1
|
Zhang W, Sun C, Lang H, Wang J, Li X, Guo J, Zhang Z, Zheng H. Toll receptor ligand Spätzle 4 responses to the highly pathogenic Enterococcus faecalis from Varroa mites in honeybees. PLoS Pathog 2023; 19:e1011897. [PMID: 38150483 PMCID: PMC10775982 DOI: 10.1371/journal.ppat.1011897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/09/2024] [Accepted: 12/12/2023] [Indexed: 12/29/2023] Open
Abstract
Honeybees play a major role in crop pollination, which supports the agricultural economy and international food supply. The colony health of honeybees is threatened by the parasitic mite Varroa destructor, which inflicts physical injury on the hosts and serves as the vector for variable viruses. Recently, it shows that V. destructor may also transmit bacteria through the feeding wound, yet it remains unclear whether the invading bacteria can exhibit pathogenicity to the honeybees. Here, we incidentally isolate Enterococcus faecalis, one of the most abundant bacteria in Varroa mites, from dead bees during our routine generation of microbiota-free bees in the lab. In vivo tests show that E. faecalis is only pathogenic in Apis mellifera but not in Apis cerana. The expression of antimicrobial peptide genes is elevated following infection in A. cerana. The gene-based molecular evolution analysis identifies positive selection of genes encoding Späetzle 4 (Spz4) in A. cerana, a signaling protein in the Toll pathway. The amino acid sites under positive selection are related to structural changes in Spz4 protein, suggesting improvement of immunity in A. cerana. The knock-down of Spz4 in A. cerana significantly reduces the survival rates under E. faecalis challenge and the expression of antimicrobial peptide genes. Our results indicate that bacteria associated with Varroa mites are pathogenic to adult bees, and the positively selected gene Spz4 in A. cerana is crucial in response to this mite-related pathogen.
Collapse
Affiliation(s)
- Wenhao Zhang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Cheng Sun
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Haoyu Lang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jieni Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xinyu Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Jun Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Zijing Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Hao Zheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Bland ML. Regulating metabolism to shape immune function: Lessons from Drosophila. Semin Cell Dev Biol 2023; 138:128-141. [PMID: 35440411 PMCID: PMC10617008 DOI: 10.1016/j.semcdb.2022.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/21/2022] [Accepted: 04/03/2022] [Indexed: 12/14/2022]
Abstract
Infection with pathogenic microbes is a severe threat that hosts manage by activating the innate immune response. In Drosophila melanogaster, the Toll and Imd signaling pathways are activated by pathogen-associated molecular patterns to initiate cellular and humoral immune processes that neutralize and kill invaders. The Toll and Imd signaling pathways operate in organs such as fat body and gut that control host nutrient metabolism, and infections or genetic activation of Toll and Imd signaling also induce wide-ranging changes in host lipid, carbohydrate and protein metabolism. Metabolic regulation by immune signaling can confer resistance to or tolerance of infection, but it can also lead to pathology and susceptibility to infection. These immunometabolic phenotypes are described in this review, as are changes in endocrine signaling and gene regulation that mediate survival during infection. Future work in the field is anticipated to determine key variables such as sex, dietary nutrients, life stage, and pathogen characteristics that modify immunometabolic phenotypes and, importantly, to uncover the mechanisms used by the immune system to regulate metabolism.
Collapse
Affiliation(s)
- Michelle L Bland
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, United States.
| |
Collapse
|
3
|
Seong SY, Matzinger P, Land WG. Editorial: DAMPs Across the Tree of Life. Front Immunol 2022; 12:844315. [PMID: 35178047 PMCID: PMC8844022 DOI: 10.3389/fimmu.2021.844315] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 01/22/2023] Open
Affiliation(s)
- Seung-Yong Seong
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
- Wide River Institute of Immunology, Seoul National University, Seoul, South Korea
| | - Polly Matzinger
- Ghost Lab., Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Walter Gottlieb Land
- German Academy for Transplantation Medicine, Munich, Germany
- Molecular ImmunoRheumatology, INSERM UMR_S1109, Laboratory of Excellence Transplantex, University of Strasbourg, Strasbourg, France
| |
Collapse
|
4
|
Synthetic biology based construction of biological activity-related library of fungal decalin-containing diterpenoid pyrones. Nat Commun 2020; 11:1830. [PMID: 32286350 PMCID: PMC7156458 DOI: 10.1038/s41467-020-15664-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 03/19/2020] [Indexed: 12/12/2022] Open
Abstract
A synthetic biology method based on heterologous biosynthesis coupled with genome mining is a promising approach for increasing the opportunities to rationally access natural product with novel structures and biological activities through total biosynthesis and combinatorial biosynthesis. Here, we demonstrate the advantage of the synthetic biology method to explore biological activity-related chemical space through the comprehensive heterologous biosynthesis of fungal decalin-containing diterpenoid pyrones (DDPs). Genome mining reveals putative DDP biosynthetic gene clusters distributed in five fungal genera. In addition, we design extended DDP pathways by combinatorial biosynthesis. In total, ten DDP pathways, including five native pathways, four extended pathways and one shunt pathway, are heterologously reconstituted in a genetically tractable heterologous host, Aspergillus oryzae, resulting in the production of 22 DDPs, including 15 new analogues. We also demonstrate the advantage of expanding the diversity of DDPs to probe various bioactive molecules through a wide range of biological evaluations. Combining genome mining and heterologous expression in a genetically tractable host can lead to bioactive natural products discovery and production. Here, the authors employ this strategy for new decalin-containing diterpenoid pyrenes production by expressing native, extended, and shunt pathways in Aspergillus oryzae.
