1
|
Ji YW, Wen XY, Tang HP, Su WT, Xia ZY, Lei SQ. Necroptosis: a significant and promising target for intervention of cardiovascular disease. Biochem Pharmacol 2025; 237:116951. [PMID: 40268251 DOI: 10.1016/j.bcp.2025.116951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/18/2025] [Accepted: 04/14/2025] [Indexed: 04/25/2025]
Abstract
Due to changes in dietary structures, population aging, and the exacerbation of metabolic risk factors, the incidence of cardiovascular disease continues to rise annually, posing a significant health burden worldwide. Cell death plays a crucial role in the onset and progression of cardiovascular diseases. As a regulated endpoint encountered by cells under adverse stress conditions, the execution of necroptosis is regulated by classicalpathways, the calmodulin-dependent protein kinases (CaMK) pathway, and mitochondria-dependent pathways, and implicated in various cardiovascular diseases, including atherosclerosis, myocardial infarction, myocardial ischemia-reperfusion injury (IRI), heart failure, diabetic cardiomyopathy, dilated cardiomyopathy, hypertrophic cardiomyopathy, chemotherapy drug-induced cardiomyopathy, and abdominal aortic aneurysm (AAA). To further investigate potential therapeutic targets for cardiovascular diseases, we also analyzed the main molecules and their inhibitors involved in necroptosis in an effort to uncover insights for treatment.
Collapse
Affiliation(s)
- Yan-Wei Ji
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xin-Yu Wen
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - He-Peng Tang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wa-Ting Su
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhong-Yuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shao-Qing Lei
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
2
|
Chen Y, Luo X, Xu B, Bao X, Jia H, Yu B. Oxidative Stress-Mediated Programmed Cell Death: a Potential Therapy Target for Atherosclerosis. Cardiovasc Drugs Ther 2024; 38:819-832. [PMID: 36522550 DOI: 10.1007/s10557-022-07414-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/04/2022] [Indexed: 12/23/2022]
Abstract
Nowadays, as a type of orderly and active death determined by genes, programmed cell death (PCD), including apoptosis, pyroptosis, ferroptosis, and necroptosis, has attracted much attention owing to its participation in numerous chronic cardiovascular diseases, especially atherosclerosis (AS), a canonical chronic inflammatory disease featured by lipid metabolism disturbance. Abundant researches have reported that PCD under distinct internal conditions fulfills different roles of atherosclerotic pathological processes, including lipid core expansion, leukocyte adhesion, and infiltration. Noteworthy, emerging evidence recently has also suggested that oxidative stress (OS), an imbalance of antioxidants and oxygen free radicals, has the potential to mediate PCD occurrence via multiple ways, including oxidization and deubiquitination. Interestingly, more recently, several studies have proposed that the mediating mechanisms could effect on the atherosclerotic initiation and progression significantly from variable aspects, so it is of great clinical importance to clarify how OS-mediated PCD and AS interact. Herein, with the aim of summarizing potential and sufficient atherosclerotic therapy targets, we seek to provide extensive analysis of the specific regulatory mechanisms of PCD mediated by OS and their multifaceted effects on the entire pathological atherosclerotic progression.
Collapse
Affiliation(s)
- Yuwu Chen
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Xing Luo
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Biyi Xu
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Xiaoyi Bao
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Haibo Jia
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China.
