1
|
Kim HB, Kim H, Oh SH, Kang MJ, Park JH, Lee SB, Shim S, Lee HJ, Yoo KC, Jang H. Bixin alleviates radiation-induced intestinal damage via inflammation regulation and barrier recovery. Int J Radiat Biol 2025:1-10. [PMID: 40397619 DOI: 10.1080/09553002.2025.2505523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 04/15/2025] [Accepted: 05/05/2025] [Indexed: 05/23/2025]
Abstract
PURPOSE Radiotherapy for cancer treatment or unintentional exposure to ionizing radiation causes severe damage to the unaffected tissues of the digestive system, including gastrointestinal (GI) tract. Radiation exposure leads to an inflammatory response, and uncontrolled inflammation exacerbates radiation-induced tissue injury. Bixin is a liposoluble apocarotenoid isolated from Bixa orrellana seeds, which effectively attenuates several inflammatory diseases. In this study, we investigated whether bixin mitigated radiation-induced intestinal damage through an examination of its role in inflammation and the protection of the epithelial barrier. MATERIALS AND METHODS To determine the therapeutic effects of bixin in treating radiation-induced intestinal damage, we carried out histological analyses, inflammatory response examinations, and barrier function assessments using a mouse model of radiation-induced enteropathy. RESULTS We uncovered that bixin effectively mitigates radiation-induced enteropathy by suppressing the inflammatory response, reducing inflammatory cell accumulation, and limiting cytokine expression in the radiation-induced intestinal injury. In a mouse model of acute radiation-induced intestinal injury, treatment with bixin enhanced nuclear factor erythroid-2-related factor 2 (NRF2) activation and promoted tight junction expression in the epithelium, while also hindering bacterial translocation to the mesenteric lymph nodes. CONCLUSION Bixin represents a potential therapeutic candidate for the treatment of radiation-induced enteropathy.
Collapse
Affiliation(s)
- Han Byul Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Science, Seoul, Korea
| | - Hyewon Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Science, Seoul, Korea
| | - Su-Hyun Oh
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Science, Seoul, Korea
| | - Min-Ji Kang
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Science, Seoul, Korea
| | - Jung Hwan Park
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Science, Seoul, Korea
| | - Seung Bum Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Science, Seoul, Korea
| | - Sehwan Shim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Science, Seoul, Korea
| | - Hae-June Lee
- College of Veterinary Medicine, Jeju National University, Jeju, Korea
| | - Ki-Chun Yoo
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Science, Seoul, Korea
| | - Hyosun Jang
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Science, Seoul, Korea
| |
Collapse
|
2
|
Wang J, Wang T, Zhu L, Wang J, Gao Q, Guo L, Lv G, Zhang W, Zhang Z, Yang C, Yao L, Liu J, Da F. The emerging role of IL-22 as a potential radiosensitivity biomarker for radiation-induced intestinal injury. Int Immunopharmacol 2025; 155:114573. [PMID: 40199137 DOI: 10.1016/j.intimp.2025.114573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Accepted: 03/27/2025] [Indexed: 04/10/2025]
Abstract
Considering the beneficial role played by IL-22 in alleviating radiation-induced intestinal injury through its promotion of epithelial regeneration, it was hypothesized that individuals with elevated IL-22 levels might display either minimal intestinal injury or increased resistance following ionizing irradiation exposure. To assess the impact of IL-22 on intestinal radiosensitivity, IL-22 expression levels was detected in serum of normal mice. Mice naturally with high or low levels of IL-22 or pretreated with IL-22 or anti-IL-22 were subjected to 10 Gy of total abdominal radiation (TAI). Daily observation, morphometric analysis, quantitative reverse transcriptase polymerase chain reaction, immunohistochemistry and western blot were employed to measure weight loss, survival rate, cell proliferation and death, and DNA damage. Furthermore, influence of IL-22 pretreatment on survival of intestinal organoid exposed to 6 Gy X-rays was evaluated. The results showed that IL-22 expression levels were varied between individuals. Surprisingly, mice with high IL-22 levels displayed exacerbated intestinal injury manifesting as increased weight loss, reduced regeneration capacity and more cell apoptosis. Notably, a strong positive correlation between weight loss and IL-22 expression level was observed. Additionally, pretreatment with IL-22 resulted in increased mortality accompanied by enhanced cell apoptosis and DNA damage in crypt of early exposure, as well as diminished survival of intestinal organoid, while pretreatment with anti-IL-22 antibody alleviated the intestinal injury. In this study, we established a direct link between IL-22 and radiosensitivity, suggesting IL-22 could be used as a potential biomarker for predicting individual intestinal radiosensitivity prior to radiation exposure.
Collapse
Affiliation(s)
- Jianyu Wang
- Department of Radiation Medical Protection, School of Military Preventive Medicine, Fourth Military Medical University, Xi'an, China; Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Tonglin Wang
- Military Medical Innovation Center, Fourth Military Medical University, Xi'an, China
| | - Lei Zhu
- Department of Radiation Medical Protection, School of Military Preventive Medicine, Fourth Military Medical University, Xi'an, China; Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China; The Department of Public Health for the Shaanxi University of Chinese Medicine, Xianyang 712000, China
| | - Junshu Wang
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, China
| | - Qiaohui Gao
- Department of Radiation Medical Protection, School of Military Preventive Medicine, Fourth Military Medical University, Xi'an, China; Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Li Guo
- Department of Radiation Medical Protection, School of Military Preventive Medicine, Fourth Military Medical University, Xi'an, China; Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Ganggang Lv
- Military Medical Innovation Center, Fourth Military Medical University, Xi'an, China
| | - Wenle Zhang
- Military Medical Innovation Center, Fourth Military Medical University, Xi'an, China
| | - Zefang Zhang
- Military Medical Innovation Center, Fourth Military Medical University, Xi'an, China
| | - Changbin Yang
- Military Medical Innovation Center, Fourth Military Medical University, Xi'an, China
| | - Lin Yao
- Department of Pharmaceutical chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Junye Liu
- Department of Radiation Medical Protection, School of Military Preventive Medicine, Fourth Military Medical University, Xi'an, China; Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China.
