1
|
Liu T, Wang Y, Li X, Che H, Zhang Y. LpNAC5 positively regulates drought, salt and alkalinity tolerance of Lilium pumilum. Gene 2024; 924:148550. [PMID: 38777109 DOI: 10.1016/j.gene.2024.148550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
NACs (NAM、ATAF1/2、CUC1/2), as a large family of plant transcription factors, are widely involved in abiotic stress responses. This study aimed to isolate and clone a novel stress-responsive transcription factor LpNAC5 from Lilium pumilum bulbs. Drought, salt, alkali, and ABA stresses induced the expression of LpNAC5. Transgenic tobacco plants overexpressing LpNAC5 were generated using the Agrobacterium-mediated method to understand the role of this factor in stress response. These plants exhibited increased tolerance to drought, salt, and alkali stresses. The tobacco plants overexpressing LpNAC5 showed strong drought, salt, and alkaline tolerance. Under the three abiotic stresses, the activities of antioxidant enzymes were enhanced, the contents of proline and chlorophyll increased, and the contents of malondialdehyde decreased. The functional analysis revealed that LpNAC5 enabled plants to positively regulate drought and salt stresses. These findings not only provided valuable insights into stress tolerance mechanisms in L. pumilum but also offered a potential genetic resource for breedi.
Collapse
Affiliation(s)
- Tongfei Liu
- College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China
| | - Ying Wang
- College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China
| | - Xufei Li
- College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China
| | - Haitao Che
- College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China
| | - Yanni Zhang
- College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
2
|
Zhang Z, Zeng Y, Hou J, Li L. Advances in understanding the roles of plant HAT and HDAC in non-histone protein acetylation and deacetylation. PLANTA 2024; 260:93. [PMID: 39264431 DOI: 10.1007/s00425-024-04518-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/23/2024] [Indexed: 09/13/2024]
Abstract
MAIN CONCLUSION This review focuses on HATs and HDACs that modify non-histone proteins, summarizes functional mechanisms of non-histone acetylation as well as the roles of HATs and HDACs in rice and Arabidopsis. The growth and development of plants, as well as their responses to biotic and abiotic stresses, are governed by intricate gene and protein regulatory networks, in which epigenetic modifying enzymes play a crucial role. Histone lysine acetylation levels, modulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs), are well-studied in the realm of transcriptional regulation. However, the advent of advanced proteomics has unveiled that non-histone proteins also undergo acetylation, with its underlying mechanisms now being clarified. Indeed, non-histone acetylation influences protein functionality through diverse pathways, such as modulating protein stability, adjusting enzymatic activity, steering subcellular localization, influencing interactions with other post-translational modifications, and managing protein-protein and protein-DNA interactions. This review delves into the recent insights into the functional mechanisms of non-histone acetylation in plants. We also provide a summary of the roles of HATs and HDACs in rice and Arabidopsis, and explore their potential involvement in the regulation of non-histone proteins.
Collapse
Affiliation(s)
- Zihan Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yan Zeng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jiaqi Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Lijia Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
3
|
Li C, He YQ, Yu J, Kong JR, Ruan CC, Yang ZK, Zhuang JJ, Wang YX, Xu JH. The rice LATE ELONGATED HYPOCOTYL enhances salt tolerance by regulating Na +/K + homeostasis and ABA signalling. PLANT, CELL & ENVIRONMENT 2024; 47:1625-1639. [PMID: 38282386 DOI: 10.1111/pce.14835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/20/2023] [Accepted: 01/12/2024] [Indexed: 01/30/2024]
Abstract
The circadian clock plays multiple functions in the regulation of plant growth, development and response to various abiotic stress. Here, we showed that the core oscillator component late elongated hypocotyl (LHY) was involved in rice response to salt stress. The mutations of OsLHY gene led to reduced salt tolerance in rice. Transcriptomic analyses revealed that the OsLHY gene regulates the expression of genes related to ion homeostasis and the abscisic acid (ABA) signalling pathway, including genes encoded High-affinity K+ transporters (OsHKTs) and the stress-activated protein kinases (OsSAPKs). We demonstrated that OsLHY directly binds the promoters of OsHKT1;1, OsHKT1;4 and OsSAPK9 to regulate their expression. Moreover, the ossapk9 mutants exhibited salt tolerance under salt stress. Taken together, our findings revealed that OsLHY integrates ion homeostasis and the ABA pathway to regulate salt tolerance in rice, providing insights into our understanding of how the circadian clock controls rice response to salt stress.
Collapse
Affiliation(s)
- Chao Li
- Department of Agronomy, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Shandong, China
| | - Yi-Qin He
- Department of Agronomy, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Sanya, China
- Yazhou Bay Seed Laboratory, Yazhou Bay Science and Technology City, Sanya, China
| | - Jie Yu
- Department of Agronomy, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Sanya, China
- Yazhou Bay Seed Laboratory, Yazhou Bay Science and Technology City, Sanya, China
| | - Jia-Rui Kong
- Department of Agronomy, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, China
| | - Cheng-Cheng Ruan
- Department of Agronomy, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, China
| | - Zhen-Kun Yang
- Department of Agronomy, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Sanya, China
- Yazhou Bay Seed Laboratory, Yazhou Bay Science and Technology City, Sanya, China
| | - Jun-Jie Zhuang
- Department of Agronomy, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, China
| | - Yu-Xiao Wang
- Department of Agronomy, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Sanya, China
- Yazhou Bay Seed Laboratory, Yazhou Bay Science and Technology City, Sanya, China
| | - Jian-Hong Xu
- Department of Agronomy, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Shandong, China
- Hainan Institute, Zhejiang University, Sanya, China
- Yazhou Bay Seed Laboratory, Yazhou Bay Science and Technology City, Sanya, China
| |
Collapse
|
4
|
Jia J, Luo Y, Wu Z, Ji Y, Liu S, Shu J, Chen B, Liu J. OsJMJ718, a histone demethylase gene, positively regulates seed germination in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:191-202. [PMID: 38116956 DOI: 10.1111/tpj.16600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/27/2023] [Accepted: 12/09/2023] [Indexed: 12/21/2023]
Abstract
Seed vigor has major impact on the rate and uniformity of seedling growth, crop yield, and quality. However, the epigenetic regulatory mechanism of crop seed vigor remains unclear. In this study, a (jumonji C) JmjC gene of the histone lysine demethylase OsJMJ718 was cloned in rice, and its roles in seed germination and its epigenetic regulation mechanism were investigated. OsJMJ718 was located in the nucleus and was engaged in H3K9 methylation. Histochemical GUS staining analysis revealed OsJMJ718 was highly expressed in seed embryos. Abiotic stress strongly induced the OsJMJ718 transcriptional accumulation level. Germination percentage and seedling vigor index of OsJMJ718 knockout lines (OsJMJ718-CR) were lower than those of the wild type (WT). Chromatin immunoprecipitation followed by sequencing (ChIP-seq) of seeds imbibed for 24 h showed an increase in H3K9me3 deposition of thousands of genes in OsJMJ718-CR. ChIP-seq results and transcriptome analysis showed that differentially expressed genes were enriched in ABA and ethylene signal transduction pathways. The content of ABA in OsJMJ718-CR was higher than that in WT seeds. OsJMJ718 overexpression enhanced sensitivity to ABA during germination and early seedling growth. In the seed imbibition stage, ABA and ethylene content diminished and augmented, separately, suggesting that OsJMJ718 may adjust rice seed germination through the ABA and ethylene signal transduction pathways. This study displayed the important function of OsJMJ718 in adjusting rice seed germination and vigor, which will provide an essential reference for practical issues, such as improving rice vigor and promoting direct rice sowing production.
