1
|
Betz IR, Qaiyumi SJ, Goeritzer M, Thiele A, Brix S, Beyhoff N, Grune J, Klopfleisch R, Greulich F, Uhlenhaut NH, Kintscher U, Foryst-Ludwig A. Cardioprotective Effects of Palmitoleic Acid (C16:1n7) in a Mouse Model of Catecholamine-Induced Cardiac Damage Are Mediated by PPAR Activation. Int J Mol Sci 2021; 22:ijms222312695. [PMID: 34884498 PMCID: PMC8657733 DOI: 10.3390/ijms222312695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 01/25/2023] Open
Abstract
Palmitoleic acid (C16:1n7) has been identified as a regulator of physiological cardiac hypertrophy. In the present study, we aimed to investigate the molecular pathways involved in C16:1n7 responses in primary murine cardiomyocytes (PCM) and a mouse model of isoproterenol (ISO)-induced cardiac damage. PCMs were stimulated with C16:1n7 or a vehicle. Afterwards, RNA sequencing was performed using an Illumina HiSeq sequencer. Confirmatory analysis was performed in PCMs and HL-1 cardiomyocytes. For an in vivo study, 129 sv mice were orally treated with a vehicle or C16:1n7 for 22 days. After 5 days of pre-treatment, the mice were injected with ISO (25 mg/kg/d s. c.) for 4 consecutive days. Cardiac phenotyping was performed using echocardiography. In total, 129 genes were differentially expressed in PCMs stimulated with C16:1n7, including Angiopoietin-like factor 4 (Angptl4) and Pyruvate Dehydrogenase Kinase 4 (Pdk4). Both Angptl4 and Pdk4 are proxisome proliferator-activated receptor α/δ (PPARα/δ) target genes. Our in vivo results indicated cardioprotective and anti-fibrotic effects of C16:1n7 application in mice. This was associated with the C16:1n7-dependent regulation of the cardiac PPAR-specific signaling pathways. In conclusion, our experiments demonstrated that C16:1n7 might have protective effects on cardiac fibrosis and inflammation. Our study may help to develop future lipid-based therapies for catecholamine-induced cardiac damage.
Collapse
Affiliation(s)
- Iris Rosa Betz
- Center for Cardiovascular Research, Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (I.R.B.); (S.J.Q.); (M.G.); (A.T.); (S.B.); (N.B.); (J.G.); (U.K.)
- Berlin Institute of Health, Emergency Department Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Sarah Julia Qaiyumi
- Center for Cardiovascular Research, Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (I.R.B.); (S.J.Q.); (M.G.); (A.T.); (S.B.); (N.B.); (J.G.); (U.K.)
| | - Madeleine Goeritzer
- Center for Cardiovascular Research, Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (I.R.B.); (S.J.Q.); (M.G.); (A.T.); (S.B.); (N.B.); (J.G.); (U.K.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Arne Thiele
- Center for Cardiovascular Research, Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (I.R.B.); (S.J.Q.); (M.G.); (A.T.); (S.B.); (N.B.); (J.G.); (U.K.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Sarah Brix
- Center for Cardiovascular Research, Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (I.R.B.); (S.J.Q.); (M.G.); (A.T.); (S.B.); (N.B.); (J.G.); (U.K.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Niklas Beyhoff
- Center for Cardiovascular Research, Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (I.R.B.); (S.J.Q.); (M.G.); (A.T.); (S.B.); (N.B.); (J.G.); (U.K.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Jana Grune
- Center for Cardiovascular Research, Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (I.R.B.); (S.J.Q.); (M.G.); (A.T.); (S.B.); (N.B.); (J.G.); (U.K.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Robert Klopfleisch
- Department of Veterinary Pathology, College of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany;
| | - Franziska Greulich
- German Center for Environmental Health GmbH, Institute for Diabetes and Cancer (IDC), 85764 Munich, Germany; (F.G.); (N.H.U.)
- Metabolic Programming, School of Life Sciences Weihenstephan, Technische Universitaet Muenchen (TUM), 85354 Freising, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich, 13125 Berlin, Germany
| | - Nina Henriette Uhlenhaut
- German Center for Environmental Health GmbH, Institute for Diabetes and Cancer (IDC), 85764 Munich, Germany; (F.G.); (N.H.U.)