| | - Fei Da
- Department of Radiation Medical Protection, School of Military Preventive Medicine, Fourth Military Medical University, Xi'an, China; Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China; Military Medical Innovation Center, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
3
|
Park HY, Yu JH. Mitigation effect of hesperidin on X-ray radiation-induced intestinal barrier dysfunction in Caco-2 cell monolayers. Food Chem Toxicol 2024; 186:114549. [PMID: 38442786 DOI: 10.1016/j.fct.2024.114549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/18/2024] [Accepted: 02/25/2024] [Indexed: 03/07/2024]
Abstract
The tight junctions (TJs) and barrier function of the intestinal epithelium are highly sensitive to radiation. However, polyphenols can be used to reverse the effects of radiation. Here, we investigated the effects of hesperidin (hesperetin-7-rhamnoglucoside) on X-ray-induced intestinal barrier dysfunction in human epithelial Caco-2 monolayers. To examine whether hesperidin mitigated the effects of X-ray exposure (2 Gy), cell survival was evaluated and intestinal barrier function was assessed by measuring the transepithelial flux, apparent permeability coefficient (Papp), and barrier integrity. Hesperidin improved the survival of Caco-2 cell monolayers and attenuated X-ray exposure-induced intestinal barrier dysfunction. For fluorescein transport experiments, transepithelial flux and Papp of fluorescein in control group were significantly elevated by X-ray, but were restored to near control by 10 μM hesperidin pretreatment. Further, X-ray exposure decreased the barrier integrity and TJ interruption by reducing TJ-related proteins occludin and claudin-4, whereas cell monolayers pretreated with hesperidin before X-ray exposure were reinstated to control level. It was concluded that hesperidin treatment before X-ray exposure alleviated X-ray-induced intestinal barrier dysfunction through regulation of TJ-related proteins. These results indicate that hesperidin prevents and mitigates X-ray-induced intestinal barrier dysfunction.
Collapse
Affiliation(s)
- Ha-Young Park
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea.
| | - Jin-Hee Yu
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
| |
Collapse
|
4
|
Kasahara N, Teratani T, Yokota S, Sakuma Y, Sasanuma H, Fujimoto Y, Ijichi T, Urahashi T, Yoshitomi H, Kitayama J, Sata N. Dietary polyamines promote intestinal adaptation in an experimental model of short bowel syndrome. Sci Rep 2024; 14:4605. [PMID: 38409241 PMCID: PMC10897130 DOI: 10.1038/s41598-024-55258-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 02/21/2024] [Indexed: 02/28/2024] Open
Abstract
Intestinal adaptation does not necessarily recover absorptive capacity in short bowel syndrome (SBS), sometimes resulting in intestinal failure-associated liver disease (IFALD). Additionally, its therapeutic options remain limited. Polyamines (spermidine and spermine) are known as one of the autophagy inducers and play important roles in promoting the weaning process; however, their impact on intestinal adaptation is unknown. The aim of this study was to investigate the impact of polyamines ingestion on adaptation and hepatic lipid metabolism in SBS. We performed resection of two-thirds of the small intestine in male Lewis rats as an SBS model. They were allocated into three groups and fed different polyamine content diets (0%, 0.01%, 0.1%) for 30 days. Polyamines were confirmed to distribute to remnant intestine, whole blood, and liver. Villous height and number of Ki-67-positive cells in the crypt area increased with the high polyamine diet. Polyamines increased secretory IgA and mucin content in feces, and enhanced tissue Claudin-3 expression. In contrast, polyamines augmented albumin synthesis, mitochondrial DNA copy number, and ATP storage in the liver. Moreover, polyamines promoted autophagy flux and activated AMP-activated protein kinase with suppression of lipogenic gene expression. Polyamines ingestion may provide a new therapeutic option for SBS with IFALD.
Collapse
Affiliation(s)
- Naoya Kasahara
- Department of Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Takumi Teratani
- Division of Translational Research, Jichi Medical University, Shimotsuke, Japan.
| | | | - Yasunaru Sakuma
- Department of Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Hideki Sasanuma
- Department of Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Yasuhiro Fujimoto
- Department of Transplant Surgery, Nagoya University Hospital, Nagoya, Japan
| | - Tetsuo Ijichi
- Division of Translational Research, Jichi Medical University, Shimotsuke, Japan
| | - Taizen Urahashi
- Department of Surgery, Dokkyo Medical University Saitama Medical Center, Koshigaya, Japan
| | - Hideyuki Yoshitomi
- Department of Surgery, Dokkyo Medical University Saitama Medical Center, Koshigaya, Japan
| | - Joji Kitayama
- Department of Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Naohiro Sata
- Department of Surgery, Jichi Medical University, Shimotsuke, Japan
| |
Collapse
|
5
|
Markov AG, Livanova AA, Fedorova AA, Kravtsova VV, Krivoi II. Chronic Ouabain Targets Pore-Forming Claudin-2 and Ameliorates Radiation-Induced Damage to the Rat Intestinal Tissue Barrier. Int J Mol Sci 2023; 25:278. [PMID: 38203449 PMCID: PMC10778734 DOI: 10.3390/ijms25010278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Ionizing radiation (IR) causes disturbances in the functions of the gastrointestinal tract. Given the therapeutic potential of ouabain, a specific ligand of the Na,K-ATPase, we tested its ability to protect against IR-induced disturbances in the barrier and transport properties of the jejunum and colon of rats. Male Wistar rats were subjected to 6-day intraperitoneal injections of vehicle or ouabain (1 µg/kg/day). On the fourth day of injections, rats were exposed to total-body X-ray irradiation (10 Gy) or a sham irradiation. Isolated tissues were examined 72 h post-irradiation. Electrophysiological characteristics and paracellular permeability for sodium fluorescein were measured in an Ussing chamber. Histological analysis and Western blotting were also performed. In the jejunum tissue, ouabain exposure did not prevent disturbances in transepithelial resistance, paracellular permeability, histological characteristics, as well as changes in the expression of claudin-1, -3, -4, tricellulin, and caspase-3 induced by IR. However, ouabain prevented overexpression of occludin and the pore-forming claudin-2. In the colon tissue, ouabain prevented electrophysiological disturbances and claudin-2 overexpression. These observations may reveal a mechanism by which circulating ouabain maintains tight junction integrity under IR-induced intestinal dysfunction.