Collapse
Affiliation(s)
- Junting Jia
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Yongjian Luo
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Zhiyuan Wu
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Yufang Ji
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Shuangxing Liu
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jie Shu
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Bingxian Chen
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jun Liu
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| |
Collapse
|
5
|
Chapagain S, Pruthi R, Singh L, Subudhi PK. Comparison of the genetic basis of salt tolerance at germination, seedling, and reproductive stages in an introgression line population of rice. Mol Biol Rep 2024; 51:252. [PMID: 38302786 DOI: 10.1007/s11033-023-09049-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 11/02/2023] [Indexed: 02/03/2024]
Abstract
BACKGROUND Salinity is a major limitation for rice farming due to climate change. Since salt stress adversely impact rice plants at germination, seedling, and reproductive stages resulting in poor crop establishment and reduced grain yield, enhancing salt tolerance at these vulnerable growth stages will enhance rice productivity in salinity prone areas. METHODS AND RESULTS An introgression line (ILs) population from a cross between a high yielding cultivar 'Cheniere' and a salt tolerant donor 'TCCP' was evaluated to map quantitative trait loci (QTLs) for traits associated with salt tolerance at germination, seedling, and reproductive stages. Using a genotyping-by-sequencing based high density SNP linkage map, a total of 7, 16, and 30 QTLs were identified for five germination traits, seven seedling traits, and ten reproductive traits, respectively. There was overlapping of QTLs for some traits at different stages indicating the pleiotropic effects of these QTLs or clustering of linked genes. Candidate genes identified for salt tolerance were OsSDIR1 and SERF for the seedling stage, WRKY55 and OsUBC for the reproductive stage, and MYB family transcription factors for all three stages. Gene ontology analysis revealed significant GO terms related to nucleotide binding, protein binding, protein kinase activity, antiporter activity, active transmembrane transporter activity, calcium-binding protein, and F- box protein interaction domain containing protein. CONCLUSIONS The colocalized QTLs for traits at different growth stages would be helpful to improve multiple traits simultaneously using marker-assisted selection. The salt tolerant ILs have the potential to be released as varieties or as pre-breeding lines for developing salt tolerant rice varieties.
Collapse
Affiliation(s)
- Sandeep Chapagain
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA
| | - Rajat Pruthi
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA
| | - Lovepreet Singh
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA
| | - Prasant K Subudhi
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
6
|
Guo Y, Tan Y, Qu M, Hong K, Zeng L, Wang L, Zhuang C, Qian Q, Hu J, Xiong G. OsWR2 recruits HDA704 to regulate the deacetylation of H4K8ac in the promoter of OsABI5 in response to drought stress. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023. [PMID: 36920174 DOI: 10.1111/jipb.13481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Drought stress is a major environmental factor that limits the growth, development, and yield of rice (Oryza sativa L.). Histone deacetylases (HDACs) are involved in the regulation of drought stress responses. HDA704 is an RPD3/HDA1 class HDAC that mediates the deacetylation of H4K8 (lysine 8 of histone H4) for drought tolerance in rice. In this study, we show that plants overexpressing HDA704 (HDA704-OE) are resistant to drought stress and sensitive to abscisic acid (ABA), whereas HDA704 knockout mutant (hda704) plants displayed decreased drought tolerance and ABA sensitivity. Transcriptome analysis revealed that HDA704 regulates the expression of ABA-related genes in response to drought stress. Moreover, HDA704 was recruited by a drought-resistant transcription factor, WAX SYNTHESIS REGULATORY 2 (OsWR2), and co-regulated the expression of the ABA biosynthesis genes NINE-CIS-EPOXYCAROTENOID DIOXYGENASE 3 (NCED3), NCED4, and NCED5 under drought stress. HDA704 also repressed the expression of ABA-INSENSITIVE 5 (OsABI5) and DWARF AND SMALL SEED 1 (OsDSS1) by regulating H4K8ac levels in the promoter regions in response to polyethylene glycol 6000 treatment. In agreement, the loss of OsABI5 function increased resistance to dehydration stress in rice. Our results demonstrate that HDA704 is a positive regulator of the drought stress response and offers avenues for improving drought resistance in rice.
Collapse
Affiliation(s)
- Yalu Guo
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yiqing Tan
- Plant Phenomics Research Center, Academy of Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, 210095, China
| | - Minghao Qu
- College of Animal Science and Technology, Southwest University, Chongqing, 402460, China
| | - Kai Hong
- Plant Phenomics Research Center, Academy of Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, 210095, China
| | - Longjun Zeng
- Yichun Academy of Sciences, Yinchun, 336000, China
| | - Lei Wang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
| | - Chuxiong Zhuang
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310000, China
| | - Jiang Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310000, China
| | - Guosheng Xiong
- Plant Phenomics Research Center, Academy of Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
7
|
Liu Y, Wang J, Liu B, Xu ZY. Dynamic regulation of DNA methylation and histone modifications in response to abiotic stresses in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2252-2274. [PMID: 36149776 DOI: 10.1111/jipb.13368] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
DNA methylation and histone modification are evolutionarily conserved epigenetic modifications that are crucial for the expression regulation of abiotic stress-responsive genes in plants. Dynamic changes in gene expression levels can result from changes in DNA methylation and histone modifications. In the last two decades, how epigenetic machinery regulates abiotic stress responses in plants has been extensively studied. Here, based on recent publications, we review how DNA methylation and histone modifications impact gene expression regulation in response to abiotic stresses such as drought, abscisic acid, high salt, extreme temperature, nutrient deficiency or toxicity, and ultraviolet B exposure. We also review the roles of epigenetic mechanisms in the formation of transgenerational stress memory. We posit that a better understanding of the epigenetic underpinnings of abiotic stress responses in plants may facilitate the design of more stress-resistant or -resilient crops, which is essential for coping with global warming and extreme environments.
Collapse
Affiliation(s)
- Yutong Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Jie Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Zheng-Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
8
|
Liu Z, Hu Y, Du A, Yu L, Fu X, Wu C, Lu L, Liu Y, Wang S, Huang W, Tu S, Ma X, Li H. Cell Wall Matrix Polysaccharides Contribute to Salt-Alkali Tolerance in Rice. Int J Mol Sci 2022; 23:ijms232315019. [PMID: 36499349 PMCID: PMC9735747 DOI: 10.3390/ijms232315019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022] Open
Abstract
Salt-alkali stress threatens the resilience to variable environments and thus the grain yield of rice. However, how rice responds to salt-alkali stress at the molecular level is poorly understood. Here, we report isolation of a novel salt-alkali-tolerant rice (SATR) by screening more than 700 germplasm accessions. Using 93-11, a widely grown cultivar, as a control, we characterized SATR in response to strong salt-alkali stress (SSAS). SATR exhibited SSAS tolerance higher than 93-11, as indicated by a higher survival rate, associated with higher peroxidase activity and total soluble sugar content but lower malonaldehyde accumulation. A transcriptome study showed that cell wall biogenesis-related pathways were most significantly enriched in SATR relative to 93-11 upon SSAS. Furthermore, higher induction of gene expression in the cell wall matrix polysaccharide biosynthesis pathway, coupled with higher accumulations of hemicellulose and pectin as well as measurable physio-biochemical adaptive responses, may explain the strong SSAS tolerance in SATR. We mapped SSAS tolerance to five genomic regions in which 35 genes were candidates potentially governing SSAS tolerance. The 1,4-β-D-xylan synthase gene OsCSLD4 in hemicellulose biosynthesis pathway was investigated in details. The OsCSLD4 function-disrupted mutant displayed reduced SSAS tolerance, biomass and grain yield, whereas the OsCSLD4 overexpression lines exhibited increased SSAS tolerance. Collectively, this study not only reveals the potential role of cell wall matrix polysaccharides in mediating SSAS tolerance, but also highlights applicable value of OsCSLD4 and the large-scale screening system in developing SSAS-tolerant rice.
Collapse
Affiliation(s)
- Zhijian Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongzhi Hu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Anping Du
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Lan Yu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Xingyue Fu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cuili Wu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Longxiang Lu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangxuan Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Songhu Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weizao Huang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Shengbin Tu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinrong Ma
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- Correspondence:
| |
Collapse
|
9
|
Zhao X, Wang H, Zhang B, Cheng Y, Ma X. Overexpression of histone deacetylase gene 84KHDA909 from poplar confers enhanced tolerance to drought and salt stresses in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 324:111434. [PMID: 36029898 DOI: 10.1016/j.plantsci.2022.111434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/11/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Histone deacetylases (HDACs) are important enzymes participating in histone modification and epigenetic regulation of gene transcription. HDACs play an essential role in plant development and stress responses. To date, the role of HDACs is largely uninvestigated in woody plants. In this study, we identified a RPD3/HDA1-type HDAC, named 84KHDA909, from 84 K poplar (Populus alba × Populus glandulosa). The protein encoded by 84KHDA909 contained an HDAC domain. The 84KHDA909 was responsive to drought, salt, and cold stresses, but displayed different expression patterns. Overexpression of 84KHDA909 improved root growth, and conferred enhanced tolerance to drought and salt stresses in Arabidopsis. The transgenic plants displayed greater fresh weight, higher proline content and lower malondialdehyde (MDA) accumulation than the wild type. In the transgenic plants, transcript levels of several genes related to abscisic acid (ABA) biosynthesis and response were altered upon exposure to drought and salt stresses. Our results suggested that 84KHDA909 positively regulates drought and salt stress tolerance through ABA pathway.
