1
|
Kumar P, Kumar R, Kumar P, Kushwaha S, Kumari S, Yadav N, Srikrishna S. LC-Orbitrap HRMS-Based Proteomics Reveals Novel Mitochondrial Dynamics Regulatory Proteins Associated with RasV12-Induced Glioblastoma (GBM) of Drosophila. J Proteome Res 2024; 23:5030-5047. [PMID: 39413821 DOI: 10.1021/acs.jproteome.4c00502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Glioblastoma multiforme (GBM) is the most prevalent and aggressive brain tumor found in adult humans with a poor prognosis and average survival of 14-15 months. In order to have a comprehensive understanding of proteome and identify novel therapeutic targets, this study focused mainly on the differentially abundant proteins (DAPs) of RasV12-induced GBM. RasV12 is a constitutively active Ras mutant form essential for tumor progression by continuously activating signaling pathways leading to uncontrolled tumor growth. This study used a transgenic Drosophila model with RasV12 overexpression using the repo-GAL4 driver line, specifically in glial cells, to study GBM. The high-resolution mass spectrometry (HRMS)-based proteomic analysis of the GBM larval central nervous system identified three novel DAPs specific to mitochondria. These DAPs, probable maleylacetoacetate isomerase 2 (Q9VHD2), bifunctional methylene tetrahydrofolate dehydrogenase (Q04448), and glutamine synthetase1 (P20477), identified through HRMS were further validated by qRT-PCR. The protein-protein interaction analysis revealed interactions between RasV12 and DAPs, with functional links to mitochondrial dynamics regulators such as Drp1, Marf, Parkin, and HtrA2. Notably, altered expressions of Q9VHD2, P20477, and Q04448 were observed during GBM progression, which offers new insights into the involvement of mitochondrial dynamic regulators in RasV12-induced GBM pathophysiology.
Collapse
Affiliation(s)
- Pradeep Kumar
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Rohit Kumar
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Prabhat Kumar
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Sunaina Kushwaha
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Sandhya Kumari
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Neha Yadav
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Saripella Srikrishna
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
2
|
Houlihan KL, Keoseyan PP, Juba AN, Margaryan T, Voss ME, Babaoghli AM, Norris JM, Adrian GJ, Tovmasyan A, Buhlman LM. Folic Acid Improves Parkin-Null Drosophila Phenotypes and Transiently Reduces Vulnerable Dopaminergic Neuron Mitochondrial Hydrogen Peroxide Levels and Glutathione Redox Equilibrium. Antioxidants (Basel) 2022; 11:antiox11102068. [PMID: 36290790 PMCID: PMC9598960 DOI: 10.3390/antiox11102068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Loss-of-function parkin mutations cause oxidative stress and degeneration of dopaminergic neurons in the substantia nigra. Several consequences of parkin mutations have been described; to what degree they contribute to selective neurodegeneration remains unclear. Specific factors initiating excessive reactive oxygen species production, inefficient antioxidant capacity, or a combination are elusive. Identifying key oxidative stress contributors could inform targeted therapy. The absence of Drosophila parkin causes selective degeneration of a dopaminergic neuron cluster that is functionally homologous to the substantia nigra. By comparing observations in these to similar non-degenerating neurons, we may begin to understand mechanisms by which parkin loss of function causes selective degeneration. Using mitochondrially targeted redox-sensitive GFP2 fused with redox enzymes, we observed a sustained increased mitochondrial hydrogen peroxide levels in vulnerable dopaminergic neurons of parkin-null flies. Only transient increases in hydrogen peroxide were observed in similar but non-degenerating neurons. Glutathione redox equilibrium is preferentially dysregulated in vulnerable neuron mitochondria. To shed light on whether dysregulated glutathione redox equilibrium primarily contributes to oxidative stress, we supplemented food with folic acid, which can increase cysteine and glutathione levels. Folic acid improved survival, climbing, and transiently decreased hydrogen peroxide and glutathione redox equilibrium but did not mitigate whole-brain oxidative stress.