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, People's Republic of China.
| | - Bo Yu
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, People's Republic of China
| |
Collapse
|
3
|
Liu X, Lu F, Chen X. Examination of the role of necroptotic damage-associated molecular patterns in tissue fibrosis. Front Immunol 2022; 13:886374. [PMID: 36110858 PMCID: PMC9468929 DOI: 10.3389/fimmu.2022.886374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/08/2022] [Indexed: 11/29/2022] Open
Abstract
Fibrosis is defined as the abnormal and excessive deposition of extracellular matrix (ECM) components, which leads to tissue or organ dysfunction and failure. However, the pathological mechanisms underlying fibrosis remain unclear. The inflammatory response induced by tissue injury is closely associated with tissue fibrosis. Recently, an increasing number of studies have linked necroptosis to inflammation and fibrosis. Necroptosis is a type of preprogrammed death caused by death receptors, interferons, Toll-like receptors, intracellular RNA and DNA sensors, and other mediators. These activate receptor-interacting protein kinase (RIPK) 1, which recruits and phosphorylates RIPK3. RIPK3 then phosphorylates a mixed lineage kinase domain-like protein and causes its oligomerization, leading to rapid plasma membrane permeabilization, the release of cellular contents, and exposure of damage-associated molecular patterns (DAMPs). DAMPs, as inflammatory mediators, are involved in the loss of balance between extensive inflammation and tissue regeneration, leading to remodeling, the hallmark of fibrosis. In this review, we discuss the role of necroptotic DAMPs in tissue fibrosis and highlight the inflammatory responses induced by DAMPs in tissue ECM remodeling. By summarizing the existing literature on this topic, we underscore the gaps in the current research, providing a framework for future investigations into the relationship among necroptosis, DAMPs, and fibrosis, as well as a reference for later transformation into clinical treatment.
Collapse
Affiliation(s)
| | - Feng Lu
- *Correspondence: Feng Lu, ; Xihang Chen,
| | | |
Collapse
|
4
|
Cai Y, Zhou Y, Li Z, Xia P, ChenFu X, Shi A, Zhang J, Yu P. Non-coding RNAs in necroptosis, pyroptosis, and ferroptosis in cardiovascular diseases. Front Cardiovasc Med 2022; 9:909716. [PMID: 35990979 PMCID: PMC9386081 DOI: 10.3389/fcvm.2022.909716] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/04/2022] [Indexed: 11/18/2022] Open
Abstract
Accumulating evidence has proved that non-coding RNAs (ncRNAs) play a critical role in the genetic programming and gene regulation of cardiovascular diseases (CVDs). Cardiovascular disease morbidity and mortality are rising and have become a primary public health issue that requires immediate resolution through effective intervention. Numerous studies have revealed that new types of cell death, such as pyroptosis, necroptosis, and ferroptosis, play critical cellular roles in CVD progression. It is worth noting that ncRNAs are critical novel regulators of cardiovascular risk factors and cell functions by mediating pyroptosis, necroptosis, and ferroptosis. Thus, ncRNAs can be regarded as promising therapeutic targets for treating and diagnosing cardiovascular diseases. Recently, there has been a surge of interest in the mediation of ncRNAs on three types of cell death in regulating tissue homeostasis and pathophysiological conditions in CVDs. Although our understanding of ncRNAs remains in its infancy, the studies reviewed here may provide important new insights into how ncRNAs interact with CVDs. This review summarizes what is known about the functions of ncRNAs in modulating cell death-associated CVDs and their role in CVDs, as well as their current limitations and future prospects.