Collapse
Affiliation(s)
- Xiao Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Hanbin Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Bing Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Yuxiang Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Xujun Ma
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
10
|
Gong D, He F, Liu J, Zhang C, Wang Y, Tian S, Sun C, Zhang X. Understanding of Hormonal Regulation in Rice Seed Germination. LIFE (BASEL, SWITZERLAND) 2022; 12:life12071021. [PMID: 35888110 PMCID: PMC9324290 DOI: 10.3390/life12071021] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/01/2022] [Accepted: 07/02/2022] [Indexed: 01/06/2023]
Abstract
Seed germination is a critical stage during the life cycle of plants. It is well known that germination is regulated by a series of internal and external factors, especially plant hormones. In Arabidopsis, many germination-related factors have been identified, while in rice, the important crop and monocot model species and the further molecular mechanisms and regulatory networks controlling germination still need to be elucidated. Hormonal signals, especially those of abscisic acid (ABA) and gibberellin (GA), play a dominant role in determining whether a seed germinates or not. The balance between the content and sensitivity of these two hormones is the key to the regulation of germination. In this review, we present the foundational knowledge of ABA and GA pathways obtained from germination research in Arabidopsis. Then, we highlight the current advances in the identification of the regulatory genes involved in ABA- or GA-mediated germination in rice. Furthermore, other plant hormones regulate seed germination, most likely by participating in the ABA or GA pathways. Finally, the results from some regulatory layers, including transcription factors, post-transcriptional regulations, and reactive oxygen species, are also discussed. This review aims to summarize our current understanding of the complex molecular networks involving the key roles of plant hormones in regulating the seed germination of rice.
Collapse
Affiliation(s)
- Diankai Gong
- Liaoning Rice Research Institute, Shenyang 110115, China; (D.G.); (C.Z.); (Y.W.); (S.T.); (C.S.)
| | - Fei He
- Tianjin Key Laboratory of Crop Genetics and Breeding, Tianjin Crop Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China; (F.H.); (J.L.)
| | - Jingyan Liu
- Tianjin Key Laboratory of Crop Genetics and Breeding, Tianjin Crop Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China; (F.H.); (J.L.)
| | - Cheng Zhang
- Liaoning Rice Research Institute, Shenyang 110115, China; (D.G.); (C.Z.); (Y.W.); (S.T.); (C.S.)
| | - Yanrong Wang
- Liaoning Rice Research Institute, Shenyang 110115, China; (D.G.); (C.Z.); (Y.W.); (S.T.); (C.S.)
| | - Shujun Tian
- Liaoning Rice Research Institute, Shenyang 110115, China; (D.G.); (C.Z.); (Y.W.); (S.T.); (C.S.)
| | - Chi Sun
- Liaoning Rice Research Institute, Shenyang 110115, China; (D.G.); (C.Z.); (Y.W.); (S.T.); (C.S.)
| | - Xue Zhang
- Liaoning Rice Research Institute, Shenyang 110115, China; (D.G.); (C.Z.); (Y.W.); (S.T.); (C.S.)
- Correspondence: ; Tel.: +86-150-4020-6835
| |
Collapse
|
11
|
CaSWC4 regulates the immunity-thermotolerance tradeoff by recruiting CabZIP63/CaWRKY40 to target genes and activating chromatin in pepper. PLoS Genet 2022; 18:e1010023. [PMID: 35226664 PMCID: PMC8884482 DOI: 10.1371/journal.pgen.1010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 01/10/2022] [Indexed: 11/19/2022] Open
Abstract
Pepper (Capsicum annuum) responds differently to high temperature stress (HTS) and Ralstonia solanacearum infection (RSI) but employs some shared transcription factors (TFs), such as CabZIP63 and CaWRKY40, in both cases. How the plant activates and balances these distinct responses, however, was unclear. Here, we show that the protein CaSWC4 interacts with CaRUVBL2 and CaTAF14b and they all act positively in pepper response to RSI and thermotolerance. CaSWC4 activates chromatin of immunity or thermotolerance related target genes of CaWRKY40 or CabZIP63 by promoting deposition of H2A.Z, H3K9ac and H4K5ac, simultaneously recruits CabZIP63 and CaWRKY40 through physical interaction and brings them to their targets (immunity- or thermotolerance-related genes) via binding AT-rich DNA element. The above process relies on the recruitment of CaRUVBL2 and TAF14 by CaSWC4 via physical interaction, which occurs at loci of immunity related target genes only when the plants are challenged with RSI, and at loci of thermotolerance related target genes only upon HTS. Collectively, our data suggest that CaSWC4 regulates rapid, accurate responses to both RSI and HTS by modulating chromatin of specific target genes opening and recruiting the TFs, CaRUVBL2 and CaTAF14b to the specific target genes, thereby helping achieve the balance between immunity and thermotolerance.
Collapse
|
12
|
Du Q, Fang Y, Jiang J, Chen M, Fu X, Yang Z, Luo L, Wu Q, Yang Q, Wang L, Qu Z, Li X, Xie X. Characterization of histone deacetylases and their roles in response to abiotic and PAMPs stresses in Sorghum bicolor. BMC Genomics 2022; 23:28. [PMID: 34991465 PMCID: PMC8739980 DOI: 10.1186/s12864-021-08229-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 12/01/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Histone deacetylases (HDACs) play an important role in the regulation of gene expression, which is indispensable in plant growth, development, and responses to environmental stresses. In Arabidopsis and rice, the molecular functions of HDACs have been well-described. However, systematic analysis of the HDAC gene family and gene expression in response to biotic and abiotic stresses has not been reported for sorghum. RESULTS We conducted a systematic analysis of the sorghum HDAC gene family and identified 19 SbHDACs mainly distributed on eight chromosomes. Phylogenetic tree analysis of SbHDACs showed that the gene family was divided into three subfamilies: RPD3/HDA1, SIR2, and HD2. Tissue-specific expression results showed that SbHDACs displayed different expression patterns in different tissues, indicating that these genes may perform different functions in growth and development. The expression pattern of SbHDACs under different stresses (high and low temperature, drought, osmotic and salt) and pathogen-associated molecular model (PAMPs) elf18, chitin, and flg22) indicated that SbHDAC genes may participate in adversity responses and biological stress defenses. Overexpression of SbHDA1, SbHDA3, SbHDT2 and SbSRT2 in Escherichia coli promoted the growth of recombinant cells under abiotic stress. Interestingly, we also showed that the sorghum acetylation level was enhanced when plants were under cold, heat, drought, osmotic and salt stresses. The findings will help us to understand the HDAC gene family in sorghum, and illuminate the molecular mechanism of the responses to abiotic and biotic stresses. CONCLUSION We have identified and classified 19 HDAC genes in sorghum. Our data provides insights into the evolution of the HDAC gene family and further support the hypothesis that these genes are important for the plant responses to abiotic and biotic stresses.
Collapse
Affiliation(s)
- Qiaoli Du
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, 550025, PR China
| | - Yuanpeng Fang
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, 550025, PR China
| | - Junmei Jiang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, PR China
| | - Meiqing Chen
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, 550025, PR China
| | - Xiaodong Fu
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, 550025, PR China
| | - Zaifu Yang
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, 550025, PR China
| | - Liting Luo
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, 550025, PR China
| | - Qijiao Wu
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, 550025, PR China
| | - Qian Yang
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, 550025, PR China
| | - Lujie Wang
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, 550025, PR China
| | - Zhiguang Qu
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, 550025, PR China
| | - Xiangyang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, PR China
| | - Xin Xie
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, 550025, PR China.
| |
Collapse
|
13
|
Ding X, Jia X, Xiang Y, Jiang W. Histone Modification and Chromatin Remodeling During the Seed Life Cycle. FRONTIERS IN PLANT SCIENCE 2022; 13:865361. [PMID: 35548305 PMCID: PMC9083068 DOI: 10.3389/fpls.2022.865361] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/21/2022] [Indexed: 05/16/2023]
Abstract
Seeds are essential for the reproduction and dispersion of spermatophytes. The seed life cycle from seed development to seedling establishment proceeds through a series of defined stages regulated by distinctive physiological and biochemical mechanisms. The role of histone modification and chromatin remodeling in seed behavior has been intensively studied in recent years. In this review, we summarize progress in elucidating the regulatory network of these two kinds of epigenetic regulation during the seed life cycle, especially in two model plants, rice and Arabidopsis. Particular emphasis is placed on epigenetic effects on primary tissue formation (e.g., the organized development of embryo and endosperm), pivotal downstream gene expression (e.g., transcription of DOG1 in seed dormancy and repression of seed maturation genes in seed-to-seedling transition), and environmental responses (e.g., seed germination in response to different environmental cues). Future prospects for understanding of intricate interplay of epigenetic pathways and the epigenetic mechanisms in other commercial species are also proposed.