Collapse
Affiliation(s)
- Katherine L. Houlihan
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
| | - Petros P. Keoseyan
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Amber N. Juba
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
| | - Tigran Margaryan
- Department of Translational Neuroscience, Ivy Brain Tumor Center, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Max E. Voss
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA
| | | | - Justin M. Norris
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Greg J. Adrian
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Artak Tovmasyan
- Department of Translational Neuroscience, Ivy Brain Tumor Center, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Lori M. Buhlman
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
- Correspondence: ; Tel.: +1-623-752-3668
| |
Collapse
|
3
|
O'Hanlon ME, Tweedy C, Scialo F, Bass R, Sanz A, Smulders-Srinivasan TK. Mitochondrial electron transport chain defects modify Parkinson's disease phenotypes in a Drosophila model. Neurobiol Dis 2022; 171:105803. [PMID: 35764292 DOI: 10.1016/j.nbd.2022.105803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Mitochondrial defects have been implicated in Parkinson's disease (PD) since complex I poisons were found to cause accelerated parkinsonism in young people in the early 1980s. More evidence of mitochondrial involvement arose when many of the genes whose mutations caused inherited PD were discovered to be subcellularly localized to mitochondria or have mitochondrial functions. However, the details of how mitochondrial dysfunction might impact or cause PD remain unclear. The aim of our study was to better understand mitochondrial dysfunction in PD by evaluating mitochondrial respiratory complex mutations in a Drosophila melanogaster (fruit fly) model of PD. METHODS We have conducted a targeted heterozygous enhancer/suppressor screen using Drosophila mutations within mitochondrial electron transport chain (ETC) genes against a null PD mutation in parkin. The interactions were assessed by climbing assays at 2-5 days as an indicator of motor function. A strong enhancer mutation in COX5A was examined further for L-dopa rescue, oxygen consumption, mitochondrial content, and reactive oxygen species. A later timepoint of 16-20 days was also investigated for both COX5A and a suppressor mutation in cyclope. Generalized Linear Models and similar statistical tests were used to verify significance of the findings. RESULTS We have discovered that mutations in individual genes for subunits within the mitochondrial respiratory complexes have interactions with parkin, while others do not, irrespective of complex. One intriguing mutation in a complex IV subunit (cyclope) shows a suppressor rescue effect at early time points, improving the gross motor defects caused by the PD mutation, providing a strong candidate for drug discovery. Most mutations, however, show varying degrees of enhancement or slight suppression of the PD phenotypes. Thus, individual mitochondrial mutations within different oxidative phosphorylation complexes have different interactions with PD with regard to degree and direction. Upon further investigation of the strongest enhancer (COX5A), the mechanism by which these interactions occur initially does not appear to be based on defects in ATP production, but rather may be related to increased levels of reactive oxygen species. CONCLUSIONS Our work highlights some key subunits potentially involved in mechanisms underlying PD pathogenesis, implicating ETC complexes other than complex I in PD.
Collapse
Affiliation(s)
- Maria E O'Hanlon
- School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BX, United Kingdom; National Horizons Centre, Teesside University, Darlington DL1 1HG, United Kingdom. M.O'
| | - Clare Tweedy
- Biosciences Institute, Newcastle University, Medical School, Framlington Place, Newcastle-upon-Tyne NE2 4HH, UK.
| | - Filippo Scialo
- Institute for Cell and Molecular Biosciences, Newcastle University Institute for Ageing, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, United Kingdom.
| | - Rosemary Bass
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK.
| | - Alberto Sanz
- Institute for Cell and Molecular Biosciences, Newcastle University Institute for Ageing, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, United Kingdom.
| | - Tora K Smulders-Srinivasan
- School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BX, United Kingdom; National Horizons Centre, Teesside University, Darlington DL1 1HG, United Kingdom; Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK.