Collapse
Affiliation(s)
- Alexander G. Markov
- Department of General Physiology, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.A.L.); (A.A.F.); (V.V.K.); (I.I.K.)
| | | | | | | | | |
Collapse
|
6
|
Lu Q, Liang Y, Tian S, Jin J, Zhao Y, Fan H. Radiation-Induced Intestinal Injury: Injury Mechanism and Potential Treatment Strategies. TOXICS 2023; 11:1011. [PMID: 38133412 PMCID: PMC10747544 DOI: 10.3390/toxics11121011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
Radiation-induced intestinal injury (RIII) is one of the most common intestinal complications caused by radiotherapy for pelvic and abdominal tumors and it seriously affects the quality of life of patients. However, the treatment of acute RIII is essentially symptomatic and nutritional support treatment and an ideal means of prevention and treatment is lacking. Researchers have conducted studies at the cellular and animal levels and found that some chemical or biological agents have good therapeutic effects on RIII and may be used as potential candidates for clinical treatment. This article reviews the injury mechanism and potential treatment strategies based on cellular and animal experiments to provide new ideas for the diagnosis and treatment of RIII in clinical settings.
Collapse
Affiliation(s)
- Qianying Lu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (S.T.); (J.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Yangfan Liang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (S.T.); (J.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Sijia Tian
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (S.T.); (J.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Jie Jin
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (S.T.); (J.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Yanmei Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (S.T.); (J.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Haojun Fan
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (S.T.); (J.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| |
Collapse
|
7
|
Diaz J, Kuhlman BM, Edenhoffer NP, Evans AC, Martin KA, Guida P, Rusek A, Atala A, Coleman MA, Wilson PF, Almeida-Porada G, Porada CD. Immediate effects of acute Mars mission equivalent doses of SEP and GCR radiation on the murine gastrointestinal system-protective effects of curcumin-loaded nanolipoprotein particles (cNLPs). FRONTIERS IN ASTRONOMY AND SPACE SCIENCES 2023; 10:1117811. [PMID: 38741937 PMCID: PMC11089821 DOI: 10.3389/fspas.2023.1117811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Introduction Missions beyond low Earth orbit (LEO) will expose astronauts to ionizing radiation (IR) in the form of solar energetic particles (SEP) and galactic cosmic rays (GCR) including high atomic number and energy (HZE) nuclei. The gastrointestinal (GI) system is documented to be highly radiosensitive with even relatively low dose IR exposures capable of inducing mucosal lesions and disrupting epithelial barrier function. IR is also an established risk factor for colorectal cancer (CRC) with several studies examining long-term GI effects of SEP/GCR exposure using tumor-prone APC mouse models. Studies of acute short-term effects of modeled space radiation exposures in wildtype mouse models are more limited and necessary to better define charged particle-induced GI pathologies and test novel medical countermeasures (MCMs) to promote astronaut safety. Methods In this study, we performed ground-based studies where male and female C57BL/6J mice were exposed to γ-rays, 50 MeV protons, or 1 GeV/n Fe-56 ions at the NASA Space Radiation Laboratory (NSRL) with histology and immunohistochemistry endpoints measured in the first 24 h post-irradiation to define immediate SEP/GCR-induced GI alterations. Results Our data show that unlike matched γ-ray controls, acute exposures to protons and iron ions disrupts intestinal function and induces mucosal lesions, vascular congestion, epithelial barrier breakdown, and marked enlargement of mucosa-associated lymphoid tissue. We also measured kinetics of DNA double-strand break (DSB) repair using gamma-H2AX- specific antibodies and apoptosis via TUNEL labeling, noting the induction and disappearance of extranuclear cytoplasmic DNA marked by gamma-H2AX only in the charged particle-irradiated samples. We show that 18 h pre-treatment with curcumin-loaded nanolipoprotein particles (cNLPs) delivered via IV injection reduces DSB-associated foci levels and apoptosis and restore crypt villi lengths. Discussion These data improve our understanding of physiological alterations in the GI tract immediately following exposures to modeled space radiations and demonstrates effectiveness of a promising space radiation MCM.
Collapse
Affiliation(s)
- Jonathan Diaz
- Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, United States
| | - Bradford M. Kuhlman
- Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, United States
| | | | - Angela C. Evans
- Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, CA, United States
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Kelly A. Martin
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Peter Guida
- NASA Space Radiation Laboratory, Brookhaven National Laboratory, Upton, NY, United States
| | - Adam Rusek
- NASA Space Radiation Laboratory, Brookhaven National Laboratory, Upton, NY, United States
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, United States
| | - Matthew A. Coleman
- Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, CA, United States
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Paul F. Wilson
- Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, CA, United States
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Graça Almeida-Porada
- Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, United States
| | | |
Collapse
|
8
|
Livanova AA, Fedorova AA, Zavirsky AV, Krivoi II, Markov AG. Dose- and Segment-Dependent Disturbance of Rat Gut by Ionizing Radiation: Impact of Tight Junction Proteins. Int J Mol Sci 2023; 24:ijms24021753. [PMID: 36675266 PMCID: PMC9863103 DOI: 10.3390/ijms24021753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/30/2022] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
The damaging effect of ionizing radiation (IR) exposure results in the disturbance of the gut natural barrier, followed by the development of severe gastrointestinal injury. However, the dose and application segment are known to determine the effects of IR. In this study, we demonstrated the dose- and segment-specificity of tight junction (TJ) alteration in IR-induced gastrointestinal injury in rats. Male Wistar rats were subjected to a total-body X-ray irradiation at doses of 2 or 10 Gy. Isolated jejunum and colon segments were tested in an Ussing chamber 72 h after exposure. In the jejunum, 10-Gy IR dramatically altered transepithelial resistance, short-circuit current and permeability for sodium fluorescein. These changes were accompanied by severe disturbance of histological structure and total rearrangement of TJ content (increased content of claudin-1, -2, -3 and -4; multidirectional changes in tricellulin and occludin). In the colon of 10-Gy irradiated rats, lesions of barrier and transport functions were less pronounced, with only claudin-2 and -4 altered among TJ proteins. The 2-Gy IR did not change electrophysiological characteristics or permeability in the colon or jejunum, although slight alterations in jejunum histology were noted, emphasized with claudin-3 increase. Considering that TJ proteins are critical for maintaining epithelial barrier integrity, these findings may have implications for countermeasures in gastrointestinal acute radiation injury.