Collapse
Affiliation(s)
- Yuxi Cai
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yiwen Zhou
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhangwang Li
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Panpan Xia
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Metabolism and Endocrinology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of National Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Xinxi ChenFu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Metabolism and Endocrinology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of National Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Ao Shi
- School of Medicine, University of Nicosia, Nicosia, Cyprus
- School of Medicine, St. George University of London, London, United Kingdom
| | - Jing Zhang
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jing Zhang
| | - Peng Yu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Metabolism and Endocrinology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- *Correspondence: Peng Yu
| |
Collapse
|
5
|
Zhou J, Xu J, Li P, Sun S, Kadier Y, Zhou S, Cheng A. Necroptosis and Viral Myocarditis: Tumor Necrosis Factor α as a Novel Biomarker for the Diagnosis of Viral Myocarditis. Front Cell Dev Biol 2022; 10:826904. [PMID: 35602592 PMCID: PMC9114881 DOI: 10.3389/fcell.2022.826904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Programmed cell death (PCD), including necroptosis, has emerged as a significant pathway in cardiovascular diseases. The infection of viral myocarditis (VMC) could cause cardiomyocytes degeneration, necrosis, and immune-inflammatory myocardial response. In this review, we summarized and evaluated the available evidence on the pathogenesis, molecule mechanism, diagnosis, and potential treatment strategies of viral myocarditis, with a special focus on the novel mechanism of necroptosis for cardiomyocytes death. Studies have shown that tumor necrosis factor-alpha (TNF-α) is an important cytokine involved in the activation of necroptosis; an elevated level of TNF-α is continually reported in patients suffering from VMC, implicating its involvement in the pathogenesis of VMC. It is of great interest to explore the clinical implication of TNF-α. We subsequently conducted a meta-analysis on the efficacy of serum TNF-α expression level and its diagnostic accuracy on acute viral myocarditis detection. Taken together, the review demonstrates a compelling role of necroptosis involved in the pathogenesis of VMC. Further, applying TNF-α as a serological marker for the diagnosis of VMC may be a useful strategy.
Collapse
Affiliation(s)
- Jin Zhou
- Tianjin Chest Hospital, Tianjin, China
| | - Jing Xu
- Tianjin Chest Hospital, Tianjin, China
| | - Peng Li
- Tianjin Chest Hospital, Tianjin, China
| | - Shan Sun
- Tianjin Chest Hospital, Tianjin, China
| | | | - Shiying Zhou
- Hotan District People’s Hospital, Tianjin, China
| | - Aijuan Cheng
- Tianjin Chest Hospital, Tianjin, China
- *Correspondence: Aijuan Cheng,
| |
Collapse
|
6
|
Liu C, Jiang Z, Pan Z, Yang L. The Function, Regulation and Mechanism of Programmed Cell Death of Macrophages in Atherosclerosis. Front Cell Dev Biol 2022; 9:809516. [PMID: 35087837 PMCID: PMC8789260 DOI: 10.3389/fcell.2021.809516] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/16/2021] [Indexed: 11/30/2022] Open
Abstract
Atherosclerosis is a chronic progressive inflammatory vascular disease, which is an important pathological basis for inducing a variety of cardio-cerebrovascular diseases. As a kind of inflammatory cells, macrophages are the most abundant immune cells in atherosclerotic plaques and participate in the whole process of atherosclerosis and are the most abundant immune cells in atherosclerotic plaques. Recent studies have shown that programmed cell death plays a critical role in the progression of many diseases. At present, it is generally believed that the programmed death of macrophages can affect the development and stability of atherosclerotic vulnerable plaques, and the intervention of macrophage death may become the target of atherosclerotic therapy. This article reviews the role of macrophage programmed cell death in the progression of atherosclerosis and the latest therapeutic strategies targeting macrophage death within plaques.
Collapse
Affiliation(s)
- Chang Liu
- Department of Pharmacology, School of Medicine, Nankai University, Tianjin, China
| | - Zecheng Jiang
- Department of Pharmacology, School of Medicine, Nankai University, Tianjin, China
| | | | - Liang Yang
- Department of Pharmacology, School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
7
|
Leng Y, Zhang Y, Li X, Wang Z, Zhuang Q, Lu Y. Receptor Interacting Protein Kinases 1/3: The Potential Therapeutic Target for Cardiovascular Inflammatory Diseases. Front Pharmacol 2021; 12:762334. [PMID: 34867386 PMCID: PMC8637748 DOI: 10.3389/fphar.2021.762334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
The receptor interacting protein kinases 1/3 (RIPK1/3) have emerged as the key mediators in cell death pathways and inflammatory signaling, whose ubiquitination, phosphorylation, and inhibition could regulate the necroptosis and apoptosis effectually. Recently, more and more studies show great interest in the mechanisms and the regulator of RIPK1/3-mediated inflammatory response and in the physiopathogenesis of cardiovascular diseases. The crosstalk of autophagy and necroptosis in cardiomyocyte death is a nonnegligible conversation of cell death. We elaborated on RIPK1/3-mediated necroptosis, pathways involved, the latest regulatory molecules and therapeutic targets in terms of ischemia reperfusion, myocardial remodeling, myocarditis, atherosclerosis, abdominal aortic aneurysm, and cardiovascular transplantation, etc.