- Metabolic Programming, School of Life Sciences Weihenstephan, Technische Universitaet Muenchen (TUM), 85354 Freising, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich, 13125 Berlin, Germany
| | - Ulrich Kintscher
- Center for Cardiovascular Research, Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (I.R.B.); (S.J.Q.); (M.G.); (A.T.); (S.B.); (N.B.); (J.G.); (U.K.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Anna Foryst-Ludwig
- Center for Cardiovascular Research, Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (I.R.B.); (S.J.Q.); (M.G.); (A.T.); (S.B.); (N.B.); (J.G.); (U.K.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
- Correspondence:
| |
Collapse
|
2
|
Involvement of fatty acid synthase in right ventricle dysfunction in pulmonary hypertension. Exp Cell Res 2019; 383:111569. [DOI: 10.1016/j.yexcr.2019.111569] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 08/09/2019] [Accepted: 08/20/2019] [Indexed: 10/26/2022]
|
3
|
Alí A, Boutjdir M, Aromolaran AS. Cardiolipotoxicity, Inflammation, and Arrhythmias: Role for Interleukin-6 Molecular Mechanisms. Front Physiol 2019; 9:1866. [PMID: 30666212 PMCID: PMC6330352 DOI: 10.3389/fphys.2018.01866] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/11/2018] [Indexed: 12/12/2022] Open
Abstract
Fatty acid infiltration of the myocardium, acquired in metabolic disorders (obesity, type-2 diabetes, insulin resistance, and hyperglycemia) is critically associated with the development of lipotoxic cardiomyopathy. According to a recent Presidential Advisory from the American Heart Association published in 2017, the current average dietary intake of saturated free-fatty acid (SFFA) in the US is 11–12%, which is significantly above the recommended <10%. Increased levels of circulating SFFAs (or lipotoxicity) may represent an unappreciated link that underlies increased vulnerability to cardiac dysfunction. Thus, an important objective is to identify novel targets that will inform pharmacological and genetic interventions for cardiomyopathies acquired through excessive consumption of diets rich in SFFAs. However, the molecular mechanisms involved are poorly understood. The increasing epidemic of metabolic disorders strongly implies an undeniable and critical need to further investigate SFFA mechanisms. A rapidly emerging and promising target for modulation by lipotoxicity is cytokine secretion and activation of pro-inflammatory signaling pathways. This objective can be advanced through fundamental mechanisms of cardiac electrical remodeling. In this review, we discuss cardiac ion channel modulation by SFFAs. We further highlight the contribution of downstream signaling pathways involving toll-like receptors and pathological increases in pro-inflammatory cytokines. Our expectation is that if we understand pathological remodeling of major cardiac ion channels from a perspective of lipotoxicity and inflammation, we may be able to develop safer and more effective therapies that will be beneficial to patients.
Collapse
Affiliation(s)
- Alessandra Alí
- Cardiovascular Research Program, VA New York Harbor Healthcare System, Brooklyn, NY, United States.,Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Department of Pharmacology, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Mohamed Boutjdir
- Cardiovascular Research Program, VA New York Harbor Healthcare System, Brooklyn, NY, United States.,Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Department of Pharmacology, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Department of Medicine, New York University School of Medicine, New York, NY, United States
| | - Ademuyiwa S Aromolaran
- Cardiovascular Research Program, VA New York Harbor Healthcare System, Brooklyn, NY, United States.,Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Department of Pharmacology, State University of New York Downstate Medical Center, Brooklyn, NY, United States
| |
Collapse
|
4
|
Xu Y, Zhang Y, Ye J. IL-6: A Potential Role in Cardiac Metabolic Homeostasis. Int J Mol Sci 2018; 19:ijms19092474. [PMID: 30134607 PMCID: PMC6164544 DOI: 10.3390/ijms19092474] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 08/09/2018] [Accepted: 08/13/2018] [Indexed: 12/17/2022] Open
Abstract
Interleukin-6 (IL-6) is implicated in multiple biological functions including immunity, neural development, and haematopoiesis. Recently, mounting evidence indicates that IL-6 plays a key role in metabolism, especially lipid metabolic homeostasis. A working heart requires a high and constant energy input which is largely generated by fatty acid (FA) β-oxidation. Under pathological conditions, the precise balance between cardiac FA uptake and metabolism is perturbed so that excessive FA is accumulated, thereby predisposing to myocardial dysfunction (cardiac lipotoxicity). In this review, we summarize the current evidence that suggests the involvement of IL-6 in lipid metabolism. Cardiac metabolic features and consequences of myocardial lipotoxicity are also briefly analyzed. Finally, the roles of IL-6 in cardiac FA uptake (i.e., serum lipid profile and myocardial FA transporters) and FA metabolism (namely, β-oxidation, mitochondrial function, biogenesis, and FA de novo synthesis) are discussed. Overall, understanding how IL-6 transmits signals to affect lipid metabolism in the heart might allow for development of better clinical therapies for obesity-associated cardiac lipotoxicity.