Collapse
Affiliation(s)
- Xiali Ding
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences (CAAS), Shenzhen, China
| | - Xuhui Jia
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences (CAAS), Shenzhen, China
- College of Life Science and Technology, Guangxi University, Nanning, China
| | - Yong Xiang
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences (CAAS), Shenzhen, China
| | - Wenhui Jiang
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences (CAAS), Shenzhen, China
- *Correspondence: Wenhui Jiang,
| |
Collapse
|
14
|
Yung WS, Li MW, Sze CC, Wang Q, Lam HM. Histone modifications and chromatin remodelling in plants in response to salt stress. PHYSIOLOGIA PLANTARUM 2021; 173:1495-1513. [PMID: 34028035 DOI: 10.1111/ppl.13467] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/04/2021] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
In the face of global food security crises, it is necessary to boost agricultural production. One factor hampering the attempts to increase food production is elevated soil salinity, which can be due to salt that is naturally present in the soil or a consequence of excessive or prolonged irrigation or application of fertiliser. In response to environmental stresses, plants activate multiple molecular mechanisms, including the timely activation of stress-responsive transcriptional networks. However, in the case of salt stress, the combined effects of the initial osmotic shock and the subsequent ion-specific stress increase the complexity in the selective regulation of gene expressions involved in restoring or maintaining osmotic balance, ion homeostasis and reactive oxygen species scavenging. Histone modifications and chromatin remodelling are important epigenetic processes that regulate gene expressions by modifying the chromatin status and recruiting transcription regulators. In this review, we have specifically summarised the currently available knowledge on histone modifications and chromatin remodelling in relation to plant responses to salt stress. Current findings have revealed the functional importance of chromatin modifiers in regulating salt tolerance and identified the effector genes affected by epigenetic modifications, although counteraction between modifiers within the same family may occur. Emerging evidence has also illustrated the crosstalk between epigenetic modifications and hormone signalling pathways which involves formation of protein complexes. With an improved understanding of these processes, plant breeders will be able to develop alternative strategies using genome editing technologies for crop improvement.
Collapse
Affiliation(s)
- Wai-Shing Yung
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Man-Wah Li
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Ching-Ching Sze
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Qianwen Wang
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Hon-Ming Lam
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
15
|
Zhao J, Zhang W, da Silva JAT, Liu X, Duan J. Rice histone deacetylase HDA704 positively regulates drought and salt tolerance by controlling stomatal aperture and density. PLANTA 2021; 254:79. [PMID: 34542712 DOI: 10.1007/s00425-021-03729-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/10/2021] [Indexed: 05/26/2023]
Abstract
HDA704 enhances drought and salt tolerance via stomata-regulated mechanism. HDA704 negatively regulates stomatal aperture and density, repressing the transcription of DST and ABIL2 by histone deacetylation modification. Drought and salinity can damage crop growth and reduce yield. Stomata play an important role in abiotic stress tolerance. In this study on rice, we identified the RPD3/HDA1-type histone deacetylase HDA704 as a positive regulatory factor in drought and salt tolerance. HDA704 was induced by drought and salt stresses. Overexpression of HDA704 in transgenic rice promoted stomatal closure, decreased the number of stomata and slowed down the rate of water loss, consequently resulting in increased drought and salt tolerance. By contrast, knockdown of HDA704 in transgenic rice decreased stomatal closure and accelerated the rate of water loss, leading to decrease drought and salt tolerance. We detected the transcript expression of DST (Drought and Salt Tolerance) and ABIL2 (Abscisic Acid-insensitive Like2), which positively regulate stomatal aperture and density in rice. Our results showed that HDA704 directly binds to DST and ABIL2, repressing their expression via histone deacetylation modification. Collectively, these findings reveal that HDA704 positively regulates drought and salt tolerance by repressing the expression of DST and ABIL2. Our findings provide a new insight into the molecular mechanisms of stomata-regulated abiotic stress tolerance of plants.
Collapse
Affiliation(s)
- Jinhui Zhao
- College of Life Sciences and Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, China
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wei Zhang
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | | | - Xuncheng Liu
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China.
| | - Jun Duan
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
16
|
Abdellatef E, Kamal NM, Tsujimoto H. Tuning Beforehand: A Foresight on RNA Interference (RNAi) and In Vitro-Derived dsRNAs to Enhance Crop Resilience to Biotic and Abiotic Stresses. Int J Mol Sci 2021; 22:ijms22147687. [PMID: 34299307 PMCID: PMC8306419 DOI: 10.3390/ijms22147687] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 11/23/2022] Open
Abstract
Crop yield is severely affected by biotic and abiotic stresses. Plants adapt to these stresses mainly through gene expression reprogramming at the transcriptional and post-transcriptional levels. Recently, the exogenous application of double-stranded RNAs (dsRNAs) and RNA interference (RNAi) technology has emerged as a sustainable and publicly acceptable alternative to genetic transformation, hence, small RNAs (micro-RNAs and small interfering RNAs) have an important role in combating biotic and abiotic stresses in plants. RNAi limits the transcript level by either suppressing transcription (transcriptional gene silencing) or activating sequence-specific RNA degradation (post-transcriptional gene silencing). Using RNAi tools and their respective targets in abiotic stress responses in many crops is well documented. Many miRNAs families are reported in plant tolerance response or adaptation to drought, salinity, and temperature stresses. In biotic stress, the spray-induced gene silencing (SIGS) provides an intelligent method of using dsRNA as a trigger to silence target genes in pests and pathogens without producing side effects such as those caused by chemical pesticides. In this review, we focus on the potential of SIGS as the most recent application of RNAi in agriculture and point out the trends, challenges, and risks of production technologies. Additionally, we provide insights into the potential applications of exogenous RNAi against biotic stresses. We also review the current status of RNAi/miRNA tools and their respective targets on abiotic stress and the most common responsive miRNA families triggered by stress conditions in different crop species.
Collapse
Affiliation(s)
- Eltayb Abdellatef
- Commission for Biotechnology and Genetic Engineering, National Center for Research, P.O. Box 2404, Khartoum 11111, Sudan;
- Arid Land Research Center, Tottori University, 1390 Hamasaka, Tottori 680-0001, Japan;
- Behavioural and Chemical Ecology Unit, International Centre of Insect Physiology and Ecology, P.O. Box 30772, Nairobi 00100, Kenya
| | - Nasrein Mohamed Kamal
- Arid Land Research Center, Tottori University, 1390 Hamasaka, Tottori 680-0001, Japan;
- Agricultural Research Corporation, P.O. Box 30, Khartoum North 11111, Sudan
| | - Hisashi Tsujimoto
- Arid Land Research Center, Tottori University, 1390 Hamasaka, Tottori 680-0001, Japan;
- Correspondence:
| |
Collapse
|
17
|
Xu Q, Liu Q, Chen Z, Yue Y, Liu Y, Zhao Y, Zhou DX. Histone deacetylases control lysine acetylation of ribosomal proteins in rice. Nucleic Acids Res 2021; 49:4613-4628. [PMID: 33836077 PMCID: PMC8096213 DOI: 10.1093/nar/gkab244] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/21/2021] [Accepted: 04/08/2021] [Indexed: 01/04/2023] Open
Abstract
Lysine acetylation (Kac) is well known to occur in histones for chromatin function and epigenetic regulation. In addition to histones, Kac is also detected in a large number of proteins with diverse biological functions. However, Kac function and regulatory mechanism for most proteins are unclear. In this work, we studied mutation effects of rice genes encoding cytoplasm-localized histone deacetylases (HDAC) on protein acetylome and found that the HDAC protein HDA714 was a major deacetylase of the rice non-histone proteins including many ribosomal proteins (r-proteins) and translation factors that were extensively acetylated. HDA714 loss-of-function mutations increased Kac levels but reduced abundance of r-proteins. In vitro and in vivo experiments showed that HDA714 interacted with r-proteins and reduced their Kac. Substitutions of lysine by arginine (depleting Kac) in several r-proteins enhance, while mutations of lysine to glutamine (mimicking Kac) decrease their stability in transient expression system. Ribo-seq analysis revealed that the hda714 mutations resulted in increased ribosome stalling frequency. Collectively, the results uncover Kac as a functional posttranslational modification of r-proteins which is controlled by histone deacetylases, extending the role of Kac in gene expression to protein translational regulation.