| |
Collapse
|
4
|
Chauhan BS, Kumar R, Kumar P, Kumar P, Sinha S, Mishra SK, Kumar P, Tiwari KN, Critchley AT, Prithiviraj B, Srikrishna S. Neuroprotective potential of flavonoid rich Ascophyllum nodosum (FRAN) fraction from the brown seaweed on an Aβ 42 induced Alzheimer's model of Drosophila. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 95:153872. [PMID: 34906893 DOI: 10.1016/j.phymed.2021.153872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND In Alzheimer Disease (AD) pathogenesis, aggregation of Aβ42 fibrils strongly correlates with memory dysfunction and neurotoxicity. Till date, no promising cures for AD. Report shows that flavonoids contributed anti-oxidant, anti-cancer and neuroprotection activity by regulating the mitochondrial machinery. Here, we first report the identification of flavonoids from Ascophyllum nodosum as having the ability to dissolve Aβ42 fibrils in an AD model of Drosophila. FRAN could be superior anti-AD agents for neuroprotection, their underlying mechanism and how they collectively halted amyloidogenesis is currently being investigated. PURPOSE This study aimed to investigate the neuroprotective role of FRAN in the Aβ42 expressing AD model of Drosophila. METHODS Drosophila stocks: OregonR+, ey-GAL4/CyO, elavc155-GAL4, UAS-mitoGFP, UAS-mcherry.mito.OMM, UAS-Aβ42/CyO were used, cultured at 28±1 °C in a BOD incubator. Ascophyllum extract rich in flavonoids as revealed by LC-MS study and employed against the AD flies. The validation of Aβ42 expression was done by immunostaining and q-RT PCR. The eye roughness of AD flies was scored in a dose-dependent manner. Further, In vivo and in silico studies of FRAN extract was executed against Aβ42 induced neurotoxicity. RESULTS In order to determine the most effective lethal dose of FRAN extract concentration 1, 2, 5, 10 mg/ml were screened using OregonR+flies. Extract 1 and 2 mg/ml did not show any lethality. Hence, extract 2 mg/ml was employed on AD flies and a ≥ 50% rescue in the eye phenotype was observed using SEM images. This dose had a strong effect on cell apoptosis, viability, longevity, mitochondrial dysfunction and oxidative stress by regulating mitochondrial dynamic markers in comparable to control. Extract also scavenging free radicals in order to maintain in situ cellular ROS and prevent Aβ42-induced neurotoxicity in vivo and in silico. Hence, we suggest its great potential as a future therapeutic agent for AD treatment. CONCLUSION In conclusion, FRAN extract rich in flavonoids as having largest neuroprotective activity against Aβ42 aggregation in eye tissue of Drosophila. Extract shows strong effect against Aβ42-induced neurotoxicity by altering the various cellular and molecular events. So, it could be considered as strong anti-AD agents for neuroprotection.
Collapse
Affiliation(s)
- Brijesh Singh Chauhan
- Cell and Neurobiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Rohit Kumar
- Cell and Neurobiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Pradeep Kumar
- Cell and Neurobiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Prabhat Kumar
- Cell and Neurobiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Saket Sinha
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Sunil Kumar Mishra
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Pradeep Kumar
- Department of Botany, MMV, Banaras Hindu University, Varanasi 221005, India
| | | | - Alan T Critchley
- Verschuren Centre for Sustainability in Energy and the Environment, Cape Breton University, Sydney, Nova Scotia, B1P 6L2 Canada
| | - Balakrishnan Prithiviraj
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, B2N 5E3 Canada
| | - Saripella Srikrishna
- Cell and Neurobiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
5
|
Ganesan S, Parvathi VD. Deconstructing the molecular genetics behind the PINK1/Parkin axis in Parkinson’s disease using Drosophila melanogaster as a model organism. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021. [DOI: 10.1186/s43042-021-00208-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Abstract
Background
Parkinson’s disease (PD) is a multifactorial neurodegenerative disorder marked by the death of nigrostriatal dopaminergic neurons in response to the compounding effects of oxidative stress, mitochondrial dysfunction and protein aggregation. Transgenic Drosophila models have been used extensively to decipher the underlying genetic interactions that exacerbate neural health in PD. Autosomal recessive forms of the disease have been linked to mutations in the serine/threonine kinase PINK1(PTEN-Induced Putative Kinase 1) and E3 ligase Parkin, which function in an axis that is conserved in flies. This review aims to probe the current understanding of PD pathogenesis via the PINK1/Parkin axis while underscoring the importance of several molecular and pharmacologic rescues brought to light through studies in Drosophila.