Collapse
Affiliation(s)
- Yitao Xu
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London W120NN, UK.
| | - Yubin Zhang
- State Key laboratory of Natural Medicines, Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210006, China.
| | - Junmei Ye
- State Key laboratory of Natural Medicines, Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210006, China.
| |
Collapse
|
5
|
PPARβ/δ: Linking Metabolism to Regeneration. Int J Mol Sci 2018; 19:ijms19072013. [PMID: 29996502 PMCID: PMC6073704 DOI: 10.3390/ijms19072013] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 06/29/2018] [Accepted: 07/05/2018] [Indexed: 01/10/2023] Open
Abstract
In contrast to the general belief that regeneration is a rare event, mainly occurring in simple organisms, the ability of regeneration is widely distributed in the animal kingdom. Yet, the efficiency and extent of regeneration varies greatly. Humans can recover from blood loss as well as damage to tissues like bone and liver. Yet damage to the heart and brain cannot be reversed, resulting in scaring. Thus, there is a great interest in understanding the molecular mechanisms of naturally occurring regeneration and to apply this knowledge to repair human organs. During regeneration, injury-activated immune cells induce wound healing, extracellular matrix remodeling, migration, dedifferentiation and/or proliferation with subsequent differentiation of somatic or stem cells. An anti-inflammatory response stops the regenerative process, which ends with tissue remodeling to achieve the original functional state. Notably, many of these processes are associated with enhanced glycolysis. Therefore, peroxisome proliferator-activated receptor (PPAR) β/δ—which is known to be involved for example in lipid catabolism, glucose homeostasis, inflammation, survival, proliferation, differentiation, as well as mammalian regeneration of the skin, bone and liver—appears to be a promising target to promote mammalian regeneration. This review summarizes our current knowledge of PPARβ/δ in processes associated with wound healing and regeneration.