Collapse
Affiliation(s)
- Qiutao Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Qian Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Zhengting Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Yaping Yue
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Yuan Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Dao-Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China.,Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, University Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
18
|
Skorupa M, Szczepanek J, Mazur J, Domagalski K, Tretyn A, Tyburski J. Salt stress and salt shock differently affect DNA methylation in salt-responsive genes in sugar beet and its wild, halophytic ancestor. PLoS One 2021; 16:e0251675. [PMID: 34043649 PMCID: PMC8158878 DOI: 10.1371/journal.pone.0251675] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/29/2021] [Indexed: 01/19/2023] Open
Abstract
Here we determined the impact of salt shock and salt stress on the level of DNA methylation in selected CpG islands localized in promoters or first exons of sixteen salt-responsive genes in beets. Two subspecies differing in salt tolerance were subjected for analysis, a moderately salt-tolerant sugar beet Beta vulgaris ssp. vulgaris cv. Huzar and a halophytic beet, Beta vulgaris ssp. maritima. The CpG island methylation status was determined. All target sequences were hyper- or hypomethylated under salt shock and/or salt stress in one or both beet subspecies. It was revealed that the genomic regions analyzed were highly methylated in both, the salt treated plants and untreated controls. Methylation of the target sequences changed in a salt-dependent manner, being affected by either one or both treatments. Under both shock and stress, the hypomethylation was a predominant response in sugar beet. In Beta vulgaris ssp. maritima, the hypermethylation occurred with higher frequency than hypomethylation, especially under salt stress and in the promoter-located CpG sites. Conversely, the hypomethylation of the promoter-located CpG sites predominated in sugar beet plants subjected to salt stress. This findings suggest that DNA methylation may be involved in salt-tolerance and transcriptomic response to salinity in beets.
Collapse
Affiliation(s)
- Monika Skorupa
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
- Chair of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
- * E-mail:
| | - Joanna Szczepanek
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
| | - Justyna Mazur
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
| | - Krzysztof Domagalski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
- Department of Immunology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Andrzej Tretyn
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
- Chair of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Jarosław Tyburski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
- Chair of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
19
|
Kumar V, Thakur JK, Prasad M. Histone acetylation dynamics regulating plant development and stress responses. Cell Mol Life Sci 2021; 78:4467-4486. [PMID: 33638653 PMCID: PMC11072255 DOI: 10.1007/s00018-021-03794-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/21/2021] [Accepted: 02/18/2021] [Indexed: 12/17/2022]
Abstract
Crop productivity is directly dependent on the growth and development of plants and their adaptation during different environmental stresses. Histone acetylation is an epigenetic modification that regulates numerous genes essential for various biological processes, including development and stress responses. Here, we have mainly discussed the impact of histone acetylation dynamics on vegetative growth, flower development, fruit ripening, biotic and abiotic stress responses. Besides, we have also emphasized the information gaps which are obligatory to be examined for understanding the complete role of histone acetylation dynamics in plants. A comprehensive knowledge about the histone acetylation dynamics will ultimately help to improve stress resistance and reduce yield losses in different crops due to climate changes.
Collapse
Affiliation(s)
- Verandra Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Jitendra K Thakur
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
20
|
Hou J, Ren R, Xiao H, Chen Z, Yu J, Zhang H, Shi Q, Hou H, He S, Li L. Characteristic and evolution of HAT and HDAC genes in Gramineae genomes and their expression analysis under diverse stress in Oryza sativa. PLANTA 2021; 253:72. [PMID: 33606144 DOI: 10.1007/s00425-021-03589-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Comprehensive characterization of Gramineae HATs and HDACs reveals their conservation and variation. The recent WGD/SD gene pairs in the CBP and RPD/HDA1 gene family may confer specific adaptive evolutionary changes. Expression of OsHAT and OsHDAC genes provides a new vision in different aspects of development and response to diverse stress. The histone acetylase (HAT) and histone deacetylase (HDAC) have been proven to be tightly linked to play a crucial role in plant growth, development and response to abiotic stress by regulating histone acetylation levels. However, the evolutionary dynamics and functional differentiation of HATs and HDACs in Gramineae remain largely unclear. In the present study, we identified 37 HAT genes and 110 HDAC genes in seven Gramineae genomes by a detailed analysis. Phylogenetic trees of these HAT and HDAC proteins were constructed to illustrate evolutionary relationship in Gramineae. Gene structure, protein property and protein motif composition illustrated the conservation and variation of HATs and HDACs in Gramineae. Gene duplication analysis suggested that recent whole genome duplication (WGD)/segmental duplication (SD) events contributed to the diversification of the CBP and RPD3/HDA1 gene family in Gramineae. Furthermore, promoter cis-element prediction indicated that OsHATs and OsHDACs were likely functional proteins and involved in various signaling pathways. Expression analysis by RNA-seq data showed that all OsHAT and OsHDAC genes were expressed in different tissues or development stages, revealing that they were ubiquitously expressed. In addition, we found that their expression patterns were altered in response to cold, drought, salt, light, abscisic acid (ABA), and indole-3-acetic acid (IAA) treatments. These findings provide the basis for further identification of candidate OsHAT and OsHDAC genes that may be utilized in regulating growth and development and improving crop tolerance to abiotic stress.
Collapse
Affiliation(s)
- Jiaqi Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ruifei Ren
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Huangzhuo Xiao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhenfei Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jinfu Yu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Haorui Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Qipeng Shi
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Haoli Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Shibin He
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China.
| | - Lijia Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
21
|
Zhao J, He Y, Huang S, Wang Z. Advances in the Identification of Quantitative Trait Loci and Genes Involved in Seed Vigor in Rice. FRONTIERS IN PLANT SCIENCE 2021; 12:659307. [PMID: 34335643 PMCID: PMC8316977 DOI: 10.3389/fpls.2021.659307] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/22/2021] [Indexed: 05/08/2023]
Abstract
Seed vigor is a complex trait, including the seed germination, seedling emergence, and growth, as well as seed storability and stress tolerance, which is important for direct seeding in rice. Seed vigor is established during seed development, and its level is decreased during seed storage. Seed vigor is influenced by genetic and environmental factors during seed development, storage, and germination stages. A lot of factors, such as nutrient reserves, seed dying, seed dormancy, seed deterioration, stress conditions, and seed treatments, will influence seed vigor during seed development to germination stages. This review highlights the current advances on the identification of quantitative trait loci (QTLs) and regulatory genes involved in seed vigor at seed development, storage, and germination stages in rice. These identified QTLs and regulatory genes will contribute to the improvement of seed vigor by breeding, biotechnological, and treatment approaches.