Collapse
|
5
|
Kanoh H, Kato H, Suda Y, Hori A, Kurata S, Kuraishi T. Dual comprehensive approach to decipher the Drosophila Toll pathway, ex vivo RNAi screenings and immunoprecipitation-mass spectrometry. Biochem Biophys Res Commun 2018; 508:332-337. [PMID: 30497778 DOI: 10.1016/j.bbrc.2018.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 11/02/2018] [Indexed: 12/24/2022]
Abstract
The Drosophila Toll pathway is involved in embryonic development, innate immunity, and cell-cell interactions. However, compared to the mammalian Toll-like receptor innate immune pathway, its intracellular signaling mechanisms are not fully understood. We have previously performed a series of ex vivo genome-wide RNAi screenings to identify genes required for the activation of the Toll pathway. In this study, we have conducted an additional genome-wide RNAi screening using the overexpression of Tube, an adapter molecule in the Toll pathway, and have performed a co-immunoprecipitation assay to identify components present in the dMyd88-Tube complex. Based on the results of these assays, we have performed a bioinformatic analysis, and describe candidate molecules and post-translational modifications that could be involved in Drosophila Toll signaling.
Collapse
Affiliation(s)
- Hirotaka Kanoh
- Department of Molecular Biopharmacy and Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan; Tohoku Medical and Pharmaceutical University, Sendai, Japan.
| | - Hiroyuki Kato
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yamato Suda
- Department of Molecular Biopharmacy and Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Aki Hori
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Shoichiro Kurata
- Department of Molecular Biopharmacy and Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Takayuki Kuraishi
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan; PRESTO, Japan Science and Technology Agency, Tokyo, Japan.
| |
Collapse
|
6
|
Characterization of Spz5 as a novel ligand for Drosophila Toll-1 receptor. Biochem Biophys Res Commun 2018; 506:510-515. [PMID: 30361090 DOI: 10.1016/j.bbrc.2018.10.096] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 10/16/2018] [Indexed: 11/22/2022]
Abstract
The Drosophila Toll-1 receptor is involved in embryonic development, innate immunity, and tissue homeostasis. Currently, as a ligand for the Toll-1 receptor, only Spätzle (Spz) has been identified and characterized. We previously reported that Drosophila larva-derived tissue extract contains ligand activity for the Toll-1 receptor, which differs from Spz based on the observation that larval extract prepared from spz mutants possessed full ligand activity. Here, we demonstrate that Spz5, a member of the Spz family of proteins, functions as a ligand for the Toll-1 receptor. Processing of Spz5 by Furin protease, which is known to be important for ligand activity of Spz5 to Toll-6, is not required for its function to the Toll-1 receptor. By generating a spz5 null mutant, we further showed that the Toll-1 ligand activity of larva-derived extract is mainly derived from Spz5. Finally, we found a genetic interaction between spz and spz5 in terms of developmental processes. This study identified a novel ligand for the Drosophila Toll-1 receptor, providing evidence that Toll-1 is a multi-ligand receptor, similar to the mammalian Toll-like receptor.