Main body
Mutations in PINK1 and Parkin have been shown to affect the axonal transport of mitochondria within dopaminergic neurons and perturb the balance between mitochondrial fusion/fission resulting in abnormal mitochondrial morphology. As per studies in flies, ectopic expression of Fwd kinase and Atg-1 to promote fission and mitophagy while suppressing fusion via MUL1 E3 ligase may aid to halt mitochondrial aggregation and prolong the survival of dopaminergic neurons. Furthermore, upregulation of Hsp70/Hsp90 chaperone systems (Trap1, CHIP) to target misfolded mitochondrial respiratory complexes may help to preserve their bioenergetic capacity. Accumulation of reactive oxygen species as a consequence of respiratory complex dysfunction or antioxidant enzyme deficiency further escalates neural death by inducing apoptosis, lipid peroxidation and DNA damage. Fly studies have reported the induction of canonical Wnt signalling to enhance the activity of transcriptional co-activators (PGC1α, FOXO) which induce the expression of antioxidant enzymes. Enhancing the clearance of free radicals via uncoupling proteins (UCP4) has also been reported to ameliorate oxidative stress-induced cell death in PINK1/Parkin mutants.
Conclusion
While these novel mechanisms require validation through mammalian studies, they offer several explanations for the factors propagating dopaminergic death as well as promising insights into the therapeutic importance of transgenic fly models in PD.
Collapse
|
6
|
Duque-Díaz E, Coveñas R. Mapping of folic acid in the children brainstem. Anat Cell Biol 2021; 54:340-349. [PMID: 33967031 PMCID: PMC8493014 DOI: 10.5115/acb.21.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 11/27/2022] Open
Abstract
Using highly specific antisera, the neuroanatomical distribution of folic acid (FA) and retinoic acid (RA) has been studied for the first time in the children brainstem. Neither immunoreactive structures containing RA nor immunoreactive fibers containing FA were found. FA-immunoreactive perikarya (fusiform, small/medium in size, one short dendrite) were only found in the pons in three regions: central gray, reticular formation, and locus coeruleus. The number of cell bodies decreased with age. In the first case studied (2 years), a moderate density of cell bodies was observed in the central gray and reticular formation, whereas a low density was found in the locus coeruleus. In the second case (6 years), a low density of these perikarya was observed in the central gray, reticular formation, and locus coeruleus. In the third case (7 years), a low density of FA-immunoreactive cell bodies was found in the central gray and reticular formation, whereas in the locus coeruleus no immunoreactive cell bodies were observed. The distribution of FA in the central nervous system of humans and monkeys is different and, in addition, in these species the vitamin was located in different parts of the nerve cells. The restricted distribution of FA suggests that the vitamin is involved in specific physiological mechanisms.
Collapse
Affiliation(s)
- Ewing Duque-Díaz
- Laboratory of Neurosciences, School of Medicine, Universidad de Santander, Bucaramanga, Colombia
| | - Rafael Coveñas
- Institute of Neurosciences of Castilla y León (INCYL), Laboratory of Neuroanatomy of the Peptidergic Systems, University of Salamanca, Salamanca, Spain.,Grupo GIR BMD (Bases Moleculares del Desarrollo), University of Salamanca, Salamanca, Spain
| |
Collapse
|
7
|
Sarkar S, Murphy MA, Dammer EB, Olsen AL, Rangaraju S, Fraenkel E, Feany MB. Comparative proteomic analysis highlights metabolic dysfunction in α-synucleinopathy. NPJ PARKINSONS DISEASE 2020; 6:40. [PMID: 33311497 PMCID: PMC7732845 DOI: 10.1038/s41531-020-00143-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/12/2020] [Indexed: 12/15/2022]
Abstract