Collapse
|
22
|
Ullah F, Xu Q, Zhao Y, Zhou DX. Histone deacetylase HDA710 controls salt tolerance by regulating ABA signaling in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 63:451-467. [PMID: 33289304 DOI: 10.1111/jipb.13042] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/30/2020] [Indexed: 05/08/2023]
Abstract
Plants have evolved numerous mechanisms that assist them in withstanding environmental stresses. Histone deacetylases (HDACs) play crucial roles in plant stress responses; however, their regulatory mechanisms remain poorly understood. Here, we explored the function of HDA710/OsHDAC2, a member of the HDAC RPD3/HDA1 family, in stress tolerance in rice (Oryza sativa). We established that HDA710 localizes to both the nucleus and cytoplasm and is involved in regulating the acetylation of histone H3 and H4, specifically targeting H4K5 and H4K16 under normal conditions. HDA710 transcript accumulation levels were strongly induced by abiotic stresses including drought and salinity, as well as by the phytohormones jasmonic acid (JA) and abscisic acid (ABA). hda710 knockout mutant plants showed enhanced salinity tolerance and reduced ABA sensitivity, whereas transgenic plants overexpressing HDA710 displayed the opposite phenotypes. Moreover, ABA- and salt-stress-responsive genes, such as OsLEA3, OsABI5, OsbZIP72, and OsNHX1, were upregulated in hda710 compared with wild-type plants. These expression differences corresponded with higher levels of histone H4 acetylation in gene promoter regions in hda710 compared with the wild type under ABA and salt-stress treatment. Collectively, these results suggest that HDA710 is involved in regulating ABA- and salt-stress-responsive genes by altering H4 acetylation levels in their promoters. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Farhan Ullah
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agriculture University, Wuhan, 430030, China
| | - Qiutao Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agriculture University, Wuhan, 430030, China
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agriculture University, Wuhan, 430030, China
| | - Dao-Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agriculture University, Wuhan, 430030, China
- Institute of Plant Science of Paris-Saclay (IPS2), University Paris-Saclay, CNRS, INRAE, 91405, Orsay, France
| |
Collapse
|
23
|
Epigenetics and epigenomics: underlying mechanisms, relevance, and implications in crop improvement. Funct Integr Genomics 2020; 20:739-761. [PMID: 33089419 DOI: 10.1007/s10142-020-00756-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 01/21/2023]
Abstract
Epigenetics is defined as changes in gene expression that are not associated with changes in DNA sequence but due to the result of methylation of DNA and post-translational modifications to the histones. These epigenetic modifications are known to regulate gene expression by bringing changes in the chromatin state, which underlies plant development and shapes phenotypic plasticity in responses to the environment and internal cues. This review articulates the role of histone modifications and DNA methylation in modulating biotic and abiotic stresses, as well as crop improvement. It also highlights the possibility of engineering epigenomes and epigenome-based predictive models for improving agronomic traits.
Collapse
|
24
|
Yuan L, Dai H, Zheng S, Huang R, Tong H. Genome-wide identification of the HDAC family proteins and functional characterization of CsHD2C, a HD2-type histone deacetylase gene in tea plant (Camellia sinensis L. O. Kuntze). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:898-913. [PMID: 32916640 DOI: 10.1016/j.plaphy.2020.07.047] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/24/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
The histone deacetylases (HDACs) are involved in growth, development and stress responses in many plants. However, the functions of HDACs in tea plant (Camellia sinensis L. O. Kuntze) and other woody plants remain unclear. Here, 18 CsHDAC genes were identified by genome-wide analysis in tea plant. The phylogenetic analysis demonstrated that the CsHDAC proteins were divided into three subfamilies, namely, the RPD3/HDA1 subfamily (8 members), the SIR2 subfamily (4 members) and the plant specific HD2 subfamily (6 members). The expression patterns showed that most members of CsHDACs family were regulated by different abiotic stress. High correlation was found between the expression of the CsHDACs and the accumulation of theanine, catechin, EGCG and other metabolites in tea plant. Most of the CsHDAC proteins were negative regulators. We further studied a specific gene CsHD2C (NCBI-ID: KY364373) in tea plant, which is the homolog of AtHD2C, encoded a protein of 306 aa. CsHD2C was highly expressed in leaves, young buds and stems. The transcription of CsHD2C was inhibited by ABA, NaCl and low temperature. It was found localized in the nucleus when fused with a YFP reporter gene. Overexpression of CsHD2C can rescue the phenotype related to different abiotic stresses in the mutant of AtHD2C in Arabidopsis. The stress-responsive genes RD29A, RD29B, ABI1 and ABI2 were also investigated to understand the regulating role of CsHD2C under abiotic stresses. We also found that CsHD2C could renew the change of acetylation level for histone H4 and the RNAP-II occupancy accumulation in the promoter of abiotic stress responses gene in the hd2c Arabidopsis mutant. Together, our results suggested that CsHD2C may act as a positive regulator in abiotic stress responses in tea plant.
Collapse
Affiliation(s)
- Lianyu Yuan
- College of Food Science, Southwest University, Chongqing, 400715, China.
| | - Hongwei Dai
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Shuting Zheng
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Rui Huang
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - HuaRong Tong
- College of Food Science, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
25
|
Zhang J, Wu A, Wei H, Hao P, Zhang Q, Tian M, Yang X, Cheng S, Fu X, Ma L, Wang H, Yu S. Genome-wide identification and expression patterns analysis of the RPD3/HDA1 gene family in cotton. BMC Genomics 2020; 21:643. [PMID: 32948145 PMCID: PMC7501681 DOI: 10.1186/s12864-020-07069-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 09/14/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Histone deacetylases (HDACs) catalyze histone deacetylation and suppress gene transcription during various cellular processes. Within the superfamily of HDACs, RPD3/HDA1-type HDACs are the most studied, and it is reported that RPD3 genes play crucial roles in plant growth and physiological processes. However, there is a lack of systematic research on the RPD3/HDA1 gene family in cotton. RESULTS In this study, genome-wide analysis identified 9, 9, 18, and 18 RPD3 genes in Gossypium raimondii, G. arboreum, G. hirsutum, and G. barbadense, respectively. This gene family was divided into 4 subfamilies through phylogenetic analysis. The exon-intron structure and conserved motif analysis revealed high conservation in each branch of the cotton RPD3 genes. Collinearity analysis indicated that segmental duplication was the primary driving force during the expansion of the RPD3 gene family in cotton. There was at least one presumed cis-element related to plant hormones in the promoter regions of all GhRPD3 genes, especially MeJA- and ABA-responsive elements, which have more members than other hormone-relevant elements. The expression patterns showed that most GhRPD3 genes had relatively high expression levels in floral organs and performed higher expression in early-maturity cotton compared with late-maturity cotton during flower bud differentiation. In addition, the expression of GhRPD3 genes could be significantly induced by one or more abiotic stresses as well as exogenous application of MeJA or ABA. CONCLUSIONS Our findings reveal that GhRPD3 genes may be involved in flower bud differentiation and resistance to abiotic stresses, which provides a basis for further functional verification of GhRPD3 genes in cotton development and a foundation for breeding better early-maturity cotton cultivars in the future.
Collapse
Affiliation(s)
- Jingjing Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Aimin Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Pengbo Hao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Qi Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Miaomiao Tian
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Xu Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Shuaishuai Cheng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Xiaokang Fu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Liang Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Hantao Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| | - Shuxun Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| |
Collapse
|
26
|
Zhang K, Yu L, Pang X, Cao H, Si H, Zang J, Xing J, Dong J. In silico analysis of maize HDACs with an emphasis on their response to biotic and abiotic stresses. PeerJ 2020; 8:e8539. [PMID: 32095360 PMCID: PMC7023831 DOI: 10.7717/peerj.8539] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 01/09/2020] [Indexed: 01/20/2023] Open
Abstract
Histone deacetylases (HDACs) are key epigenetic factors in regulating chromatin structure and gene expression in multiple aspects of plant growth, development, and response to abiotic or biotic stresses. Many studies on systematic analysis and molecular function of HDACs in Arabidopsis and rice have been conducted. However, systematic analysis of HDAC gene family and gene expression in response to abiotic and biotic stresses has not yet been reported. In this study, a systematic analysis of the HDAC gene family in maize was performed and 18 ZmHDACs distributed on nine chromosomes were identified. Phylogenetic analysis of ZmHDACs showed that this gene family could be divided into RPD3/HDA1, SIR2, and HD2 groups. Tissue-specific expression results revealed that ZmHDACs exhibited diverse expression patterns in different tissues, indicating that these genes might have diversified functions in growth and development. Expression pattern of ZmHDACs in hormone treatment and inoculation experiment suggested that several ZmHDACs might be involved in jasmonic acid or salicylic acid signaling pathway and defense response. Interestingly, HDAC genes were downregulated under heat stress, and immunoblotting results demonstrated that histones H3K9ac and H4K5ac levels were increased under heat stress. These results provide insights into ZmHDACs, which could help to reveal their functions in controlling maize development and responses to abiotic or biotic stresses.