Collapse
Affiliation(s)
- Yiming Leng
- Clinical Research Center of the 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Ying Zhang
- Transplantation Center of the 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Xinyu Li
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Zeyu Wang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Quan Zhuang
- Transplantation Center of the 3rd Xiangya Hospital, Central South University, Changsha, China.,Research Center of National Health Ministry on Transplantation Medicine, Changsha, China
| | - Yao Lu
- Clinical Research Center of the 3rd Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
8
|
Martínez-González J, Cañes L, Alonso J, Ballester-Servera C, Rodríguez-Sinovas A, Corrales I, Rodríguez C. NR4A3: A Key Nuclear Receptor in Vascular Biology, Cardiovascular Remodeling, and Beyond. Int J Mol Sci 2021; 22:ijms222111371. [PMID: 34768801 PMCID: PMC8583700 DOI: 10.3390/ijms222111371] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022] Open
Abstract
The mechanisms committed in the activation and response of vascular and inflammatory immune cells play a major role in tissue remodeling in cardiovascular diseases (CVDs) such as atherosclerosis, pulmonary arterial hypertension, and abdominal aortic aneurysm. Cardiovascular remodeling entails interrelated cellular processes (proliferation, survival/apoptosis, inflammation, extracellular matrix (ECM) synthesis/degradation, redox homeostasis, etc.) coordinately regulated by a reduced number of transcription factors. Nuclear receptors of the subfamily 4 group A (NR4A) have recently emerged as key master genes in multiple cellular processes and vital functions of different organs, and have been involved in a variety of high-incidence human pathologies including atherosclerosis and other CVDs. This paper reviews the major findings involving NR4A3 (Neuron-derived Orphan Receptor 1, NOR-1) in the cardiovascular remodeling operating in these diseases.
Collapse
Affiliation(s)
- José Martínez-González
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain; (L.C.); (J.A.); (C.B.-S.)
- CIBER de Enfermedades Cardiovasculares, ISCIII, 28029 Madrid, Spain;
- Instituto de Investigación Biomédica Sant Pau, 08041 Barcelona, Spain
- Correspondence: (J.M.-G.); (C.R.); Tel.: +34-93-5565896 (J.M.-G.); +34-93-5565897 (C.R.)
| | - Laia Cañes
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain; (L.C.); (J.A.); (C.B.-S.)
- CIBER de Enfermedades Cardiovasculares, ISCIII, 28029 Madrid, Spain;
- Instituto de Investigación Biomédica Sant Pau, 08041 Barcelona, Spain
| | - Judith Alonso
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain; (L.C.); (J.A.); (C.B.-S.)
- CIBER de Enfermedades Cardiovasculares, ISCIII, 28029 Madrid, Spain;
- Instituto de Investigación Biomédica Sant Pau, 08041 Barcelona, Spain
| | - Carme Ballester-Servera
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain; (L.C.); (J.A.); (C.B.-S.)