Collapse
Affiliation(s)
- Alexandra A. Livanova
- Department of General Physiology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Arina A. Fedorova
- Department of General Physiology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Alexander V. Zavirsky
- Department of Military Toxicology and Radiation Defense, S. M. Kirov Military Medical Academy, 194044 St. Petersburg, Russia
| | - Igor I. Krivoi
- Department of General Physiology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Alexander G. Markov
- Department of General Physiology, St. Petersburg State University, 199034 St. Petersburg, Russia
- Correspondence:
| |
Collapse
|
9
|
Dietary Saccharomyces cerevisiae improves intestinal flora structure and barrier function of Pekin ducks. Poult Sci 2022; 102:101940. [PMID: 36436368 PMCID: PMC9700307 DOI: 10.1016/j.psj.2022.101940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 01/10/2023] Open
Abstract
This study aimed at investigating the effects of dietary Saccharomyces cerevisiae (SC) on the intestinal flora structure and barrier function of Pekin duck. A total of 180 1-day-old Pekin ducks were randomly divided into 3 groups with 6 replicates in each group and 10 birds per replicate. The birds in the control group (CON) were fed the basal diet, and those in the experimental group were fed the basal diets supplemented with 600 mg/kg SC (LSC) and 1,200 mg/kg (HSC), respectively. The trial lasted for 42 d. Results showed that LSC and HSC treatments tended to improve the feed conversion efficiency during the trial. The ileum length of birds in the LSC and HSC groups was elevated. Additionally, with 600mg/kg SC supplemented, the mRNA levels of villin, claudin3, and MUC 2 in d21 were up-regulated, as well as the mRNA levels of villin, claudin3, occludin, i-FABP, ZO-1, and MUC 2 in d42. In addition, dietary SC supplementation improved the α-diversity of the bacteria in cecal chyme and tended to increase the abundance (RA) of Bacteroidetes (P = 0.071). Besides, the RA of Ruminococcaceae_UCG-014 was raised in the LSC group. Beyond that, the RA of Proteobacteria was descended with two levels of SC added. In conclusion, dietary Saccharomyces cerevisiae, particularly at 600 mg/kg level, improved the intestinal flora structure and barrier function of Pekin duck.
Collapse
|
10
|
Lai Y, Sun M, He Y, Lei J, Han Y, Wu Y, Bai D, Guo Y, Zhang B. Mycotoxins binder supplementation alleviates aflatoxin B 1 toxic effects on the immune response and intestinal barrier function in broilers. Poult Sci 2021; 101:101683. [PMID: 35121530 PMCID: PMC8883060 DOI: 10.1016/j.psj.2021.101683] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/29/2022] Open
Abstract
This experiment was conducted to evaluate whether a commercial mycotoxins-binder, XL, could effectively attenuate the negative effects of Aflatoxin B1 (AFB1) on growth performance, immunological function, and intestinal health in birds. Two hundred forty 1-day-old Arbor Acres broiler chickens were randomly divided into 4 treatments using a 2 × 2 factorial randomized design with 2 levels of dietary mycotoxins binder (0 or 2g /kg) and 2 AFB1 supplemented levels (0 or 200 μg/kg) from 0 to 42 d. Results showed that AFB1 exposure impaired growth performance by decreasing BWG in 1–21 d and 1–42 d, decreasing FI in 1–21 d, increasing FCR in 1–21 d and 1–42 d (P < 0.05). Broilers fed AFB1- contaminated diet impaired the immune function, as evident by decreasing IgA contents, Newcastle disease antibody titers in serum, and sIgA contents of jejunal mucosa at 21 d (P < 0.05). On the other hand, AFB1 challenge significantly increased the gene expression of proinflammatory factors in spleen at 21 d and liver at 42 d, and significantly decreased claudin-1 expression at 42 d and occludin expression at 21 d, and increased claudin-2 at 21 d in jejunum of broiler chickens (P < 0.05) compared to the basal diet group. Dietary XL supplementation significantly decreased the gene expression of IL-6 in spleen at 21 d and IL-1β in liver at 42 d, cytochrome P450 3A4 (CYP3A4) expression in liver at 21 d of broilers (P < 0.05) compared with the nonsupplemented birds, regardless of AFB1 challenged or not. Inclusion of 2 g/kg XL increased serum ALB at 42 d, IgM and IgA at 42 d, Newcastle disease antibody titer level at 35 d (P < 0.05). Dietary XL addition enhanced intestinal barrier function by increasing the expression of claudin-1 at 21 d and Occludin at 42 d (P < 0.05) in jejunum. Conclusively, 2 g/kg mycotoxins-binder can relieve the toxic effect of AFB1 on broilers.
Collapse
Affiliation(s)
- Yujiao Lai
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Meng Sun
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yang He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jiaqi Lei
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yanming Han
- Trouw Nutrition Amersfoort 773811, The Netherlands
| | - Yuanyuan Wu
- Trouw Nutrition Amersfoort 773811, The Netherlands
| | - Dongying Bai
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
11
|
Aras D, Ozturk HF, Ozdemir E, Kervan U, Kara M, Cay S, Coskun N, Ozcan F, Korkmaz A, Ozeke O, Topaloglu S, Tezcan Y. Use of Stereotactic Radioablation Therapy as a Bailout Therapy for Refractory Ventricular Tachycardia in a Patient with a No-entry Left Ventricle. J Innov Card Rhythm Manag 2021; 12:4671-4675. [PMID: 34595050 PMCID: PMC8476093 DOI: 10.19102/icrm.2021.120902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 01/25/2021] [Indexed: 11/30/2022] Open
Abstract
In patients with mechanical aortic and mitral valves and left ventricular (LV) tachycardia (VT), catheter ablation is technically challenging due to the limited access to the LV. Promising new alternatives to radiofrequency ablation include pulsed-field electroporation, percutaneous or surgical sympathetic neuromodulation, and noninvasive stereotactic radioablation therapy (SBRT). We herein describe the effect of SBRT as a bailout therapy on the management of a challenging VT case in the presence of double left-sided mechanical valves.