Collapse
Affiliation(s)
- Kang Zhang
- College of Life Science, Hebei Agricultrual University, Baoding, Hebei, China.,Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultrual University, Baoding, Hebei, China
| | - Lu Yu
- College of Life Science, Hebei Agricultrual University, Baoding, Hebei, China.,Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultrual University, Baoding, Hebei, China
| | - Xi Pang
- College of Life Science, Hebei Agricultrual University, Baoding, Hebei, China.,Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultrual University, Baoding, Hebei, China
| | - Hongzhe Cao
- College of Life Science, Hebei Agricultrual University, Baoding, Hebei, China.,Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultrual University, Baoding, Hebei, China
| | - Helong Si
- College of Life Science, Hebei Agricultrual University, Baoding, Hebei, China.,Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultrual University, Baoding, Hebei, China
| | - Jinping Zang
- College of Life Science, Hebei Agricultrual University, Baoding, Hebei, China.,Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultrual University, Baoding, Hebei, China
| | - Jihong Xing
- College of Life Science, Hebei Agricultrual University, Baoding, Hebei, China.,Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultrual University, Baoding, Hebei, China
| | - Jingao Dong
- College of Life Science, Hebei Agricultrual University, Baoding, Hebei, China.,Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultrual University, Baoding, Hebei, China
| |
Collapse
|
27
|
Histone Deacetylase (HDAC) Gene Family in Allotetraploid Cotton and Its Diploid Progenitors: In Silico Identification, Molecular Characterization, and Gene Expression Analysis under Multiple Abiotic Stresses, DNA Damage and Phytohormone Treatments. Int J Mol Sci 2020; 21:ijms21010321. [PMID: 31947720 PMCID: PMC6981504 DOI: 10.3390/ijms21010321] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/31/2019] [Accepted: 01/01/2020] [Indexed: 01/11/2023] Open
Abstract
Histone deacetylases (HDACs) play a significant role in a plant’s development and response to various environmental stimuli by regulating the gene transcription. However, HDACs remain unidentified in cotton. In this study, a total of 29 HDACs were identified in allotetraploid Gossypium hirsutum, while 15 and 13 HDACs were identified in Gossypium arboretum and Gossypium raimondii, respectively. Gossypium HDACs were classified into three groups (reduced potassium dependency 3 (RPD3)/HDA1, HD2-like, and Sir2-like (SRT) based on their sequences, and Gossypium HDACs within each subgroup shared a similar gene structure, conserved catalytic domains and motifs. Further analysis revealed that Gossypium HDACs were under a strong purifying selection and were unevenly distributed on their chromosomes. Gene expression data revealed that G. hirsutumHDACs were differentially expressed in various vegetative and reproductive tissues, as well as at different developmental stages of cotton fiber. Furthermore, some G. hirsutum HDACs were co-localized with quantitative trait loci (QTLs) and single-nucleotide polymorphism (SNPs) of fiber-related traits, indicating their function in fiber-related traits. We also showed that G. hirsutum HDACs were differentially regulated in response to plant hormones (abscisic acid (ABA) and auxin), DNA damage agent (methyl methanesulfonate (MMS)), and abiotic stresses (cold, salt, heavy metals and drought), indicating the functional diversity and specification of HDACs in response to developmental and environmental cues. In brief, our results provide fundamental information regarding G.hirsutumHDACs and highlight their potential functions in cotton growth, fiber development and stress adaptations, which will be helpful for devising innovative strategies for the improvement of cotton fiber and stress tolerance.
Collapse
|
28
|
Lu Y, Xu Q, Liu Y, Yu Y, Cheng ZY, Zhao Y, Zhou DX. Dynamics and functional interplay of histone lysine butyrylation, crotonylation, and acetylation in rice under starvation and submergence. Genome Biol 2018; 19:144. [PMID: 30253806 PMCID: PMC6154804 DOI: 10.1186/s13059-018-1533-y] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 09/10/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Histone lysine acylations by short-chain fatty acids are distinct from the widely studied histone lysine acetylation in chromatin, although both modifications are regulated by primary metabolism in mammalian cells. It remains unknown whether and how histone acylation and acetylation interact to regulate gene expression in plants that have distinct regulatory pathways of primary metabolism. RESULTS We identify 4 lysine butyrylation (Kbu) sites (H3K14, H4K12, H2BK42, and H2BK134) and 45 crotonylation (Kcr) sites on rice histones by mass spectrometry. Comparative analysis of genome-wide Kbu and Kcr and H3K9ac in combination with RNA sequencing reveals 25,306 genes marked by Kbu and Kcr in rice and more than 95% of H3K9ac-marked genes are marked by both. Kbu and Kcr are enriched at the 5' region of expressed genes. In rice under starvation and submergence, Kbu and Kcr appear to be less dynamic and display changes in different sets of genes compared to H3K9ac. Furthermore, Kbu seems to preferentially poise gene activation by external stresses, rather than internal circadian rhythm which has been shown to be tightly associated with H3K9ac. In addition, we show that rice sirtuin histone deacetylase (SRT2) is involved in the removal of Kcr. CONCLUSION Kbu, Kcr, and H3K9ac redundantly mark a large number of active genes but display different responses to external and internal signals. Thus, the proportion of rice histone lysine acetylation and acylation is dynamically regulated by environmental and metabolic cues, which may represent an epigenetic mechanism to fine-tune gene expression for plant adaptation.
Collapse
Affiliation(s)
- Yue Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiutao Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuan Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yue Yu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | | | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dao-Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
- Institute of Plant Science of Paris-Saclay (IPS2), CNRS, INRA, University Paris-sud 11, University Paris-Saclay, 91405, Orsay, France.
| |
Collapse
|
29
|
Kumar V, Singh B, Singh SK, Rai KM, Singh SP, Sable A, Pant P, Saxena G, Sawant SV. Role of GhHDA5 in H3K9 deacetylation and fiber initiation in Gossypium hirsutum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:1069-1083. [PMID: 29952050 DOI: 10.1111/tpj.14011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 06/12/2018] [Accepted: 06/19/2018] [Indexed: 05/28/2023]
Abstract
Cotton fibers are single-celled trichomes that initiate from the epidermal cells of the ovules at or before anthesis. Here, we identified that the histone deacetylase (HDAC) activity is essential for proper cotton fiber initiation. We further identified 15 HDACs homoeologs in each of the A- and D-subgenomes of Gossypium hirsutum. Few of these HDAC homoeologs expressed preferentially during the early stages of fiber development [-1, 0 and 6 days post-anthesis (DPA)]. Among them, GhHDA5 expressed significantly at the time of fiber initiation (-1 and 0 DPA). The in vitro assay for HDAC activity indicated that GhHDA5 primarily deacetylates H3K9 acetylation marks. Moreover, the reduced expression of GhHDA5 also suppresses fiber initiation and lint yield in the RNA interference (RNAi) lines. The 0 DPA ovules of GhHDA5RNAi lines also showed alterations in reactive oxygen species homeostasis and elevated autophagic cell death in the developing fibers. The differentially expressed genes (DEGs) identified through RNA-seq of RNAi line (DEP12) and their pathway analysis showed that GhHDA5 modulates expression of many stress and development-related genes involved in fiber development. The reduced expression of GhHDA5 in the RNAi lines also resulted in H3K9 hyper-acetylation on the promoter region of few DEGs assessed by chromatin immunoprecipitation assay. The positively co-expressed genes with GhHDA5 showed cumulative higher expression during fiber initiation, and gene ontology annotation suggests their involvement in fiber development. Furthermore, the predicted protein interaction network in the positively co-expressed genes indicates HDA5 modulates fiber initiation-specific gene expression through a complex involving reported repressors.