The synaptic protein α-synuclein is linked through genetics and neuropathology to the pathogenesis of Parkinson’s disease and related disorders. However, the mechanisms by which α-synuclein influences disease onset and progression are incompletely understood. To identify pathogenic pathways and therapeutic targets we performed proteomic analysis in a highly penetrant new Drosophila model of α-synucleinopathy. We identified 476 significantly upregulated and 563 significantly downregulated proteins in heads from α-synucleinopathy model flies compared to controls. We then used multiple complementary analyses to identify and prioritize genes and pathways within the large set of differentially expressed proteins for functional studies. We performed Gene Ontology enrichment analysis, integrated our proteomic changes with human Parkinson’s disease genetic studies, and compared the α-synucleinopathy proteome with that of tauopathy model flies, which are relevant to Alzheimer’s disease and related disorders. These approaches identified GTP cyclohydrolase (GCH1) and folate metabolism as candidate mediators of α-synuclein neurotoxicity. In functional validation studies, we found that the knockdown of Drosophila Gch1 enhanced locomotor deficits in α-synuclein transgenic flies, while folate supplementation protected from α-synuclein toxicity. Our integrative analysis suggested that mitochondrial dysfunction was a common downstream mediator of neurodegeneration. Accordingly, Gch1 knockdown enhanced metabolic dysfunction in α-synuclein transgenic fly brains while folate supplementation partially normalized brain bioenergetics. Here we outline and implement an integrative approach to identify and validate potential therapeutic pathways using comparative proteomics and genetics and capitalizing on the facile genetic and pharmacological tools available in Drosophila.
Collapse
Affiliation(s)
- Souvarish Sarkar
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael A Murphy
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Eric B Dammer
- Department of Neurology, Emory University, Atlanta, GA, USA
| | - Abby L Olsen
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Ernest Fraenkel
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mel B Feany
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Fernández-Cruz I, Sánchez-Díaz I, Narváez-Padilla V, Reynaud E. Rpt2 proteasome subunit reduction causes Parkinson's disease like symptoms in Drosophila. IBRO Rep 2020; 9:65-77. [PMID: 32715147 PMCID: PMC7369354 DOI: 10.1016/j.ibror.2020.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 07/01/2020] [Indexed: 01/15/2023] Open
Abstract
The dysfunction of the proteasome-ubiquitin system is commonly reported in several neurodegenerative diseases. Post mortem samples of brains of patients with Parkinson´s disease present cytoplasmic inclusions that are rich in proteins such as ubiquitin, Tau, and α-synuclein. In Parkinson´s disease, a specific reduction of some of the proteasome subunits has also been reported. However, the specific role of the different proteasome subunits in dopaminergic neuron degeneration has not been thoroughly explored. In this work, we used the Gal4/UAS system to test fourteen Drosophila melanogaster RNAi lines from the Bloomington Drosophila Stock Center. Each of these lines targets a different proteasome subunit. To identify the strains that were able to induce neurodegeneration, we drove the expression of these lines to the eye and cataloged them as a function of the extent of neurodegeneration that they induced. The targeted proteasomal subunits are conserved in mammals and therefore may be relevant to study proteasome related diseases. The RNAi line among the regulatory subunits with the most penetrant phenotype targeted the proteasomal subunit Rpt2 and we decided to further characterize its phenotypes. Rpt2 knockdown in the Drosophila central nervous system reduced the activity of the proteasome, augmented the amount of insoluble ubiquitinated protein, and elicited motor and non-motor phenotypes that were similar to the ones found in Drosophila and other models for Parkinson's disease. When Rpt2 is silenced pan-neurally, third instar larvae have locomotion dysfunctions and die during pupation. Larval lethality was avoided using the Gal80-Gal4 system to induce the expression of the Rpt2 RNAi to dopaminergic neurons only after pupation. The reduction of Rpt2 in adult dopaminergic neurons causes reduced survival, hyperactivity, neurodegeneration, and sleep loss; probably recapitulating some of the sleep disorders that Parkinson's disease patients have before the appearance of locomotion disorders.