- CIBER de Enfermedades Cardiovasculares, ISCIII, 28029 Madrid, Spain;
- Instituto de Investigación Biomédica Sant Pau, 08041 Barcelona, Spain
| | - Antonio Rodríguez-Sinovas
- CIBER de Enfermedades Cardiovasculares, ISCIII, 28029 Madrid, Spain;
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Irene Corrales
- Laboratorio de Coagulopatías Congénitas, Banc de Sang i Teixits (BST), 08005 Barcelona, Spain;
- Medicina Transfusional, Vall d’Hebron Institut de Recerca-Universitat Autònoma de Barcelona (VHIR-UAB), 08035 Barcelona, Spain
| | - Cristina Rodríguez
- CIBER de Enfermedades Cardiovasculares, ISCIII, 28029 Madrid, Spain;
- Instituto de Investigación Biomédica Sant Pau, 08041 Barcelona, Spain
- Institut de Recerca Hospital de la Santa Creu i Sant Pau (IRHSCSP), 08041 Barcelona, Spain
- Correspondence: (J.M.-G.); (C.R.); Tel.: +34-93-5565896 (J.M.-G.); +34-93-5565897 (C.R.)
| |
Collapse
|
9
|
Gupta K, Liu B. PLK1-mediated S369 phosphorylation of RIPK3 during G2 and M phases enables its ripoptosome incorporation and activity. iScience 2021; 24:102320. [PMID: 33870135 PMCID: PMC8040267 DOI: 10.1016/j.isci.2021.102320] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/23/2020] [Accepted: 03/15/2021] [Indexed: 01/25/2023] Open
Abstract
Receptor-interacting protein kinase 3 executes a form of regulated necrosis called necroptosis. Upon induction of an altered conformation by chemical inhibitors or via mutations in its kinase site, RIPK3 associates with a multiprotein complex called the ripoptosome-a signaling platform containing FADD, RIPK1, caspase 8, and cFLIP-and becomes decisive in the execution of apoptosis. Surprisingly, in contexts not completely understood, the ripoptosome itself cleaves RIPK3, highlighting an apparent conundrum on how RIPK3 fulfills its role via the complex responsible for its own degradation. Recently, ripoptosome assembly was found to occur in mitosis where we found elevated RIPK3 levels. We now report that PLK1 directly associates with RIPK3 and phosphorylates it at S369 as cells enter mitosis. G2/M phase RIPK3 has pro-apoptotic activity but upon release from ripoptosome, can trigger necroptosis. Taken together, phosphorylation of RIPK3 at S369 prevents its ripoptosome-mediated cleavage thereby retaining its pro-death activity during mitosis.
Collapse
Affiliation(s)
- Kartik Gupta
- Division of Vascular Surgery, Department of Surgery, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Bo Liu
- Division of Vascular Surgery, Department of Surgery, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA.,Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
10
|
Cell death in chronic inflammation: breaking the cycle to treat rheumatic disease. Nat Rev Rheumatol 2020; 16:496-513. [PMID: 32641743 DOI: 10.1038/s41584-020-0455-8] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2020] [Indexed: 02/08/2023]
Abstract
Cell death is a vital process that occurs in billions of cells in the human body every day. This process helps maintain tissue homeostasis, supports recovery from acute injury, deals with infection and regulates immunity. Cell death can also provoke inflammatory responses, and lytic forms of cell death can incite inflammation. Loss of cell membrane integrity leads to the uncontrolled release of damage-associated molecular patterns (DAMPs), which are normally sequestered inside cells. Such DAMPs increase local inflammation and promote the production of cytokines and chemokines that modulate the innate immune response. Cell death can be both a consequence and a cause of inflammation, which can be difficult to distinguish in chronic diseases. Despite this caveat, excessive or poorly regulated cell death is increasingly recognized as a contributor to chronic inflammation in rheumatic disease and other inflammatory conditions. Drugs that inhibit cell death could, therefore, be used therapeutically for the treatment of these diseases, and programmes to develop such inhibitors are already underway. In this Review, we outline pathways for the major cell death programmes (apoptosis, necroptosis, pyroptosis and NETosis) and their potential roles in chronic inflammation. We also discuss current and developing therapies that target the cell death machinery.
