoping Ding
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3, Qingchun Road, Hangzhou, Zhejiang province, China
| | - Mingjie Zhang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3, Qingchun Road, Hangzhou, Zhejiang province, China
| | - Weihua Yu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3, Qingchun Road, Hangzhou, Zhejiang province, China
| | - Zhengrong Wu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3, Qingchun Road, Hangzhou, Zhejiang province, China
| | - Liping Cao
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3, Qingchun Road, Hangzhou, Zhejiang province, China
| |
Collapse
|
44
|
Larribère L, Utikal J. Stem Cell-Derived Models of Neural Crest Are Essential to Understand Melanoma Progression and Therapy Resistance. Front Mol Neurosci 2019; 12:111. [PMID: 31118886 PMCID: PMC6506783 DOI: 10.3389/fnmol.2019.00111] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 04/15/2019] [Indexed: 11/13/2022] Open
Abstract
During development, neural crest (NC) cells are early precursors of several lineages including melanocytes. Along their differentiation from multipotent cells to mature melanocytes, NC cells will go through successive steps which require either proliferative or motile capacities. For example, they will undergo Epithelial to Mesenchymal Transition (EMT) in order the separate from the neural tube and migrate to their final location in the epidermis (Larribere and Utikal, 2013; Skrypek et al., 2017). The differentiated melanocytes are the cells of origin of melanoma tumors which progress through several stages such as radial growth phase, vertical growth phase, metastasis formation, and often resistance to current therapies. Interestingly, depending on the stage of the disease, melanoma tumor cells share phenotypes with NC cells (proliferative, motile, EMT). These phenotypes are tightly controlled by specific signaling pathways and transcription factors (TFs) which tend to be reactivated during the onset of melanoma. In this review, we summarize first the main TFs which control these common phenotypes. Then, we focus on the existing strategies used to generate human NCs. Finally we discuss how identification and regulation of NC-associated genes provide an additional approach to improving current melanoma targeted therapies.
Collapse
Affiliation(s)
- Lionel Larribère
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| |
Collapse
|
45
|
Fu L, Hu Y, Song M, Liu Z, Zhang W, Yu FX, Wu J, Wang S, Izpisua Belmonte JC, Chan P, Qu J, Tang F, Liu GH. Up-regulation of FOXD1 by YAP alleviates senescence and osteoarthritis. PLoS Biol 2019; 17:e3000201. [PMID: 30933975 PMCID: PMC6459557 DOI: 10.1371/journal.pbio.3000201] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 04/11/2019] [Accepted: 03/13/2019] [Indexed: 12/12/2022] Open
Abstract
Cellular senescence is a driver of various aging-associated disorders, including osteoarthritis. Here, we identified a critical role for Yes-associated protein (YAP), a major effector of Hippo signaling, in maintaining a younger state of human mesenchymal stem cells (hMSCs) and ameliorating osteoarthritis in mice. Clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR associated protein 9 nuclease (Cas9)-mediated knockout (KO) of YAP in hMSCs resulted in premature cellular senescence. Mechanistically, YAP cooperated with TEA domain transcriptional factor (TEAD) to activate the expression of forkhead box D1 (FOXD1), a geroprotective protein. YAP deficiency led to the down-regulation of FOXD1. In turn, overexpression of YAP or FOXD1 rejuvenated aged hMSCs. Moreover, intra-articular administration of lentiviral vector encoding YAP or FOXD1 attenuated the development of osteoarthritis in mice. Collectively, our findings reveal YAP–FOXD1, a novel aging-associated regulatory axis, as a potential target for gene therapy to alleviate osteoarthritis. The Hippo signalling effector YAP and the transcription factor FOXD1 play a role in alleviating cellular senescence and osteoarthritis, identifying the YAP-FOXD1 axis as a potential therapeutic target for aging-associated disorders. Stem cell aging contributes to aging-associated degenerative diseases. Studies aiming to characterize the mechanisms of stem cell aging are critical for obtaining a comprehensive understanding of the aging process and developing novel strategies to treat aging-related diseases. As a prevalent aging-associated chronic joint disorder, osteoarthritis is a leading cause of disability. Senescent mesenchymal stem cells (MSCs) residing in the joint may be a critical target for the prevention of osteoarthritis; however, the key regulators of MSC senescence are little known, and targeting aging regulatory genes for the treatment of osteoarthritis has not yet been reported. Here, we show that Yes-associated protein (YAP), a major effector of Hippo signaling, represses human mesenchymal stem cell (hMSC) senescence through transcriptional up-regulation of forkhead box D1 (FOXD1). Lentiviral gene transfer of YAP or FOXD1 can rejuvenate aged hMSCs and ameliorate osteoarthritis symptoms in mouse models. We propose that the YAP–FOXD1 axis is a novel target for combating aging-associated diseases.