Collapse
Affiliation(s)
- Iván Fernández-Cruz
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Iván Sánchez-Díaz
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Verónica Narváez-Padilla
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Enrique Reynaud
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| |
Collapse
|
9
|
Harrison BR, Wang L, Gajda E, Hoffman EV, Chung BY, Pletcher SD, Raftery D, Promislow DEL. The metabolome as a link in the genotype-phenotype map for peroxide resistance in the fruit fly, Drosophila melanogaster. BMC Genomics 2020; 21:341. [PMID: 32366330 PMCID: PMC7199327 DOI: 10.1186/s12864-020-6739-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/15/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Genetic association studies that seek to explain the inheritance of complex traits typically fail to explain a majority of the heritability of the trait under study. Thus, we are left with a gap in the map from genotype to phenotype. Several approaches have been used to fill this gap, including those that attempt to map endophenotype such as the transcriptome, proteome or metabolome, that underlie complex traits. Here we used metabolomics to explore the nature of genetic variation for hydrogen peroxide (H2O2) resistance in the sequenced inbred Drosophila Genetic Reference Panel (DGRP). RESULTS We first studied genetic variation for H2O2 resistance in 179 DGRP lines and along with identifying the insulin signaling modulator u-shaped and several regulators of feeding behavior, we estimate that a substantial amount of phenotypic variation can be explained by a polygenic model of genetic variation. We then profiled a portion of the aqueous metabolome in subsets of eight 'high resistance' lines and eight 'low resistance' lines. We used these lines to represent collections of genotypes that were either resistant or sensitive to the stressor, effectively modeling a discrete trait. Across the range of genotypes in both populations, flies exhibited surprising consistency in their metabolomic signature of resistance. Importantly, the resistance phenotype of these flies was more easily distinguished by their metabolome profiles than by their genotypes. Furthermore, we found a metabolic response to H2O2 in sensitive, but not in resistant genotypes. Metabolomic data further implicated at least two pathways, glycogen and folate metabolism, as determinants of sensitivity to H2O2. We also discovered a confounding effect of feeding behavior on assays involving supplemented food. CONCLUSIONS This work suggests that the metabolome can be a point of convergence for genetic variation influencing complex traits, and can efficiently elucidate mechanisms underlying trait variation.
Collapse
Affiliation(s)
- Benjamin R Harrison
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, 98195, USA.
| | - Lu Wang
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, 98105, USA
| | - Erika Gajda
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Elise V Hoffman
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Brian Y Chung
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Scott D Pletcher
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Daniel Raftery
- Northwest Metabolomics Research Center, Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Daniel E L Promislow
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, 98195, USA
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
10
|
Contestabile R, di Salvo ML, Bunik V, Tramonti A, Vernì F. The multifaceted role of vitamin B 6 in cancer: Drosophila as a model system to investigate DNA damage. Open Biol 2020; 10:200034. [PMID: 32208818 PMCID: PMC7125957 DOI: 10.1098/rsob.200034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A perturbed uptake of micronutrients, such as minerals and vitamins, impacts on different human diseases, including cancer and neurological disorders. Several data converge towards a crucial role played by many micronutrients in genome integrity maintenance and in the establishment of a correct DNA methylation pattern. Failure in the proper accomplishment of these processes accelerates senescence and increases the risk of developing cancer, by promoting the formation of chromosome aberrations and deregulating the expression of oncogenes. Here, the main recent evidence regarding the impact of some B vitamins on DNA damage and cancer is summarized, providing an integrated and updated analysis, mainly centred on vitamin B6. In many cases, it is difficult to finely predict the optimal vitamin rate that is able to protect against DNA damage, as this can be influenced by a given individual's genotype. For this purpose, a precious resort is represented by model organisms which allow limitations imposed by more complex systems to be overcome. In this review, we show that Drosophila can be a useful model to deeply understand mechanisms underlying the relationship between vitamin B6 and genome integrity.