Collapse
Affiliation(s)
- Dursun Aras
- Department of Cardiology, University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| | - Huseyin Furkan Ozturk
- Department of Radiation Oncology, University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| | - Elif Ozdemir
- Department of Nuclear Medicine, University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| | - Umit Kervan
- Department of Cardiovascular Surgery, University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| | - Meryem Kara
- Department of Cardiology, University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| | - Serkan Cay
- Department of Cardiology, University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| | - Nazim Coskun
- Department of Nuclear Medicine, University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| | - Firat Ozcan
- Department of Cardiology, University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| | - Ahmet Korkmaz
- Department of Cardiology, University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| | - Ozcan Ozeke
- Department of Cardiology, University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| | - Serkan Topaloglu
- Department of Cardiology, University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| | - Yilmaz Tezcan
- Department of Radiation Oncology, University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| |
Collapse
|
12
|
Yin B, Liu H, Tan B, Dong X, Chi S, Yang Q, Zhang S. Dietary supplementation of β-conglycinin, with or without sodium butyrate on the growth, immune response and intestinal health of hybrid grouper. Sci Rep 2021; 11:17298. [PMID: 34453080 PMCID: PMC8397726 DOI: 10.1038/s41598-021-96693-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 07/31/2021] [Indexed: 12/15/2022] Open
Abstract
We investigated the effects of low and high doses of β-conglycinin and the ameliorative effects of sodium butyrate (based on high-dose β-conglycinin) on the growth performance, serum immunity, distal intestinal histopathology, and gene, protein expression related to intestinal health in hybrid grouper (Epinephelus fuscoguttatus ♀ × E. lanceolatus ♂). The results revealed that the instantaneous growth rate (IGR) of grouper significantly increased, decreased, and increased in the low-dose β-conglycinin (bL), high-level β-conglycinin (bH) and high-level β-conglycinin plus sodium butyrate (bH-NaB), respectively. The feed coefficient ratio (FCR) was significantly increased in the bH and bH-NaB, serum levels of IFN-γ, IL-1β, and TNF-α were upregulated in the bH. The intestinal diameter/fold height ratio was significantly increased in the bH. Furthermore, there were increases in nitric oxide (NO), total nitric oxide synthase (total NOS), and peroxynitrite anion (ONOO-) in the bH, and decreases in total NOS and ONOO- in the bH-NaB. In the distal intestine, IL-1β and TGF-β1 mRNA levels were downregulated and upregulated, respective in the bL. The mRNA levels of TNF-α and IL-6 were upregulated in the bH, and downregulated in the bH-NaB, respectively. Occludin, claudin3 and ZO-3 mRNA levels were upregulated in the bL, downregulated in the bH and then upregulated in the bH-NaB. No significant differences were observed in the mRNA levels of IFN-γ and jam4. And the p-PI3K p85Tyr458/total PI3K p85 value was significantly increased in the bH and then decreased in the bH-NaB, and the total Akt value was significantly increased in the bH. These indicate β-conglycinin has a regulatory effect on serum immunity and affect distal intestinal development by modulating distal intestinal injury-related parameters. Within the distal intestinal tract, low- and high-dose β-conglycinin differentially affect immune responses and tight junctions in the distal intestine, which eventually manifests as a reduction in growth performance. Supplementing feed with sodium butyrate might represent an effective approach for enhancing serum immunity, and protects the intestines from damage caused by high-dose β-conglycinin.
Collapse
Affiliation(s)
- Bin Yin
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524025, People's Republic of China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, Guangdong, People's Republic of China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, 524025, People's Republic of China
| | - Hongyu Liu
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524025, People's Republic of China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, Guangdong, People's Republic of China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, 524025, People's Republic of China
| | - Beiping Tan
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524025, People's Republic of China.
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, Guangdong, People's Republic of China.
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, 524025, People's Republic of China.
| | - Xiaohui Dong
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524025, People's Republic of China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, Guangdong, People's Republic of China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, 524025, People's Republic of China
| | - Shuyan Chi
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524025, People's Republic of China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, Guangdong, People's Republic of China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, 524025, People's Republic of China
| | - Qihui Yang
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524025, People's Republic of China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, Guangdong, People's Republic of China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, 524025, People's Republic of China
| | - Shuang Zhang
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524025, People's Republic of China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, Guangdong, People's Republic of China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, 524025, People's Republic of China
| |
Collapse
|
13
|
Chen W, Yang C, Xue H, Huang Q. The protective effect and mechanism of epidermal growth factor on necrotizing enterocolitis in a neonatal rat model. Transl Pediatr 2021; 10:900-913. [PMID: 34012839 PMCID: PMC8107864 DOI: 10.21037/tp-21-81] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/21/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Necrotizing enterocolitis (NEC) is the most common acquired gastrointestinal emergency in premature infants. This study aimed to investigate the protective effect and mechanism of epidermal growth factor (EGF) on NEC in a neonatal rat model. METHODS We randomly divided 50 newborn SD rats into a control group, NEC group, NEC + 50 ng/mL EGF group, NEC + 500 ng/mL EGF group, and NEC + 1,000 ng/mL EGF group, with 10 cases in each group. The appearance of intestinal tissue, physiological status score, inflammatory factor level, HE staining, and pathological score were used to evaluate the protective effect. A one cm tissue sample from the proximal ileum of the ileocecal area of five rats from the NEC group and the group that showed a significant protective effect were extracted for transcriptome sequencing. RESULTS The levels of IL-1β and IL-6 in the intestinal mucosa in the NEC + 500 ng/mL EGF group were significantly lower than those in the NEC + 1,000 ng/mL EGF group (P<0.05). Transcriptome sequencing suggested that EGF effects the intestinal barrier, apoptosis, and inflammation of the NEC intestine. CONCLUSIONS We conclude that the oral administration of 500 ng/mL EGF effectively inhibits intestinal inflammation in NEC neonatal rat models, thereby affecting the barrier function of the intestinal tract.