Collapse
|
6
|
Palmitate induces myocardial lipotoxic injury via the endoplasmic reticulum stress-mediated apoptosis pathway. Mol Med Rep 2017; 16:6934-6939. [DOI: 10.3892/mmr.2017.7404] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 07/13/2017] [Indexed: 11/05/2022] Open
|
7
|
Palmitate mediated diacylglycerol accumulation causes endoplasmic reticulum stress, Plin2 degradation, and cell death in H9C2 cardiomyoblasts. Exp Cell Res 2017; 354:85-94. [DOI: 10.1016/j.yexcr.2017.03.032] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 03/13/2017] [Accepted: 03/14/2017] [Indexed: 12/22/2022]
|
8
|
Liu J, Chen D, Liu X, Liu Z. Cyclosporine A attenuates cardiac dysfunction induced by sepsis via inhibiting calcineurin and activating AMPK signaling. Mol Med Rep 2017; 15:3739-3746. [PMID: 28393192 DOI: 10.3892/mmr.2017.6421] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 01/26/2017] [Indexed: 02/06/2023] Open
Abstract
The aim of the present study was to investigate whether cyclosporine A (CSA) improved cardiac dysfunction at an early stage of sepsis. Male Wistar rats were randomly divided into the following three groups: the sham‑operated control group, the cecal ligation puncture (CLP) procedure‑induced sepsis group and the CSA intervention group. Cecal ligation was performed to generate a sepsis model. At different time points (2, 6, 12, 24 and 72 h) following sepsis induction, blood pressure, cardiac function, and non‑esterified free fatty acid (NEFA) levels in the plasma and myocardia were measured, and the expression levels of components associated with the AMP‑activated protein kinase (AMPK)‑acetyl CoA carboxylase (ACC)‑carnitine palmitoyl transferase 1 (CPT1) signaling pathway were compared among the three groups. Sepsis induced a decrease in blood pressure and cardiac function at 24 h following sepsis induction in the CLP group, and CSA treatment ameliorated these pathophysiological alterations. In addition, rats in the CLP group exhibited significant increases in calcineurin activity and NEFA accumulation in the heart when compared with those in the sham group. These effects were attenuated by CSA treatment. Mechanistically, the activity of the AMPK‑ACC‑CPT1 pathway was enhanced by CSA treatment. The present study revealed that CSA treatment increases cardiac function at an early stage of sepsis in rats. This treatment partially suppresses calcineurin activity while activating the AMPK‑TCC‑CPT1 pathway.
Collapse
Affiliation(s)
- Jingmiao Liu
- Department of Emergency Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Da Chen
- Department of Emergency Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xiaowei Liu
- Department of Emergency Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zhi Liu
- Department of Emergency Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
9
|
Rodríguez-Calvo R, Chanda D, Oligschlaeger Y, Miglianico M, Coumans WA, Barroso E, Tajes M, Luiken JJ, Glatz JF, Vázquez-Carrera M, Neumann D. Small heterodimer partner (SHP) contributes to insulin resistance in cardiomyocytes. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:541-551. [PMID: 28214558 DOI: 10.1016/j.bbalip.2017.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 01/18/2017] [Accepted: 02/13/2017] [Indexed: 01/04/2023]
Abstract
Small heterodimer partner (SHP) is an atypical nuclear receptor expressed in heart that has been shown to inhibit the hypertrophic response. Here, we assessed the role of SHP in cardiac metabolism and inflammation. Mice fed a high-fat diet (HFD) displayed glucose intolerance accompanied by increased cardiac mRNA levels of Shp. In HL-1 cardiomyocytes, SHP overexpression inhibited both basal and insulin-stimulated glucose uptake and impaired the insulin signalling pathway (evidenced by reduced AKT and AS160 phosphorylation), similar to insulin resistant cells generated by high palmitate/high insulin treatment (HP/HI; 500μM/100nM). In addition, SHP overexpression increased Socs3 mRNA and reduced IRS-1 protein levels. SHP overexpression also induced Cd36 expression (~6.2 fold; p<0.001) linking to the observed intramyocellular lipid accumulation. SHP overexpressing cells further showed altered expression of genes involved in lipid metabolism, i.e., Acaca, Acadvl or Ucp3, augmented NF-κB DNA-binding activity and induced transcripts of inflammatory genes, i.e., Il6 and Tnf mRNA (~4-fold induction, p<0.01). Alterations in metabolism and inflammation found in SHP overexpressing cells were associated with changes in the mRNA levels of Ppara (79% reduction, p<0.001) and Pparg (~58-fold induction, p<0.001). Finally, co-immunoprecipitation studies showed that SHP overexpression strongly reduced the physical interaction between PPARα and the p65 subunit of NF-κB, suggesting that dissociation of these two proteins is one of the mechanisms by which SHP initiates the inflammatory response in cardiac cells. Overall, our results suggest that SHP upregulation upon high-fat feeding leads to lipid accumulation, insulin resistance and inflammation in cardiomyocytes.