Collapse
Affiliation(s)
- Roberto Contestabile
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, P.le A. Moro, 5, 00185, Roma, Italy
| | - Martino Luigi di Salvo
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, P.le A. Moro, 5, 00185, Roma, Italy
| | - Victoria Bunik
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia.,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119991, Russia.,Sechenov Medical University, Sechenov University, 119048 Moscow, Russia
| | - Angela Tramonti
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, P.le A. Moro, 5, 00185, Roma, Italy.,Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Pl.e A. Moro, 5, 00185 Roma, Italy
| | - Fiammetta Vernì
- Dipartimento di Biologia e Biotecnologie 'Charles Darwin', Sapienza Università di Roma, Pl.e A. Moro, 5, 00185 Roma, Italy
| |
Collapse
|
11
|
Sanz FJ, Solana-Manrique C, Muñoz-Soriano V, Calap-Quintana P, Moltó MD, Paricio N. Identification of potential therapeutic compounds for Parkinson's disease using Drosophila and human cell models. Free Radic Biol Med 2017; 108:683-691. [PMID: 28455141 DOI: 10.1016/j.freeradbiomed.2017.04.364] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/11/2017] [Accepted: 04/17/2017] [Indexed: 12/15/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease. It is caused by a loss of dopaminergic neurons in the substantia nigra pars compacta, leading to a decrease in dopamine levels in the striatum and thus producing movement impairment. Major physiological causes of neurodegeneration in PD are oxidative stress (OS) and mitochondrial dysfunction; these pathophysiological changes can be caused by both genetic and environmental factors. Although most PD cases are sporadic, it has been shown that 5-10% of them are familial forms caused by mutations in certain genes. One of these genes is the DJ-1 oncogene, which is involved in an early-onset recessive PD form. Currently, PD is an incurable disease for which existing therapies are not sufficiently effective to counteract or delay the progression of the disease. Therefore, the discovery of alternative drugs for the treatment of PD is essential. In this study we used a Drosophila PD model to identify candidate compounds with therapeutic potential for this disease. These flies carry a loss-of-function mutation in the DJ-1β gene, the Drosophila ortholog of human DJ-1, and show locomotor defects reflected by a reduced climbing ability. A pilot modifier chemical screen was performed, and several candidate compounds were identified based on their ability to improve locomotor activity of PD model flies. We demonstrated that some of them were also able to reduce OS levels in these flies. To validate the compounds identified in the Drosophila screen, a human cell PD model was generated by knocking down DJ-1 function in SH-SY5Y neuroblastoma cells. Our results showed that some of the compounds were also able to increase the viability of the DJ-1-deficient cells subjected to OS, thus supporting the use of Drosophila for PD drug discovery. Interestingly, some of them have been previously proposed as alternative therapies for PD or tested in clinical trials and others are first suggested in this study as potential drugs for the treatment of this disease.
Collapse
Affiliation(s)
- Francisco José Sanz
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100 Burjassot, Spain; Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain
| | - Cristina Solana-Manrique
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100 Burjassot, Spain; Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain
| | - Verónica Muñoz-Soriano
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100 Burjassot, Spain; Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain
| | - Pablo Calap-Quintana
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100 Burjassot, Spain
| | - María Dolores Moltó
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100 Burjassot, Spain; CIBERSAM, INCLIVA. Valencia, Spain
| | - Nuria Paricio
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100 Burjassot, Spain; Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain.
| |
Collapse
|
12
|
Ortega-Arellano HF, Jimenez-Del-Rio M, Velez-Pardo C. Minocycline protects, rescues and prevents knockdown transgenic parkin Drosophila against paraquat/iron toxicity: Implications for autosomic recessive juvenile parkinsonism. Neurotoxicology 2017; 60:42-53. [PMID: 28284907 DOI: 10.1016/j.neuro.2017.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/03/2017] [Accepted: 03/06/2017] [Indexed: 01/03/2023]
Abstract
Autosomal recessive Juvenile Parkinsonism (AR-JP) is a chronic, progressive neurodegenerative disorder caused by mutation in the PARKIN gene, and invariably associated with dopaminergic (DAergic) neuronal loss and brain iron accumulation. Since current medical therapy is symptomatic and lacks significant disease-modifying effects, other treatment approaches are urgently needed it. In the present work, we investigate the role of minocycline (MC) in paraquat (PQ)/iron-induced neurotoxicity in the Drosophila TH>parkin-RNAi/+ (w[*]; UAS-parkin-RNAi; TH-GAL4) fly and have shown the following: (i) MC increased life span and restored the locomotor activity of knockdown (KD) transgenic parkin flies in comparison with the control (vehicle) group; (ii) MC at low (0.1 and 0.3mM) and middle (0.5mM) concentrations protected, rescued and prevented KD parkin Drosophila against PQ toxicity. However, MC at high (1mM) concentration aggravated the toxic effect of PQ; (iii) MC protected and rescued DAergic neurons against the PQ toxic effect according to tyrosine hydroxylase (TH)>green-fluorescent protein (GFP) reporter protein microscopy and anti-TH Western blotting analysis; (iv) MC protected DAergic neurons against PQ/iron toxicity; (v) MC significantly abridged lipid peroxidation (LPO) in the protection, rescue and prevention treatment in TH>parkin-RNAi/+ flies against PQ or iron alone or combined (PQ/iron)-induced neuronal oxidative stress (OS). Our results suggest that MC exerts neuroprotection against PQ/iron-induced OS in DAergic neurons most probably by the scavenging activity of reactive oxygen species (ROS), and by chelating iron. Therefore, MC might be a potential therapeutic drug to delay, revert, or prevent AR-JP.