Collapse
Affiliation(s)
- Verandra Kumar
- Plant Molecular Biology Laboratory, National Botanical Research Institute, Lucknow, India
- Department of Botany, University of Lucknow, Lucknow, India
| | - Babita Singh
- Plant Molecular Biology Laboratory, National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NBRI, Lucknow, India
| | - Sunil K Singh
- Plant Molecular Biology Laboratory, National Botanical Research Institute, Lucknow, India
| | - Krishan M Rai
- Plant Molecular Biology Laboratory, National Botanical Research Institute, Lucknow, India
| | - Surendra P Singh
- Plant Molecular Biology Laboratory, National Botanical Research Institute, Lucknow, India
- Department of Botany, University of Lucknow, Lucknow, India
| | - Anshulika Sable
- Plant Molecular Biology Laboratory, National Botanical Research Institute, Lucknow, India
| | - Poonam Pant
- Plant Molecular Biology Laboratory, National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NBRI, Lucknow, India
| | - Gauri Saxena
- Department of Botany, University of Lucknow, Lucknow, India
| | - Samir V Sawant
- Plant Molecular Biology Laboratory, National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NBRI, Lucknow, India
| |
Collapse
|
30
|
Ma X, Zhang B, Liu C, Tong B, Guan T, Xia D. Expression of a populus histone deacetylase gene 84KHDA903 in tobacco enhances drought tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 265:1-11. [PMID: 29223330 DOI: 10.1016/j.plantsci.2017.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/21/2017] [Accepted: 09/12/2017] [Indexed: 05/07/2023]
Abstract
Histone deacetylases (HDACs) play a key role in regulating plant growth, development and stress responses. However, functions of HDACs in woody plants are largely unknown. In this study, a novel gene encoding a RPD3/HDA1-type histone deacetylase was cloned from 84K poplar (Populus alba×Populus glandulosa) and designated as 84KHDA903. The 84KHDA903 encodes a protein composed of 500 amino acid residues, which contains a conserved HDAC domain. Transient expression of 84KHDA903 in onion epidermal cells suggested that it was exclusively localized in nucleus. The 84KHDA903 exhibited different expression patterns under drought, salt and ABA treatments. The expression of 84KHDA903 was responsive to drought and ABA but not to salt. To understand the function of 84KHDA903 in stress responses, the 84KHDA903 gene was transformed into tobacco. The expression of 84KHDA903 in tobacco increased the tolerance of transgenic seeds to mannitol but not to salt. In adult stage, the 84KHDA903-expressing tobacco exhibited drought tolerance and showed strong capacity to recover after drought. During the recovery period, the stress-responsive genes including NtDREB4, NtDREB3 and NtLEA5 were induced to be highly expressed in the 84KHDA903 transgenic plants in contrast to wild-type plants. Taken together, for the first time, we reported a RPD3/HDA1-type histone deacetylase from poplar, 84KHDA903, which acted as a positive regulator in drought stress responses.
Collapse
Affiliation(s)
- Xujun Ma
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Northeast Forestry University, Harbin 150040, China.
| | - Bing Zhang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Northeast Forestry University, Harbin 150040, China
| | - Chunjuan Liu
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Northeast Forestry University, Harbin 150040, China
| | - Botong Tong
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Northeast Forestry University, Harbin 150040, China
| | - Tao Guan
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Northeast Forestry University, Harbin 150040, China
| | - Dean Xia
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
31
|
Banerjee A, Roychoudhury A. Epigenetic regulation during salinity and drought stress in plants: Histone modifications and DNA methylation. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.plgene.2017.05.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
32
|
Characterization and Expression Analysis of Common Bean Histone Deacetylase 6 during Development and Cold Stress Response. Int J Genomics 2017; 2017:2502691. [PMID: 28127547 PMCID: PMC5239983 DOI: 10.1155/2017/2502691] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 10/07/2016] [Accepted: 10/19/2016] [Indexed: 11/30/2022] Open
Abstract
Histone deacetylases (HDACs) are important regulators of gene transcription thus controlling multiple cellular processes. Despite its essential role in plants, HDA6 is yet to be validated in common bean. In this study, we show that HDA6 is involved in plant development and stress response. Differential expression of HDA6 was determined in various tissues and the expression was seen to be upregulated with plant age (seedling < flowering < maturity). Higher expression was observed in flowers and pods than in stem, leaf, and root. Upregulation of HDA6 gene during cold stress implies its prominent role in abiotic stress. Furthermore, the HDA6 gene was isolated from three common bean genotypes and sequence analyses revealed homology with functionally characterized homologs in model species. The 53 kDa translated product was detected using an HDA6 specific antibody and recombinant protein overexpressed in Escherichia coli showed HDAC activity in vitro. To our knowledge, this is the first report in the agriculturally important crop common bean describing the functional characterization and biological role of HDA6.
Collapse
|
33
|
Luo M, Cheng K, Xu Y, Yang S, Wu K. Plant Responses to Abiotic Stress Regulated by Histone Deacetylases. FRONTIERS IN PLANT SCIENCE 2017; 8:2147. [PMID: 29326743 PMCID: PMC5737090 DOI: 10.3389/fpls.2017.02147] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/04/2017] [Indexed: 05/18/2023]
Abstract
In eukaryotic cells, histone acetylation and deacetylation play an important role in the regulation of gene expression. Histone acetylation levels are modulated by histone acetyltransferases and histone deacetylases (HDACs). Recent studies indicate that HDACs play essential roles in the regulation of gene expression in plant response to environmental stress. In this review, we discussed the recent advance regarding the plant HDACs and their functions in the regulation of abiotic stress responses. The role of HDACs in autophagy was also discussed.
Collapse
Affiliation(s)
- Ming Luo
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- *Correspondence: Ming Luo, Keqiang Wu,
| | - Kai Cheng
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yingchao Xu
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Songguang Yang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Life Science, Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Keqiang Wu
- College of Life Science, Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
- *Correspondence: Ming Luo, Keqiang Wu,
| |
Collapse
|
34
|
Liu H, Able AJ, Able JA. SMARTER De-Stressed Cereal Breeding. TRENDS IN PLANT SCIENCE 2016; 21:909-925. [PMID: 27514453 DOI: 10.1016/j.tplants.2016.07.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/30/2016] [Accepted: 07/05/2016] [Indexed: 05/06/2023]
Abstract
In cereal breeding programs, improved yield potential and stability are ultimate goals when developing new varieties. To facilitate achieving these goals, reproductive success under stressful growing conditions is of the highest priority. In recent times, small RNA (sRNA)-mediated pathways have been associated with the regulation of genes involved in stress adaptation and reproduction in both model plants and several cereals. Reproductive and physiological traits such as flowering time, reproductive branching, and root architecture can be manipulated by sRNA regulatory modules. We review sRNA-mediated pathways that could be exploited to expand crop diversity with adaptive traits and, in particular, the development of high-yielding stress-tolerant cereals: SMARTER cereal breeding through 'Small RNA-Mediated Adaptation of Reproductive Targets in Epigenetic Regulation'.
Collapse
Affiliation(s)
- Haipei Liu
- School of Agriculture, Food and Wine, University of Adelaide, Waite Research Institute, PMB 1, Glen Osmond, South Australia 5064, Australia
| | - Amanda J Able
- School of Agriculture, Food and Wine, University of Adelaide, Waite Research Institute, PMB 1, Glen Osmond, South Australia 5064, Australia
| | - Jason A Able
- School of Agriculture, Food and Wine, University of Adelaide, Waite Research Institute, PMB 1, Glen Osmond, South Australia 5064, Australia.
| |
Collapse
|
35
|
Asensi-Fabado MA, Amtmann A, Perrella G. Plant responses to abiotic stress: The chromatin context of transcriptional regulation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:106-122. [PMID: 27487458 DOI: 10.1016/j.bbagrm.2016.07.015] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/09/2016] [Accepted: 07/26/2016] [Indexed: 12/29/2022]
Abstract
The ability of plants to cope with abiotic environmental stresses such as drought, salinity, heat, cold or flooding relies on flexible mechanisms for re-programming gene expression. Over recent years it has become apparent that transcriptional regulation needs to be understood within its structural context. Chromatin, the assembly of DNA with histone proteins, generates a local higher-order structure that impacts on the accessibility and effectiveness of the transcriptional machinery, as well as providing a hub for multiple protein interactions. Several studies have shown that chromatin features such as histone variants and post-translational histone modifications are altered by environmental stress, and they could therefore be primary stress targets that initiate transcriptional stress responses. Alternatively, they could act downstream of stress-induced transcription factors as an integral part of transcriptional activity. A few experimental studies have addressed this 'chicken-and-egg' problem in plants and other systems, but to date the causal relationship between dynamic chromatin changes and transcriptional responses under stress is still unclear. In this review we have collated the existing information on concurrent epigenetic and transcriptional responses of plants to abiotic stress, and we have assessed the evidence using a simple theoretical framework of causality scenarios. This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer.
Collapse
Affiliation(s)
| | - Anna Amtmann
- Plant Science Group, MCSB, MVLS, University of Glasgow, Glasgow, G128QQ, UK
| | - Giorgio Perrella
- Plant Science Group, MCSB, MVLS, University of Glasgow, Glasgow, G128QQ, UK.
| |
Collapse
|