Collapse
Affiliation(s)
- Ricardo Rodríguez-Calvo
- Department of Molecular Genetics, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, Netherlands.
| | - Dipanjan Chanda
- Department of Molecular Genetics, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, Netherlands
| | - Yvonne Oligschlaeger
- Department of Molecular Genetics, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, Netherlands
| | - Marie Miglianico
- Department of Molecular Genetics, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, Netherlands
| | - Will A Coumans
- Department of Molecular Genetics, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, Netherlands
| | - Emma Barroso
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Institut de Recerca Pediatrica-Hospital Sant Joan de Déu, and Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM)-Instituto de Salud Carlos III, Faculty of Pharmacy, Diagonal 643, University of Barcelona, E-08028 Barcelona, Spain
| | - Marta Tajes
- Heart Diseases Biomedical Research Group, Inflammatory and Cardiovascular Disorders Program, Hospital del Mar Medical Research Institute (IMIM), Parc de Salut Mar, Dr. Aiguader 88, E-08003, Barcelona, Spain
| | - Joost Jfp Luiken
- Department of Molecular Genetics, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, Netherlands
| | - Jan Fc Glatz
- Department of Molecular Genetics, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, Netherlands
| | - Manuel Vázquez-Carrera
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Institut de Recerca Pediatrica-Hospital Sant Joan de Déu, and Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM)-Instituto de Salud Carlos III, Faculty of Pharmacy, Diagonal 643, University of Barcelona, E-08028 Barcelona, Spain
| | - Dietbert Neumann
- Department of Molecular Genetics, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, Netherlands.
| |
Collapse
|
10
|
Upregulation of SIRT1-AMPK by thymoquinone in hepatic stellate cells ameliorates liver injury. Toxicol Lett 2016; 262:80-91. [DOI: 10.1016/j.toxlet.2016.09.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/21/2016] [Accepted: 09/24/2016] [Indexed: 12/19/2022]
|
11
|
Bonda TA, Szynaka B, Sokołowska M, Dziemidowicz M, Waszkiewicz E, Winnicka MM, Bernaczyk P, Wawrusiewicz-Kurylonek N, Kamiński KA. Interleukin 6 modulates PPARα and PGC-1α and is involved in high-fat diet induced cardiac lipotoxicity in mouse. Int J Cardiol 2016; 219:1-8. [DOI: 10.1016/j.ijcard.2016.05.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/12/2016] [Indexed: 12/14/2022]
|
12
|
Palomer X, Barroso E, Zarei M, Botteri G, Vázquez-Carrera M. PPARβ/δ and lipid metabolism in the heart. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1569-78. [PMID: 26825692 DOI: 10.1016/j.bbalip.2016.01.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/23/2015] [Accepted: 01/22/2016] [Indexed: 12/13/2022]
Abstract
Cardiac lipid metabolism is the focus of attention due to its involvement in the development of cardiac disorders. Both a reduction and an increase in fatty acid utilization make the heart more prone to the development of lipotoxic cardiac dysfunction. The ligand-activated transcription factor peroxisome proliferator-activated receptor (PPAR)β/δ modulates different aspects of cardiac fatty acid metabolism, and targeting this nuclear receptor can improve heart diseases caused by altered fatty acid metabolism. In addition, PPARβ/δ regulates glucose metabolism, the cardiac levels of endogenous antioxidants, mitochondrial biogenesis, cardiomyocyte apoptosis, the insulin signaling pathway and lipid-induced myocardial inflammatory responses. As a result, PPARβ/δ ligands can improve cardiac function and ameliorate the pathological progression of cardiac hypertrophy, heart failure, cardiac oxidative damage, ischemia-reperfusion injury, lipotoxic cardiac dysfunction and lipid-induced cardiac inflammation. Most of these findings have been observed in preclinical studies and it remains to be established to what extent these intriguing observations can be translated into clinical practice. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.