Collapse
Affiliation(s)
- Hector Flavio Ortega-Arellano
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, Building 1, Room 412, SIU, Medellin, Colombia
| | - Marlene Jimenez-Del-Rio
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, Building 1, Room 412, SIU, Medellin, Colombia.
| | - Carlos Velez-Pardo
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, Building 1, Room 412, SIU, Medellin, Colombia.
| |
Collapse
|
13
|
Jha SK, Jha NK, Kumar D, Ambasta RK, Kumar P. Linking mitochondrial dysfunction, metabolic syndrome and stress signaling in Neurodegeneration. Biochim Biophys Acta Mol Basis Dis 2016; 1863:1132-1146. [PMID: 27345267 DOI: 10.1016/j.bbadis.2016.06.015] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 12/13/2022]
Abstract
Mounting evidence suggests a link between metabolic syndrome (MetS) such as diabetes, obesity, non-alcoholic fatty liver disease in the progression of Alzheimer's disease (AD), Parkinson's disease (PD) and other neurodegenerative diseases (NDDs). For instance, accumulated Aβ oligomer is enhancing neuronal Ca2+ release and neural NO where increased NO level in the brain through post translational modification is modulating the level of insulin production. It has been further confirmed that irrespective of origin; brain insulin resistance triggers a cascade of the neurodegeneration phenomenon which can be aggravated by free reactive oxygen species burden, ER stress, metabolic dysfunction, neuorinflammation, reduced cell survival and altered lipid metabolism. Moreover, several studies confirmed that MetS and diabetic sharing common mechanisms in the progression of AD and NDDs where mitochondrial dynamics playing a critical role. Any mutation in mitochondrial DNA, exposure of environmental toxin, high-calorie intake, homeostasis imbalance, glucolipotoxicity is causative factors for mitochondrial dysfunction. These cumulative pleiotropic burdens in mitochondria leads to insulin resistance, increased ROS production; enhanced stress-related enzymes that is directly linked MetS and diabetes in neurodegeneration. Since, the linkup mechanism between mitochondrial dysfunction and disease phenomenon of both MetS and NDDs is quite intriguing, therefore, it is pertinent for the researchers to identify and implement the therapeutic interventions for targeting MetS and NDDs. Herein, we elucidated the pertinent role of MetS induced mitochondrial dysfunction in neurons and their consequences in NDDs. Further, therapeutic potential of well-known biomolecules and chaperones to target altered mitochondria has been comprehensively documented. This article is part of a Special Issue entitled: Oxidative Stress and Mitochondrial Quality in Diabetes/Obesity and Critical Illness Spectrum of Diseases - edited by P. Hemachandra Reddy.
Collapse
Affiliation(s)
- Saurabh Kumar Jha
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Niraj Kumar Jha
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Dhiraj Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India.
| |
Collapse
|
14
|
Development of ic-ELISA and lateral-flow immunochromatographic assay strip for the detection of folic acid in energy drinks and milk samples. FOOD AGR IMMUNOL 2016. [DOI: 10.1080/09540105.2016.1183600] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|