Collapse
Affiliation(s)
- Lina Fu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuqiong Hu
- Beijing Advanced Innovation Center for Genomics, College of Life Sciences, Peking University, Beijing, China
- Biomedical Pioneering Innovation Center, Peking University, Beijing, China
| | - Moshi Song
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Zunpeng Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Weiqi Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Fa-Xing Yu
- Children's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Si Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Juan Carlos Izpisua Belmonte
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Piu Chan
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- * E-mail: (JQ); (FT); (GHL)
| | - Fuchou Tang
- Beijing Advanced Innovation Center for Genomics, College of Life Sciences, Peking University, Beijing, China
- Biomedical Pioneering Innovation Center, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
- * E-mail: (JQ); (FT); (GHL)
| | - Guang-Hui Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, China
- Beijing Institute for Brain Disorders, Beijing, China
- * E-mail: (JQ); (FT); (GHL)
| |
Collapse
|
46
|
Chen C, Xu ZQ, Zong YP, Ou BC, Shen XH, Feng H, Zheng MH, Zhao JK, Lu AG. CXCL5 induces tumor angiogenesis via enhancing the expression of FOXD1 mediated by the AKT/NF-κB pathway in colorectal cancer. Cell Death Dis 2019; 10:178. [PMID: 30792394 PMCID: PMC6385313 DOI: 10.1038/s41419-019-1431-6] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 12/15/2022]
Abstract
The mechanisms underlying the role of CXCL5 in tumor angiogenesis have not been fully defined. Here, we examined the effect of CXCL5 on tumor angiogenesis in colorectal cancer (CRC). Immunohistochemistry was used to monitor the expression of CXCL5 and CD31 in CRC patients’ tissues. HUVEC cell lines stably transfected with shCXCR2 and shFOXD1 lentivirus plasmids were used in an in vitro study. Based on some molecular biological experiments in vitro and in vivo, we found that CXCL5 was upregulated in tumor tissues and that its level positively correlated with the expression of CD31. Next, we used recombinant human CXCL5 (rhCXCL5) to stimulate HUVECs and found that their tube formation ability, proliferation, and migration were enhanced by the activation of the AKT/NF-κB/FOXD1/VEGF-A pathway in a CXCR2-dependent manner. However, silencing of CXCR2 and FOXD1 or inhibition of the AKT and NF-κB pathways could attenuate the tube formation ability, proliferation, and migration of rhCXCL5-stimulated HUVECs in vitro. rhCXCL5 can promote angiogenesis in vivo in Matrigel plugs, and the overexpression of CXCL5 can also increase microvessel density in vivo in a subcutaneous xenotransplanted tumor model in nude mice. Taken together, our findings support CXCL5 as an angiogenic factor that can promote cell metastasis through tumor angiogenesis in CRC. Furthermore, we propose that FOXD1 is a novel regulator of VEGF-A. These observations open new avenues for therapeutic application of CXCL5 in tumor anti-angiogenesis.