Collapse
Affiliation(s)
- Xavier Palomer
- Pharmacology Unit, Department of Pharmacology and Therapeutic Chemistry, Institut de Biomedicina de la UB (IBUB), Faculty of Pharmacy, University of Barcelona, Barcelona, Spain; Institut de Recerca Pediàtrica, Hospital Sant Joan de Déu, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Barcelona, Spain
| | - Emma Barroso
- Pharmacology Unit, Department of Pharmacology and Therapeutic Chemistry, Institut de Biomedicina de la UB (IBUB), Faculty of Pharmacy, University of Barcelona, Barcelona, Spain; Institut de Recerca Pediàtrica, Hospital Sant Joan de Déu, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Barcelona, Spain
| | - Mohammad Zarei
- Pharmacology Unit, Department of Pharmacology and Therapeutic Chemistry, Institut de Biomedicina de la UB (IBUB), Faculty of Pharmacy, University of Barcelona, Barcelona, Spain; Institut de Recerca Pediàtrica, Hospital Sant Joan de Déu, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Barcelona, Spain
| | - Gaia Botteri
- Pharmacology Unit, Department of Pharmacology and Therapeutic Chemistry, Institut de Biomedicina de la UB (IBUB), Faculty of Pharmacy, University of Barcelona, Barcelona, Spain; Institut de Recerca Pediàtrica, Hospital Sant Joan de Déu, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Barcelona, Spain
| | - Manuel Vázquez-Carrera
- Pharmacology Unit, Department of Pharmacology and Therapeutic Chemistry, Institut de Biomedicina de la UB (IBUB), Faculty of Pharmacy, University of Barcelona, Barcelona, Spain; Institut de Recerca Pediàtrica, Hospital Sant Joan de Déu, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Barcelona, Spain.
| |
Collapse
|
13
|
PPARs: Protectors or Opponents of Myocardial Function? PPAR Res 2015; 2015:835985. [PMID: 26713088 PMCID: PMC4680114 DOI: 10.1155/2015/835985] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/05/2015] [Accepted: 11/08/2015] [Indexed: 12/15/2022] Open
Abstract
Over 5 million people in the United States suffer from the complications of heart failure (HF), which is a rapidly expanding health complication. Disorders that contribute to HF include ischemic cardiac disease, cardiomyopathies, and hypertension. Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor family. There are three PPAR isoforms: PPARα, PPARγ, and PPARδ. They can be activated by endogenous ligands, such as fatty acids, as well as by pharmacologic agents. Activators of PPARs are used for treating several metabolic complications, such as diabetes and hyperlipidemia that are directly or indirectly associated with HF. However, some of these drugs have adverse effects that compromise cardiac function. This review article aims to summarize the current basic and clinical research findings of the beneficial or detrimental effects of PPAR biology on myocardial function.
Collapse
|
14
|
AICAR Protects against High Palmitate/High Insulin-Induced Intramyocellular Lipid Accumulation and Insulin Resistance in HL-1 Cardiac Cells by Inducing PPAR-Target Gene Expression. PPAR Res 2015; 2015:785783. [PMID: 26649034 PMCID: PMC4663352 DOI: 10.1155/2015/785783] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 01/17/2023] Open
Abstract
Here we studied the impact of 5-aminoimidazole-4-carboxamide riboside (AICAR), a well-known AMPK activator, on cardiac metabolic adaptation. AMPK activation by AICAR was confirmed by increased phospho-Thr(172)-AMPK and phospho-Ser(79)-ACC protein levels in HL-1 cardiomyocytes. Then, cells were exposed to AICAR stimulation for 24 h in the presence or absence of the AMPK inhibitor Compound C, and the mRNA levels of the three PPARs were analyzed by real-time RT-PCR. Treatment with AICAR induced gene expression of all three PPARs, but only the Ppara and Pparg regulation were dependent on AMPK. Next, we exposed HL-1 cells to high palmitate/high insulin (HP/HI) conditions either in presence or in absence of AICAR, and we evaluated the expression of selected PPAR-targets genes. HP/HI induced insulin resistance and lipid storage was accompanied by increased Cd36, Acot1, and Ucp3 mRNA levels. AICAR treatment induced the expression of Acadvl and Glut4, which correlated to prevention of the HP/HI-induced intramyocellular lipid build-up, and attenuation of the HP/HI-induced impairment of glucose uptake. These data support the hypothesis that AICAR contributes to cardiac metabolic adaptation via regulation of transcriptional mechanisms.