Collapse
|
11
|
Implications of Necroptosis for Cardiovascular Diseases. Curr Med Sci 2019; 39:513-522. [PMID: 31346984 DOI: 10.1007/s11596-019-2067-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 03/01/2019] [Indexed: 02/08/2023]
Abstract
Necroptosis is a non-apoptotic programmed cell death pathway, which causes necrosis-like morphologic changes and triggers inflammation in the surrounding tissues. Accumulating evidence has demonstrated that necroptosis is involved in a number of pathological processes that lead to cardiovascular diseases. However, the exact molecular pathways linking them remain unknown. Herein, this review summarizes the necroptosis-related pathways involved in the development of various cardiovascular diseases, including atherosclerosis, cardiac ischemia-reperfusion injury, cardiac hypertrophy, dilated cardiomyopathy and myocardial infarction, and may shed light on the diagnosis and treatment of these diseases.
Collapse
|
12
|
Novikova OA, Laktionov PP, Karpenko AA. The roles of mechanotransduction, vascular wall cells, and blood cells in atheroma induction. Vascular 2018; 27:98-109. [PMID: 30157718 DOI: 10.1177/1708538118796063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND This paper describes and analyzes the cellular and molecular mechanisms underlying atherosclerosis development. In particular, the roles of monocytes/macrophages, smooth muscle cells, and vascular endothelium in the formation of stable/unstable atheromatous plaques, and the contributions of some processes to atheroma formation. METHODS AND RESULTS In this study we analyzed endothelium: function, dysfunction, and involvement into atherogenesis; cell proteins mediating mechanotransduction; proatherogenic role of monocytes; the role of macrophages in the development of unstable atheromatous plaques and smooth muscle cell origin in atherosclerosis. Smooth muscle cell phenotypic switching; their functioning; the ability to retain cholesterol and lipoproteins as well as secretion of pro- and anti-inflammatory molecules and extracellular matrix proteins, their response to extracellular stimuli secreted by other cells, and the effect of smooth muscle cells on the cells surrounding atheromatous plaques are fundamentally important for the insight into atherosclerosis molecular basis. CONCLUSION Atheromatous plaque transcriptome studies will be helpful in the identification of the key genes involved in atheroma transformation and development as well as discovery of the new targets for diagnosis and therapy.
Collapse
Affiliation(s)
- Olga A Novikova
- 1 Department of Vascular and Hybrid Surgery, National Medical Research Institute Academician E.N. Meshalkin National Medical Research Center, Ministry of Health of Russian Federation, Novosibirsk, Russian Federation
| | - Pavel P Laktionov
- 2 Laboratory of Molecular Medicine, SB RAS Institute of Chemical Biology and Fundamental Medicine; E.N. Meshalkin National Medical Research Center, Ministry of Health of Russian Federation, Novosibirsk, Russian Federation.,3 E.N. Meshalkin National Medical Research Center, Ministry of Health of Russian Federation, Novosibirsk, Russian Federation
| | - Andrey A Karpenko
- 1 Department of Vascular and Hybrid Surgery, National Medical Research Institute Academician E.N. Meshalkin National Medical Research Center, Ministry of Health of Russian Federation, Novosibirsk, Russian Federation
| |
Collapse
|
13
|
Novikova OA, Laktionov PP, Karpenko AA. Mechanisms Underlying Atheroma Induction: The Roles of Mechanotransduction, Vascular Wall Cells, and Blood Cells. Ann Vasc Surg 2018; 53:224-233. [PMID: 30012457 DOI: 10.1016/j.avsg.2018.04.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/13/2018] [Accepted: 04/19/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND The objective of this article is to review cellular mechanism of atherosclerosis (AS) development. The pathogenesis of AS comprises a sequence of biological events leading to build up of a dense or loose atheromatous plaque (AP). METHODS In this review, we tried to attempt to analyze the cellular mechanisms underlying AS development, including the roles of monocytes/macrophages and smooth muscle cells in the formation of stable/unstable APs. RESULTS As a rule, APs are formed in the regions with irregular blood flow; both mechanical perturbations of the vascular wall and several biological events contribute to plaque formation. Blood lipid/lipoprotein deposition, recruitment of monocytes/macrophages, foam cell formation, migration and proliferation of smooth muscle cells, secretion of extracellular matrix, and formation of the connective tissue in plaques are among the latter events. CONCLUSIONS The review briefs the contributions of different processes to atheroma formation and describes the molecular mechanisms involved in AS development. AP transcriptome studies will be helpful in the identification of the key genes involved in atheroma transformation and development as well as discovery of the new targets for diagnosis and therapy.