Collapse
|
7
|
Wei G, Sun L, Li R, Li L, Xu J, Ma F. Dynamic miRNA-mRNA regulations are essential for maintaining Drosophila immune homeostasis during Micrococcus luteus infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 81:210-224. [PMID: 29198775 DOI: 10.1016/j.dci.2017.11.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/15/2017] [Accepted: 11/29/2017] [Indexed: 06/07/2023]
Abstract
Pathogen bacteria infections can lead to dynamic changes of microRNA (miRNA) and mRNA expression profiles, which may control synergistically the outcome of immune responses. To reveal the role of dynamic miRNA-mRNA regulation in Drosophila innate immune responses, we have detailedly analyzed the paired miRNA and mRNA expression profiles at three time points during Drosophila adult males with Micrococcus luteus (M. luteus) infection using RNA- and small RNA-seq data. Our results demonstrate that differentially expressed miRNAs and mRNAs represent extensively dynamic changes over three time points during Drosophila with M. luteus infection. The pathway enrichment analysis indicates that differentially expressed genes are involved in diverse signaling pathways, including Toll and Imd as well as orther signaling pathways at three time points during Drosophila with M. luteus infection. Remarkably, the dynamic change of miRNA expression is delayed by compared to mRNA expression change over three time points, implying that the "time" parameter should be considered when the function of miRNA/mRNA is further studied. In particular, the dynamic miRNA-mRNA regulatory networks have shown that miRNAs may synergistically regulate gene expressions of different signaling pathways to promote or inhibit innate immune responses and maintain homeostasis in Drosophila, and some new regulators involved in Drosophila innate immune response have been identified. Our findings strongly suggest that miRNA regulation is a key mechanism involved in fine-tuning cooperatively gene expressions of diverse signaling pathways to maintain innate immune response and homeostasis in Drosophila. Taken together, the present study reveals a novel role of dynamic miRNA-mRNA regulation in immune response to bacteria infection, and provides a new insight into the underlying molecular regulatory mechanism of Drosophila innate immune responses.
Collapse
Affiliation(s)
- Guanyun Wei
- Laboratory for Comparative Genomics and Bioinformatics, Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Lianjie Sun
- Laboratory for Comparative Genomics and Bioinformatics, Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Ruimin Li
- Laboratory for Comparative Genomics and Bioinformatics, Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Lei Li
- Laboratory for Comparative Genomics and Bioinformatics, Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China; Laboratory of Intelligent Computation, School of Computer Science, Nanjing Normal University, Nanjing 210046, China
| | - Jiao Xu
- Laboratory for Comparative Genomics and Bioinformatics, Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Fei Ma
- Laboratory for Comparative Genomics and Bioinformatics, Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China.
| |
Collapse
|
8
|
Kenmoku H, Hori A, Kuraishi T, Kurata S. A novel mode of induction of the humoral innate immune response in Drosophila larvae. Dis Model Mech 2017; 10:271-281. [PMID: 28250052 PMCID: PMC5374318 DOI: 10.1242/dmm.027102] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 01/20/2017] [Indexed: 12/14/2022] Open
Abstract
Drosophila adults have been utilized as a genetically tractable model organism to decipher the molecular mechanisms of humoral innate immune responses. In an effort to promote the utility of Drosophila larvae as an additional model system, in this study, we describe a novel aspect of an induction mechanism for innate immunity in these larvae. By using a fine tungsten needle created for manipulating semi-conductor devices, larvae were subjected to septic injury. However, although Toll pathway mutants were susceptible to infection with Gram-positive bacteria as had been shown for Drosophila adults, microbe clearance was not affected in the mutants. In addition, Drosophila larvae were found to be sensitive to mechanical stimuli with respect to the activation of a sterile humoral response. In particular, pinching with forceps to a degree that might cause minor damage to larval tissues could induce the expression of the antifungal peptide gene Drosomycin; notably, this induction was partially independent of the Toll and immune deficiency pathways. We therefore propose that Drosophila larvae might serve as a useful model to analyze the infectious and non-infectious inflammation that underlies various inflammatory diseases such as ischemia, atherosclerosis and cancer.
Collapse
Affiliation(s)
- Hiroyuki Kenmoku
- Department of Molecular Biopharmacy and Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Aki Hori
- Department of Molecular Biopharmacy and Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan.,Graduate School of Medical Sciences, Kanazawa University, Ishikawa 920-1192, Japan
| | - Takayuki Kuraishi
- Department of Molecular Biopharmacy and Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan .,Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan.,Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Ishikawa 920-1192, Japan.,PRESTO, Japan Science and Technology Agency, Tokyo 102-0076, Japan
| | - Shoichiro Kurata
- Department of Molecular Biopharmacy and Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
9
|
Hori A, Kurata S, Kuraishi T. Unexpected role of the IMD pathway in Drosophila gut defense against Staphylococcus aureus. Biochem Biophys Res Commun 2017; 495:395-400. [PMID: 29108998 DOI: 10.1016/j.bbrc.2017.11.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 11/01/2017] [Indexed: 12/29/2022]
Abstract
In this study, fruit fly of the genus Drosophila is utilized as a suitable model animal to investigate the molecular mechanisms of innate immunity. To combat orally transmitted pathogenic Gram-negative bacteria, the Drosophila gut is armed with the peritrophic matrix, which is a physical barrier composed of chitin and glycoproteins: the Duox system that produces reactive oxygen species (ROS), which in turn sterilize infected microbes, and the IMD pathway that regulates the expression of antimicrobial peptides (AMPs), which in turn control ROS-resistant pathogens. However, little is known about the defense mechanisms against Gram-positive bacteria in the fly gut. Here, we show that the peritrophic matrix protects Drosophila against Gram-positive bacteria S. aureus. We also define the few roles of ROS in response to the infection and show that the IMD pathway is required for the clearance of ingested microbes, possibly independently from AMP expression. These findings provide a new aspect of the gut defense system of Drosophila, and helps to elucidate the processes of gut-microbe symbiosis and pathogenesis.