Collapse
Affiliation(s)
- Wenqian Chen
- Department of Neonatology, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Changyi Yang
- Department of Neonatology, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Heng Xue
- Department of Laboratory Medicine, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Qi Huang
- Department of Neonatology, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
14
|
Karadeniz Cerit K, Koyuncuoğlu T, Yağmur D, Peker Eyüboğlu İ, Şirvancı S, Akkiprik M, Aksu B, Dağlı ET, Yeğen BÇ. Nesfatin-1 ameliorates oxidative bowel injury in rats with necrotizing enterocolitis: The role of the microbiota composition and claudin-3 expression. J Pediatr Surg 2020; 55:2797-2810. [PMID: 32171536 DOI: 10.1016/j.jpedsurg.2020.02.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/24/2020] [Accepted: 02/17/2020] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND PURPOSE Ongoing high mortality due to necrotizing enterocolitis (NEC) necessitates the investigation of novel treatments to improve the outcome of the affected newborns. The aim was to elucidate the potential therapeutic impact of the nesfatin-1, a peptide with anti-inflammatory and anti-apoptotic effects in several inflammatory processes, on NEC-induced newborn rats. MATERIALS AND METHODS Sprague-Dawley pups were separated from their mothers, fed with a hyperosmolar formula and exposed to hypoxia, while control pups had no intervention. NEC-induced pups received saline or nesfatin-1 (0.2 μg/kg/day) for 3 days, while some nesfatin-1 treated pups were injected with capsaicin (50 μg/g) for the chemical ablation of afferent neurons. On the 4th day, clinical state and macroscopic gut assessments were made. In intestines, immunohistochemical staining of cycloxygenase-2 (COX-2), nuclear factor (NF)-κB-p65 (RelA), vascular endothelial growth factor (VEGF), claudin-3 and zonula occludens-1 (ZO-1) were performed, while gene expressions of COX-2, occludin, claudin-3, NF-κB-p65 (RelA) and VEGF were determined using q-PCR. In fecal samples, relative abundance of bacteria was quantified by q-PCR. Biochemical evaluation of oxidant/antioxidant parameters was performed in both intestinal and cerebral tissues. RESULTS Claudin-3 and ZO-1 immunoreactivity scores were significantly elevated in the nesfatin-1 treated control pups. Nesfatin-1 reduced NEC-induced high macroscopic and clinical scores, inhibited NF-κB-65 pathway and maintained the balance of oxidant/antioxidant systems. NEC increased the abundance of Proteobacteria with a concomitant reduction in Actinobacteria and Bacteroidetes, while nesfatin-1 treatment reversed these alterations. Modulatory effects of nesfatin-1 on microbiota and oxidative injury were partially reversed by capsaicin. Immunohistochemistry demonstrated that nesfatin-1 abolished NEC-induced reduction in claudin-3. Gene expressions of COX-2, NF-κB, occludin and claudin-3 were elevated in saline-treated NEC pups, while these up-regulated mRNA levels were not further altered in nesfatin-1-treated NEC pups. CONCLUSION Nesfatin-1 could be regarded as a potential preventive agent for the treatment of NEC.
Collapse
Affiliation(s)
| | - Türkan Koyuncuoğlu
- Department of Physiology, Marmara University, School of Medicine, Istanbul, Turkey
| | - Damla Yağmur
- Department of Physiology, Marmara University, School of Medicine, Istanbul, Turkey
| | - İrem Peker Eyüboğlu
- Department of Medical Biology, Marmara University, School of Medicine, Istanbul, Turkey
| | - Serap Şirvancı
- Department of Histology & Embryology, Marmara University, School of Medicine, Istanbul, Turkey
| | - Mustafa Akkiprik
- Department of Medical Biology, Marmara University, School of Medicine, Istanbul, Turkey
| | - Burak Aksu
- Department of Medical Microbiology, Marmara University, School of Medicine, Istanbul, Turkey
| | - E Tolga Dağlı
- Department of Pediatric Surgery, Marmara University, School of Medicine, Istanbul, Turkey
| | - Berrak Ç Yeğen
- Department of Physiology, Marmara University, School of Medicine, Istanbul, Turkey.
| |
Collapse
|
15
|
Kiani S, Kutob L, Schneider F, Higgins KA, Lloyd MS. Histopathologic and Ultrastructural Findings in Human Myocardium After Stereotactic Body Radiation Therapy for Recalcitrant Ventricular Tachycardia. Circ Arrhythm Electrophysiol 2020; 13:e008753. [PMID: 33031001 DOI: 10.1161/circep.120.008753] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Stereotactic body radiation therapy (SBRT) is a novel treatment for refractory ventricular tachycardia (VT). While outcomes have been described in small studies, histological findings after SBRT for VT are unknown. METHODS We identified 4 explanted hearts in the context of transplant that received prior SBRT as part of an 11-patient compassionate use series at our institution. Clinical VTs and computed tomography-defined target volume areas of SBRT were correlated to the anatomic specimens. Gross pathological, histological, and ultrastructural examination of tissue in the target area of SBRT was performed. RESULTS All 4 patients had nonischemic cardiomyopathy, and 3 had left ventricular assist devices. In all cases, patients had recurrent sustained VT and had failed multiple antiarrhythmics and radiofrequency ablations. Four patients underwent 5 total SBRT therapy sessions with 25-Gy single-fraction dose delivered to the area of culprit scar. The time from SBRT to explant ranged from 12 to 250 days. Histopathologic features following radiation were comparable in all patients and were characterized by areas of subendocardial necrosis surrounded by a rim of fibrosis. In 1 patient, the surrounding myocardium showed cytoplasmic vacuolization in myocytes and in another patchy interstitial fibrosis. Vascular changes consisted of myointimal thickening with prominence of endothelial cells. Electron microscopy of myocardium showed irregular, convoluted intercalated disc regions, loss of contractile elements with disrupted and haphazardly arranged myofibrils, and edematous mitochondria with loss of cisternae. CONCLUSIONS Here, we report the first series of findings in human tissue in 4 patients after SBRT. Histopathologic features were consistent across all 4 patients and were indicative of cell injury, death, and to a lesser extent, fibrosis. Electron microscopy demonstrated features consistent with acute injury. These specimens provide radiobiological mechanisms of acute cellular injury during SBRT for VT, which may have an antiarrhythmic effect before the onset of fibrosis.