Collapse
Affiliation(s)
- Chun Chen
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Gastroenterology Surgery Department, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Institute of Digestive Surgery, Shanghai, China
| | - Zhuo-Qing Xu
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Gastroenterology Surgery Department, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Institute of Digestive Surgery, Shanghai, China
| | - Ya-Ping Zong
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Gastroenterology Surgery Department, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bao-Chi Ou
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiao-Hui Shen
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Gastroenterology Surgery Department, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hao Feng
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Gastroenterology Surgery Department, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Min-Hua Zheng
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Gastroenterology Surgery Department, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jing-Kun Zhao
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China. .,Gastroenterology Surgery Department, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Ai-Guo Lu
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China. .,Gastroenterology Surgery Department, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
47
|
Yang T, Zhang W, Wang L, Xiao C, Guo B, Gong Y, Liang X, Huang D, Li Q, Nan Y, Xiang Y, Shao J. Long intergenic noncoding RNA-p21 inhibits apoptosis by decreasing PUMA expression in non-small cell lung cancer. J Int Med Res 2018; 47:481-493. [PMID: 30556447 PMCID: PMC6384454 DOI: 10.1177/0300060518816592] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE Long noncoding RNAs (lncRNAs) are important mediators in tumor progression. Long intergenic noncoding RNA-p21 (lincRNA-p21) participates in multiple biological processes. This study explored the role of lincRNA-p21 in human non-small cell lung cancer (NSCLC) progression and potential regulatory mechanisms. METHODS LincRNA-p21 expression in NSCLC tissues and cell lines (A549, H1299, H1650, and NCI-H2087) was determined by quantitative real-time PCR. LincRNA-p21 overexpressing and sh-lincRNA-p21 lentiviral were respectively transfected into H1299 and A549 cells. Flow cytometry was used to measure apoptosis. Microarray analysis and RNA pull-down assay were used to predict the target genes of lincRNA-p21. Finally, PUMA siRNA and overexpressing PUMA were transfected into NSCLC cells, and the extent of cell apoptosis was measured. The protein expression levels of the relative genes were confirmed by western blot analysis. RESULTS LincRNA-p21 was significantly upregulated in NSCLC tissues and cells. The upregulation of lincRNA-p21 considerably inhibited cell apoptosis while the downregulation of lincRNA-p21 showed the opposite effect. PUMA was a direct target gene of lincRNA-p21 and was negatively correlated with lincRNA-p21 in NSCLC specimens. The anti-apoptotic effect of lincRNA-p21 can be effectively attenuated by the upregulation of PUMA. CONCLUSION LincRNA-p21 is aberrantly upregulated in NSCLC and inhibits cell apoptosis by decreasing PUMA expression.
Collapse
Affiliation(s)
- Tao Yang
- 1 Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing, China
| | - Wenjun Zhang
- 1 Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing, China
| | - Li Wang
- 2 Department of Oncology, Chongqing General Hospital, Chongqing, China
| | - Chunyan Xiao
- 1 Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing, China
| | - Bingling Guo
- 1 Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing, China
| | - Yi Gong
- 1 Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing, China
| | - Xiping Liang
- 1 Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing, China
| | - Dehong Huang
- 1 Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing, China
| | - Qiying Li
- 1 Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing, China
| | - Yingyu Nan
- 1 Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing, China
| | - Ying Xiang
- 1 Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing, China
| | - Jianghe Shao
- 1 Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing, China
| |
Collapse
|
48
|
Ma XL, Shang F, Ni W, Zhu J, Luo B, Zhang YQ. MicroRNA-338-5p plays a tumor suppressor role in glioma through inhibition of the MAPK-signaling pathway by binding to FOXD1. J Cancer Res Clin Oncol 2018; 144:2351-2366. [PMID: 30225541 DOI: 10.1007/s00432-018-2745-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 09/04/2018] [Indexed: 12/13/2022]
Abstract
PURPOSE MicroRNAs (miRs) play an important role in many cancers and can affect cancer cell behavior, including glioma. This study aims at investigating the effects of miR-338-5p on the senescence, migration, invasion, and apoptosis of glioma cells via MAPK-signaling pathway by binding to FOXD1. METHODS Gene expression microarray analysis was performed to screen differentially expressed miRNAs associated with glioma. Glioma tissues and adjacent tissues were collected. siRNA, mimic, and inhibitor were introduced for investigating the tumor suppressor role of miR-338-5p in glioma. Proliferation, migration, invasion, senescence, cell-cycle distribution, and apoptosis after transfection were detected by MTT assay, scratch test, Transwell assay, β-galactosidase staining, and flow cytometry, respectively. RESULTS FOXD1 was identified as the up-regulated gene in glioma based on microarray data of GSE65626. FOXD1 was the target gene of miR-338-5p. Glioma tissues had increased expression of FOXD1, MEK-2, ERK-1, DAF, PCNA, and Bcl-2, and decreased expression of miR-338-5p and Bax. In cell experiments, after transfected with overexpressed miR-338-5p, higher expression of miR-338-5p, Bax, CD133, ZEB1, SOX2, SNAI1, and MMP2, but lower expression of FOXD1, MEK-2, ERK-1, Bcl-2, DAF, and PCNA were found accompanied with weaker proliferation, migration and invasion as well as stemness abilities but stronger senescence and higher apoptosis rate. CONCLUSION We found that overexpression of miR-338-5p suppresses glioma cell proliferation, migration, and invasion and accelerates its senescence and apoptosis by decreasing FOXD1 expression via inhibition of activation of MAPK-signaling pathway.