Collapse
|
15
|
Impaired fatty acid oxidation as a cause for lipotoxicity in cardiomyocytes. Biochem Biophys Res Commun 2015; 468:73-8. [PMID: 26546819 DOI: 10.1016/j.bbrc.2015.10.162] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 10/30/2015] [Indexed: 12/15/2022]
Abstract
A major cause for diabetic cardiomyopathy is excess lipid accumulation. To elucidate mechanisms of lipotoxicity mediated diabetic heart disease we need to further our understanding of how lipid metabolism is altered in the diabetic heart. Here we investigated the role of lipid clearance by oxidation as a regulator of lipid-mediated toxicity (lipotoxicity). We evaluated the effect of pre-treating rat neonatal cardiomyocytes (NCMs) with either oleate (mono-unsaturated fatty acid) or palmitate (saturated fatty acid) on fatty acid oxidation (FAO) by measuring (14)C-CO2 production. We evaluated carnitine palmitoyltransferase (Cpt1b) expression by western blotting and mitochondrial membrane potential by quantitative and qualitative fluorescence analyses using the JC-1 dye. We inhibited the Cpt1b pharmacologically using etomoxir and genetically by knocking down its expression using LentiVector mediated transduction of siRNAs targeting the Cpt1b gene. We found that palmitate had a slower clearance rate from NCMs than oleate, and this was associated with a significant decrease in FAO. This impairment in FAO was not the result of either loss of Cpt1b protein or mitochondrial integrity. Enhancing FAO with either oleate or carnitine was associated with a significant attenuation of palmitate mediated lipotoxicity. In contrast impairing FAO in oleate treated NCMs caused lipotoxicity. Here we demonstrate that a major difference between non-toxic unsaturated fatty acids and toxic saturated fatty acids is there ability to stimulate or inhibit fatty acid oxidation, respectively. This has important implications for diabetic cardiomyopathy since diabetic hearts consistently exhibit elevated lipid accumulation.
Collapse
|
16
|
Spillmann F, Trimpert C, Peng J, Eckerle LG, Staudt A, Warstat K, Felix SB, Pieske B, Tschöpe C, Van Linthout S. High-density lipoproteins reduce palmitate-induced cardiomyocyte apoptosis in an AMPK-dependent manner. Biochem Biophys Res Commun 2015; 466:272-7. [PMID: 26362182 DOI: 10.1016/j.bbrc.2015.09.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 09/05/2015] [Indexed: 12/18/2022]
Abstract
Palmitate has been implicated in the induction of cardiomyocyte apoptosis via reducing the activity of 5' AMP-activated protein kinase (AMPK). We sought to evaluate whether high-density lipoproteins (HDLs), known for their cardioprotective features and their potential to increase AMPK activity, can reduce palmitate-induced cardiomyocyte apoptosis and whether this effect is AMPK-dependent. Therefore, cardiomyocytes were isolated from adult Wistar rat hearts via perfusion on a Langendorff-apparatus and cultured in free fatty acid-free BSA control medium or 0.5 mM palmitate medium in the presence or absence of HDL (5 μg protein/ml) with or without 0.1 μM of the AMPK-inhibitor compound S for the analysis of Annexin V/propidium, genes involved in apoptosis and fatty acid oxidation, and cardiomyocyte contractility. We found that HDLs decreased palmitate-induced cardiomyocyte apoptosis as indicated by a reduction in Annexin V-positive cardiomyocytes and an increase in Bcl-2 versus Bax ratio. Concomitantly, HDLs increased the palmitate-impaired expression of genes involved in fatty acid oxidation. Furthermore, HDLs improved the palmitate-impaired cardiomyocyte contractility. All effects were mediated in an AMPK-dependent manner, concluding that HDLs reduce palmitate-induced cardiomyocyte apoptosis, resulting in improved cardiomyocyte contractility through a mechanism involving AMPK.