Collapse
Affiliation(s)
- Aki Hori
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan; Department of Molecular Biopharmacy and Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Shoichiro Kurata
- Department of Molecular Biopharmacy and Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| | - Takayuki Kuraishi
- Department of Molecular Biopharmacy and Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan; Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan; Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan; PRESTO, Japan Science and Technology Agency, Tokyo, Japan.
| |
Collapse
|
10
|
Abstract
Many leukemia patients suffer from dysregulation of their immune system, making them more susceptible to infections and leading to general weakening (cachexia). Both adaptive and innate immunity are affected. The fruit fly Drosophila melanogaster has an innate immune system, including cells of the myeloid lineage (hemocytes). To study Drosophila immunity and physiology during leukemia, we established three models by driving expression of a dominant-active version of the Ras oncogene (RasV12 ) alone or combined with knockdowns of tumor suppressors in Drosophila hemocytes. Our results show that phagocytosis, hemocyte migration to wound sites, wound sealing, and survival upon bacterial infection of leukemic lines are similar to wild type. We find that in all leukemic models the two major immune pathways (Toll and Imd) are dysregulated. Toll-dependent signaling is activated to comparable extents as after wounding wild-type larvae, leading to a proinflammatory status. In contrast, Imd signaling is suppressed. Finally, we notice that adult tissue formation is blocked and degradation of cell masses during metamorphosis of leukemic lines, which is akin to the state of cancer-dependent cachexia. To further analyze the immune competence of leukemic lines, we used a natural infection model that involves insect-pathogenic nematodes. We identified two leukemic lines that were sensitive to nematode infections. Further characterization demonstrates that despite the absence of behavioral abnormalities at the larval stage, leukemic larvae show reduced locomotion in the presence of nematodes. Taken together, this work establishes new Drosophila models to study the physiological, immunological, and behavioral consequences of various forms of leukemia.
Collapse
|
11
|
Gao S, Ren Y, Zhang H, Pan B, Gao H. Identification and expression analysis of IκB and NF-κB genes from Cyclina sinensis. FISH & SHELLFISH IMMUNOLOGY 2016; 56:427-435. [PMID: 27492119 DOI: 10.1016/j.fsi.2016.07.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 07/29/2016] [Accepted: 07/31/2016] [Indexed: 06/06/2023]
Abstract
With the increasing economic importance of Cyclina sinensis aquaculture, interest in its defense mechanisms against pathogenic infection has grown in recent years. Inhibitor of nuclear factor-kappaB (IκB) and nuclear factor-kappaB (NF-κB) are proteins with central roles in many important physiological and pathological processes, such as innate immune responses. In this study, we identified CsIκB and CsNF-κB genes from a C. sinensis transcriptome library. In healthy adult clams, CsIκB and CsNF-κB genes were widely expressed in various tissues and highly expressed in hemocytes. Further, the expression levels of these genes were significantly increased in hemocytes challenged by Vibrio anguillarum, Micrococcus luteus and poly I:C. Inhibition of CsMyD88 expression by RNAi technology significantly altered the mRNA expression patterns of CsIκB and CsNF-κB as measured using quantitative real-time PCR. These results collectively indicated that the NF-κB signaling pathway, including CsIκB and CsNF-κB genes, might be involved in early innate immune responses and may be regulated by a MyD88-dependent signaling pathway in C. sinensis.
Collapse
Affiliation(s)
- Shan Gao
- Tianjin Key Laboratory of Animal and Plant Resistance, School of Life Sciences, Tianjin Normal University, Tianjin, 300387, PR China
| | - Yipeng Ren
- Tianjin Key Laboratory of Animal and Plant Resistance, School of Life Sciences, Tianjin Normal University, Tianjin, 300387, PR China; Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, 300071, PR China
| | - Haijing Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, School of Life Sciences, Tianjin Normal University, Tianjin, 300387, PR China
| | - Baoping Pan
- Tianjin Key Laboratory of Animal and Plant Resistance, School of Life Sciences, Tianjin Normal University, Tianjin, 300387, PR China.
| | - Hong Gao
- Tianjin Key Laboratory of Animal and Plant Resistance, School of Life Sciences, Tianjin Normal University, Tianjin, 300387, PR China
| |
Collapse
|