Collapse
Affiliation(s)
- Xin-Long Ma
- Department of Neurosurgery, Yuquan Hospital, Tsinghua University, No. 5 Shijingshan Road, Shijingshan District, Beijing, 100040, People's Republic of China
| | - Feng Shang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People's Republic of China
| | - Wei Ni
- Department of Ophthalmology, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Jin Zhu
- Department of Neurosurgery, Yuquan Hospital, Tsinghua University, No. 5 Shijingshan Road, Shijingshan District, Beijing, 100040, People's Republic of China
| | - Bin Luo
- Department of Neurosurgery, Yuquan Hospital, Tsinghua University, No. 5 Shijingshan Road, Shijingshan District, Beijing, 100040, People's Republic of China
| | - Yu-Qi Zhang
- Department of Neurosurgery, Yuquan Hospital, Tsinghua University, No. 5 Shijingshan Road, Shijingshan District, Beijing, 100040, People's Republic of China.
| |
Collapse
|
49
|
Zhang Y, Yang W, Li D, Yang JY, Guan R, Yang MQ. Toward the precision breast cancer survival prediction utilizing combined whole genome-wide expression and somatic mutation analysis. BMC Med Genomics 2018; 11:104. [PMID: 30454048 DOI: 10.1109/bibm.2017.8217762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023] Open
Abstract
BACKGROUND Breast cancer is the most common type of invasive cancer in woman. It accounts for approximately 18% of all cancer deaths worldwide. It is well known that somatic mutation plays an essential role in cancer development. Hence, we propose that a prognostic prediction model that integrates somatic mutations with gene expression can improve survival prediction for cancer patients and also be able to reveal the genetic mutations associated with survival. METHOD Differential expression analysis was used to identify breast cancer related genes. Genetic algorithm (GA) and univariate Cox regression analysis were applied to filter out survival related genes. DAVID was used for enrichment analysis on somatic mutated gene set. The performance of survival predictors were assessed by Cox regression model and concordance index(C-index). RESULTS We investigated the genome-wide gene expression profile and somatic mutations of 1091 breast invasive carcinoma cases from The Cancer Genome Atlas (TCGA). We identified 118 genes with high hazard ratios as breast cancer survival risk gene candidates (log rank p < 0.0001 and c-index = 0.636). Multiple breast cancer survival related genes were found in this gene set, including FOXR2, FOXD1, MTNR1B and SDC1. Further genetic algorithm (GA) revealed an optimal gene set consisted of 88 genes with higher c-index (log rank p < 0.0001 and c-index = 0.656). We validated this gene set on an independent breast cancer data set and achieved a similar performance (log rank p < 0.0001 and c-index = 0.614). Moreover, we revealed 25 functional annotations, 15 gene ontology terms and 14 pathways that were significantly enriched in the genes that showed distinct mutation patterns in the different survival risk groups. These functional gene sets were used as new features for the survival prediction model. In particular, our results suggested that the Fanconi anemia pathway had an important role in breast cancer prognosis. CONCLUSIONS Our study indicated that the expression levels of the gene signatures remain the effective indicators for breast cancer survival prediction. Combining the gene expression information with other types of features derived from somatic mutations can further improve the performance of survival prediction. The pathways that were associated with survival risk suggested by our study can be further investigated for improving cancer patient survival.
Collapse
Affiliation(s)
- Yifan Zhang
- MidSouth Bioinformatics Center and Joint Bioinformatics Ph.D. Program of University of Arkansas at Little Rock and Univ. of Arkansas Medical Sciences, 2801 S. Univ. Ave, Little Rock, 72204, USA
| | - William Yang
- Department of Computer Science, Carnegie Mellon University School of Computer Science, 5000 Forbes Ave, Pittsburgh, 24105, USA
| | - Dan Li
- MidSouth Bioinformatics Center and Joint Bioinformatics Ph.D. Program of University of Arkansas at Little Rock and Univ. of Arkansas Medical Sciences, 2801 S. Univ. Ave, Little Rock, 72204, USA
| | - Jack Y Yang
- MidSouth Bioinformatics Center and Joint Bioinformatics Ph.D. Program of University of Arkansas at Little Rock and Univ. of Arkansas Medical Sciences, 2801 S. Univ. Ave, Little Rock, 72204, USA
| | - Renchu Guan
- MidSouth Bioinformatics Center and Joint Bioinformatics Ph.D. Program of University of Arkansas at Little Rock and Univ. of Arkansas Medical Sciences, 2801 S. Univ. Ave, Little Rock, 72204, USA
| | - Mary Qu Yang
- MidSouth Bioinformatics Center and Joint Bioinformatics Ph.D. Program of University of Arkansas at Little Rock and Univ. of Arkansas Medical Sciences, 2801 S. Univ. Ave, Little Rock, 72204, USA.