Collapse
Affiliation(s)
- Soroosh Kiani
- Department of Medicine, Division of Cardiology, Section of Electrophysiology and Pacing (S.K., M.S.L.), Emory University School of Medicine, Atlanta, GA
| | - Leila Kutob
- Department of Pathology and Laboratory Medicine (L.K., F.S.), Emory University School of Medicine, Atlanta, GA
| | - Frank Schneider
- Department of Pathology and Laboratory Medicine (L.K., F.S.), Emory University School of Medicine, Atlanta, GA
| | - Kristin A Higgins
- Department of Radiation Oncology (K.A.H.), Emory University School of Medicine, Atlanta, GA
| | - Michael S Lloyd
- Department of Medicine, Division of Cardiology, Section of Electrophysiology and Pacing (S.K., M.S.L.), Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
16
|
Jang H, Kwak SY, Park S, Kim K, Kim YH, Na J, Kim H, Jang WS, Lee SJ, Kim MJ, Myung JK, Shim S. Pravastatin Alleviates Radiation Proctitis by Regulating Thrombomodulin in Irradiated Endothelial Cells. Int J Mol Sci 2020; 21:ijms21051897. [PMID: 32164317 PMCID: PMC7084904 DOI: 10.3390/ijms21051897] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/07/2020] [Accepted: 03/08/2020] [Indexed: 12/23/2022] Open
Abstract
Although radiotherapy plays a crucial in the management of pelvic tumors, its toxicity on surrounding healthy tissues such as the small intestine, colon, and rectum is one of the major limitations associated with its use. In particular, proctitis is a major clinical complication of pelvic radiotherapy. Recent evidence suggests that endothelial injury significantly affects the initiation of radiation-induced inflammation. The damaged endothelial cells accelerate immune cell recruitment by activating the expression of endothelial adhesive molecules, which participate in the development of tissue damage. Pravastatin, a cholesterol lowering drug, exerts persistent anti-inflammatory and anti-thrombotic effects on irradiated endothelial cells and inhibits the interaction of leukocytes and damaged endothelial cells. Here, we aimed to investigate the effects of pravastatin on radiation-induced endothelial damage in human umbilical vein endothelial cell and a murine proctitis model. Pravastatin attenuated epithelial damage and inflammatory response in irradiated colorectal lesions. In particular, pravastatin improved radiation-induced endothelial damage by regulating thrombomodulin (TM) expression. In addition, exogenous TM inhibited leukocyte adhesion to the irradiated endothelial cells. Thus, pravastatin can inhibit endothelial damage by inducing TM, thereby alleviating radiation proctitis. Therefore, we suggest that pharmacological modulation of endothelial TM may limit intestinal inflammation after irradiation.
Collapse
Affiliation(s)
- Hyosun Jang
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea; (H.J.); (S.-Y.K.); (S.P.); (K.K.); (Y.-h.K.); (J.N.); (H.K.); (W.-S.J.); (S.-J.L.); (M.J.K.); (J.K.M.)
| | - Seo-Young Kwak
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea; (H.J.); (S.-Y.K.); (S.P.); (K.K.); (Y.-h.K.); (J.N.); (H.K.); (W.-S.J.); (S.-J.L.); (M.J.K.); (J.K.M.)
| | - Sunhoo Park
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea; (H.J.); (S.-Y.K.); (S.P.); (K.K.); (Y.-h.K.); (J.N.); (H.K.); (W.-S.J.); (S.-J.L.); (M.J.K.); (J.K.M.)
- Department of Pathology, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea
| | - Kyuchang Kim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea; (H.J.); (S.-Y.K.); (S.P.); (K.K.); (Y.-h.K.); (J.N.); (H.K.); (W.-S.J.); (S.-J.L.); (M.J.K.); (J.K.M.)
| | - Young-heon Kim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea; (H.J.); (S.-Y.K.); (S.P.); (K.K.); (Y.-h.K.); (J.N.); (H.K.); (W.-S.J.); (S.-J.L.); (M.J.K.); (J.K.M.)
| | - Jiyoung Na
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea; (H.J.); (S.-Y.K.); (S.P.); (K.K.); (Y.-h.K.); (J.N.); (H.K.); (W.-S.J.); (S.-J.L.); (M.J.K.); (J.K.M.)
| | - Hyewon Kim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea; (H.J.); (S.-Y.K.); (S.P.); (K.K.); (Y.-h.K.); (J.N.); (H.K.); (W.-S.J.); (S.-J.L.); (M.J.K.); (J.K.M.)
| | - Won-Suk Jang
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea; (H.J.); (S.-Y.K.); (S.P.); (K.K.); (Y.-h.K.); (J.N.); (H.K.); (W.-S.J.); (S.-J.L.); (M.J.K.); (J.K.M.)
| | - Sun-Joo Lee
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea; (H.J.); (S.-Y.K.); (S.P.); (K.K.); (Y.-h.K.); (J.N.); (H.K.); (W.-S.J.); (S.-J.L.); (M.J.K.); (J.K.M.)
| | - Min Jung Kim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea; (H.J.); (S.-Y.K.); (S.P.); (K.K.); (Y.-h.K.); (J.N.); (H.K.); (W.-S.J.); (S.-J.L.); (M.J.K.); (J.K.M.)
| | - Jae Kyung Myung
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea; (H.J.); (S.-Y.K.); (S.P.); (K.K.); (Y.-h.K.); (J.N.); (H.K.); (W.-S.J.); (S.-J.L.); (M.J.K.); (J.K.M.)
- Department of Pathology, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea
| | - Sehwan Shim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea; (H.J.); (S.-Y.K.); (S.P.); (K.K.); (Y.-h.K.); (J.N.); (H.K.); (W.-S.J.); (S.-J.L.); (M.J.K.); (J.K.M.)