Collapse
Affiliation(s)
- Frank Spillmann
- Charité-University-Medicine Berlin, Campus Virchow Klinikum, Department of Cardiology, Berlin, Germany
| | - Christiane Trimpert
- Department of Internal Medicine I, University Medicine Greifswald, Greifswald, Germany
| | - Jun Peng
- Charité-University-Medicine Berlin, Campus Virchow Klinikum, Department of Cardiology, Berlin, Germany
| | - Lars G Eckerle
- Department of Internal Medicine I, University Medicine Greifswald, Greifswald, Germany
| | - Alexander Staudt
- Department of Internal Medicine I, University Medicine Greifswald, Greifswald, Germany
| | - Katrin Warstat
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany
| | - Stephan B Felix
- Department of Internal Medicine I, University Medicine Greifswald, Greifswald, Germany; Deutsches Zentrum für Herz Kreislaufforschung (DZHK), Standort Greifswald, Germany
| | - Burkert Pieske
- Charité-University-Medicine Berlin, Campus Virchow Klinikum, Department of Cardiology, Berlin, Germany; Deutsches Zentrum für Herz Kreislaufforschung (DZHK), Standort Berlin/Charité, Germany
| | - Carsten Tschöpe
- Charité-University-Medicine Berlin, Campus Virchow Klinikum, Department of Cardiology, Berlin, Germany; Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany; Deutsches Zentrum für Herz Kreislaufforschung (DZHK), Standort Berlin/Charité, Germany
| | - Sophie Van Linthout
- Charité-University-Medicine Berlin, Campus Virchow Klinikum, Department of Cardiology, Berlin, Germany; Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany; Deutsches Zentrum für Herz Kreislaufforschung (DZHK), Standort Berlin/Charité, Germany.
| |
Collapse
|
17
|
Hu WS, Ting WJ, Chiang WD, Pai P, Yeh YL, Chang CH, Lin WT, Huang CY. The Heart Protection Effect of Alcalase Potato Protein Hydrolysate Is through IGF1R-PI3K-Akt Compensatory Reactivation in Aging Rats on High Fat Diets. Int J Mol Sci 2015; 16:10158-72. [PMID: 25950762 PMCID: PMC4463638 DOI: 10.3390/ijms160510158] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/21/2015] [Accepted: 04/23/2015] [Indexed: 12/27/2022] Open
Abstract
The prevalence of obesity is high in older adults. Alcalase potato protein hydrolysate (APPH), a nutraceutical food, might have greater benefits and be more economical than hypolipidemic drugs. In this study, serum lipid profiles and heart protective effects were evaluated in high fat diet (HFD) induced hyperlipidemia in aging rats treated with APPH (15, 45 and 75 mg/kg/day) and probucol (500 mg/kg/day). APPH treatments reduced serum triacylglycerol (TG), total cholesterol (TC), and low density lipoprotein (LDL) levels to the normal levels expressed in the control group. Additionally, the IGF1R-PI3K-Akt survival pathway was reactivated, and Fas-FADD (Fas-associated death domain) induced apoptosis was inhibited by APPH treatments (15 and 45 mg/kg/day) in HFD aging rat hearts. APPH (75 mg/kg/day) rather than probucol (500 mg/kg/day) treatment could reduce serum lipids without affecting HDL expression. The heart protective effect of APPH in aging rats with hyperlipidemia was through lowering serum lipids and enhancing the activation of the compensatory IGF1R-PI3K-Akt survival pathway.
Collapse
Affiliation(s)
- Wei-Syun Hu
- PhD Program for Aging, China Medical University, Taichung 40402, Taiwan.
| | - Wei-Jen Ting
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan.
| | - Wen-Dee Chiang
- Department of Food Science, College of Agriculture, Tunghai University, Taichung 40704, Taiwan.
| | - Peiying Pai
- Division of Cardiology, China Medical University Hospital, Taichung 40402, Taiwan.
| | - Yu-Lan Yeh
- Department of Pathology, Changhua Christian Hospital, Changhua 50006, Taiwan.
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 35664, Taiwan.
| | - Chung-Ho Chang
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan Town 35053, Taiwan.
| | - Wan-Teng Lin
- Department of Hospitality Management, College of Agriculture, Tunghai University, Taichung 40704, Taiwan.
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan.
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung 40402, Taiwan.
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan.
| |
Collapse
|