| |
Collapse
|
50
|
Zhang Y, Yang W, Li D, Yang JY, Guan R, Yang MQ. Toward the precision breast cancer survival prediction utilizing combined whole genome-wide expression and somatic mutation analysis. BMC Med Genomics 2018; 11:104. [PMID: 30454048 PMCID: PMC6245494 DOI: 10.1186/s12920-018-0419-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Breast cancer is the most common type of invasive cancer in woman. It accounts for approximately 18% of all cancer deaths worldwide. It is well known that somatic mutation plays an essential role in cancer development. Hence, we propose that a prognostic prediction model that integrates somatic mutations with gene expression can improve survival prediction for cancer patients and also be able to reveal the genetic mutations associated with survival. Method Differential expression analysis was used to identify breast cancer related genes. Genetic algorithm (GA) and univariate Cox regression analysis were applied to filter out survival related genes. DAVID was used for enrichment analysis on somatic mutated gene set. The performance of survival predictors were assessed by Cox regression model and concordance index(C-index). Results We investigated the genome-wide gene expression profile and somatic mutations of 1091 breast invasive carcinoma cases from The Cancer Genome Atlas (TCGA). We identified 118 genes with high hazard ratios as breast cancer survival risk gene candidates (log rank p < 0.0001 and c-index = 0.636). Multiple breast cancer survival related genes were found in this gene set, including FOXR2, FOXD1, MTNR1B and SDC1. Further genetic algorithm (GA) revealed an optimal gene set consisted of 88 genes with higher c-index (log rank p < 0.0001 and c-index = 0.656). We validated this gene set on an independent breast cancer data set and achieved a similar performance (log rank p < 0.0001 and c-index = 0.614). Moreover, we revealed 25 functional annotations, 15 gene ontology terms and 14 pathways that were significantly enriched in the genes that showed distinct mutation patterns in the different survival risk groups. These functional gene sets were used as new features for the survival prediction model. In particular, our results suggested that the Fanconi anemia pathway had an important role in breast cancer prognosis. Conclusions Our study indicated that the expression levels of the gene signatures remain the effective indicators for breast cancer survival prediction. Combining the gene expression information with other types of features derived from somatic mutations can further improve the performance of survival prediction. The pathways that were associated with survival risk suggested by our study can be further investigated for improving cancer patient survival. Electronic supplementary material The online version of this article (10.1186/s12920-018-0419-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yifan Zhang
- MidSouth Bioinformatics Center and Joint Bioinformatics Ph.D. Program of University of Arkansas at Little Rock and Univ. of Arkansas Medical Sciences, 2801 S. Univ. Ave, Little Rock, 72204, USA
| | - William Yang
- Department of Computer Science, Carnegie Mellon University School of Computer Science, 5000 Forbes Ave, Pittsburgh, 24105, USA
| | - Dan Li
- MidSouth Bioinformatics Center and Joint Bioinformatics Ph.D. Program of University of Arkansas at Little Rock and Univ. of Arkansas Medical Sciences, 2801 S. Univ. Ave, Little Rock, 72204, USA
| | - Jack Y Yang
- MidSouth Bioinformatics Center and Joint Bioinformatics Ph.D. Program of University of Arkansas at Little Rock and Univ. of Arkansas Medical Sciences, 2801 S. Univ. Ave, Little Rock, 72204, USA
| | - Renchu Guan
- MidSouth Bioinformatics Center and Joint Bioinformatics Ph.D. Program of University of Arkansas at Little Rock and Univ. of Arkansas Medical Sciences, 2801 S. Univ. Ave, Little Rock, 72204, USA
| | - Mary Qu Yang
- MidSouth Bioinformatics Center and Joint Bioinformatics Ph.D. Program of University of Arkansas at Little Rock and Univ. of Arkansas Medical Sciences, 2801 S. Univ. Ave, Little Rock, 72204, USA.
| |
Collapse
|