- Correspondence: ; Tel.: +82-2-3399-5873
| |
Collapse
|
17
|
Clinical experience of stereotactic body radiation for refractory ventricular tachycardia in advanced heart failure patients. Heart Rhythm 2020; 17:415-422. [DOI: 10.1016/j.hrthm.2019.09.028] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Indexed: 12/31/2022]
|
18
|
Jang H, Lee J, Park S, Kim JS, Shim S, Lee SB, Han SH, Myung H, Kim H, Jang WS, Lee SJ, Myung JK. Baicalein Mitigates Radiation-Induced Enteritis by Improving Endothelial Dysfunction. Front Pharmacol 2019; 10:892. [PMID: 31474856 PMCID: PMC6707809 DOI: 10.3389/fphar.2019.00892] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/16/2019] [Indexed: 12/16/2022] Open
Abstract
Background and Aims: Radiation-induced intestinal injury occurred in application of radiotherapy for abdominal and pelvic cancers or in nuclear accidents. Radiation-induced enteritis may be considered an ideal model of gastrointestinal inflammation. The endothelium is a crucial component of inflammation, and the endothelial dysfunction following radiation exposure induces the intestinal proinflammatory response and progression of radiation enteritis. Baicalein (5,6,7-trihydroxyflavonoid) is a flavonoid from Scutellaria baicalensis used in oriental herbal medicine. Baicalein has been found to have multiple beneficial properties including antioxidant, anti-inflammatory, anti-allergic, and anti-cancer activities. Here, we investigated the therapeutic effects of baicalein on endothelial dysfunction in radiation-induced intestinal inflammation. Materials and Methods: We performed histological analysis, bacterial translocation, and intestinal permeability assays and also assessed infiltration of leukocytes and inflammatory cytokine expression using a mouse model of radiation-induced enteritis. In addition, to investigate the effect of baicalein in endothelial dysfunction, we analyzed endothelial-derived adherent molecules in human umbilical vein endothelial cells (HUVECs) and irradiated intestinal tissue. Results: Histological damage such as shortening of villi length and impaired intestinal crypt function was observed in the radiation-induced enteritis mouse model. Intestinal damage was attenuated in baicalein-treated groups with improvement of intestinal barrier function. Baicalein inhibited the expression of radiation-induced adherent molecules in HUVECs and intestine of irradiated mouse and decreased leukocyte infiltration in the radiation-induced enteritis. Conclusions: Baicalein could accelerate crypt regeneration via recovery of endothelial damage. Therefore, baicalein has a therapeutic effect on radiation-induced intestinal inflammation by attenuating endothelial damage.
Collapse
Affiliation(s)
- Hyosun Jang
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Janet Lee
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Sunhoo Park
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea.,Department of Pathology, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Joong Sun Kim
- Herbal Medicine Resources Center, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Sehwan Shim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Seung Bum Lee
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Sung-Honn Han
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Hyunwook Myung
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Hyewon Kim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Won-Suk Jang
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Sun-Joo Lee
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Jae Kyung Myung
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea.,Department of Pathology, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| |
Collapse
|
19
|
Moussa L, Usunier B, Demarquay C, Benderitter M, Tamarat R, Sémont A, Mathieu N. Bowel Radiation Injury: Complexity of the Pathophysiology and Promises of Cell and Tissue Engineering. Cell Transplant 2018; 25:1723-1746. [PMID: 27197023 DOI: 10.3727/096368916x691664] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ionizing radiation is effective to treat malignant pelvic cancers, but the toxicity to surrounding healthy tissue remains a substantial limitation. Early and late side effects not only limit the escalation of the radiation dose to the tumor but may also be life-threatening in some patients. Numerous preclinical studies determined specific mechanisms induced after irradiation in different compartments of the intestine. This review outlines the complexity of the pathogenesis, highlighting the roles of the epithelial barrier in the vascular network, and the inflammatory microenvironment, which together lead to chronic fibrosis. Despite the large number of pharmacological molecules available, the studies presented in this review provide encouraging proof of concept regarding the use of mesenchymal stromal cell (MSC) therapy to treat radiation-induced intestinal damage. The therapeutic efficacy of MSCs has been demonstrated in animal models and in patients, but an enormous number of cells and multiple injections are needed due to their poor engraftment capacity. Moreover, it has been observed that although MSCs have pleiotropic effects, some intestinal compartments are less restored after a high dose of irradiation. Future research should seek to optimize the efficacy of the injected cells, particularly with regard to extending their life span in the irradiated tissue. Moreover, improving the host microenvironment, combining MSCs with other specific regenerative cells, or introducing new tissue engineering strategies could be tested as methods to treat the severe side effects of pelvic radiotherapy.
Collapse
Affiliation(s)
- Lara Moussa
- Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PRP-HOM/SRBE/LR2I, Fontenay-aux-Roses, France
| | - Benoît Usunier
- Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PRP-HOM/SRBE/LR2I, Fontenay-aux-Roses, France
| | - Christelle Demarquay
- Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PRP-HOM/SRBE/LR2I, Fontenay-aux-Roses, France
| | - Marc Benderitter
- Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PRP-HOM/SRBE/LR2I, Fontenay-aux-Roses, France
| | - Radia Tamarat
- Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PRP-HOM/SRBE/LR2I, Fontenay-aux-Roses, France
| | - Alexandra Sémont
- Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PRP-HOM/SRBE/LR2I, Fontenay-aux-Roses, France
| | - Noëlle Mathieu
- Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PRP-HOM/SRBE/LR2I, Fontenay-aux-Roses, France
| |
Collapse
|
20
|
Rebamipide ameliorates radiation-induced intestinal injury in a mouse model. Toxicol Appl Pharmacol 2017; 329:40-47. [PMID: 28526636 DOI: 10.1016/j.taap.2017.05.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/10/2017] [Accepted: 05/15/2017] [Indexed: 12/31/2022]
Abstract
Radiation-induced enteritis is a major side effect in cancer patients undergoing abdominopelvic radiotherapy. Radiation exposure produces an uncontrolled inflammatory cascade and epithelial cell loss leading to impaired epithelial barrier function. The goal of this study was to determine the effect of rebamipide on regeneration of the intestinal epithelia after radiation injury. The abdomens of C57BL/6 mice were exposed to 13Gy of irradiation (IR) and then the mice were treated with rebamipide. Upon IR, intestinal epithelia were destroyed structurally at the microscopic level and bacterial translocation was increased. The intestinal damage reached a maximum level on day 6 post-IR and intestinal regeneration occurred thereafter. We found that rebamipide significantly ameliorated radiation-induced intestinal injury. In mice treated with rebamipide after IR, intestinal barrier function recovered and expression of the tight junction components of the intestinal barrier were upregulated. Rebamipide administration reduced radiation-induced intestinal mucosal injury. The levels of proinflammatory cytokines and matrix metallopeptidase 9 (MMP9) were significantly reduced upon rebamipide administration. Intestinal cell proliferation and β-catenin expression also increased upon rebamipide administration. These data demonstrate that rebamipide reverses impairment of the intestinal barrier by increasing intestinal cell proliferation and attenuating the inflammatory response by inhibiting MMP9 and proinflammatory cytokine expression in a murine model of radiation-induced enteritis.
Collapse
|
21
|
Hyperoxia disrupts the intestinal barrier in newborn rats. Exp Mol Pathol 2016; 101:44-9. [DOI: 10.1016/j.yexmp.2016.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/23/2016] [Accepted: 06/03/2016] [Indexed: 01/09/2023]
|