Collapse
Affiliation(s)
- Olga A Novikova
- E.N. Meshalkin National Medical Research Center, Ministry of Health of Russian Federation, Novosibirsk, Russian Federation.
| | - Pavel P Laktionov
- Laboratory of Molecular Medicine, SB RAS Institute of Chemical Biology and Fundamental Medicine, E.N. Meshalkin National Medical Research Center, Ministry of Health of Russian Federation, Novosibirsk, Russian Federation
| | - Andrey A Karpenko
- E.N. Meshalkin National Medical Research Center, Ministry of Health of Russian Federation, Novosibirsk, Russian Federation
| |
Collapse
|
14
|
Zhe-Wei S, Li-Sha G, Yue-Chun L. The Role of Necroptosis in Cardiovascular Disease. Front Pharmacol 2018; 9:721. [PMID: 30034339 PMCID: PMC6043645 DOI: 10.3389/fphar.2018.00721] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 06/13/2018] [Indexed: 01/14/2023] Open
Abstract
A newly discovered mechanism of cell death, programmed necrosis (necroptosis), combines features of both necrosis and apoptosis. Necroptosis is tightly modulated by a series of characteristic signaling pathways. Activating necroptosis by ligands of death receptors requires the kinase activity of receptor-interacting protein 1 (RIP1), which mediates the activation of receptor-interacting protein 3 (RIP3) and mixed lineage kinase domain-like (MLKL) two critical downstream mediators of necroptosis. Recently, different cytokines have been found participating in this mechanism of cell death. Necroptosis has been proposed as an important component to the pathophysiology of heart disease such as vascular atherosclerosis, ischemia-reperfusion injury, myocardial infarction and cardiac remodeling. Targeting necroptosis signaling pathways may provide therapeutic benefit in the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Shi Zhe-Wei
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ge Li-Sha
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Li Yue-Chun
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
15
|
Abstract
Necrosis is a hallmark of several widespread diseases or their direct complications. In the past decade, we learned that necrosis can be a regulated process that is potentially druggable. RIPK3- and MLKL-mediated necroptosis represents by far the best studied pathway of regulated necrosis. During necroptosis, the release of damage-associated molecular patterns (DAMPs) drives a phenomenon referred to as necroinflammation, a common consequence of necrosis. However, most studies of regulated necrosis investigated cell lines in vitro in a cell autonomous manner, which represents a non-physiological situation. Conclusions based on such work might not necessarily be transferrable to disease states in which synchronized, non-cell autonomous effects occur. Here, we summarize the current knowledge of the pathophysiological relevance of necroptosis in vivo, and in light of this understanding, we reassess the morphological classification of necrosis that is generally used by pathologists. Along these lines, we discuss the paucity of data implicating necroptosis in human disease. Finally, the in vivo relevance of non-necroptotic forms of necrosis, such as ferroptosis, is addressed.
Collapse
Affiliation(s)
- Wulf Tonnus
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Andreas Linkermann
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW To highlight recent studies that describe novel inflammatory and signaling mechanisms that regulate macrophage death in atherosclerosis. RECENT FINDINGS Macrophages contribute to all stages of atherosclerosis. The traditional dogma states that in homeostatic conditions, macrophages undergo apoptosis and are efficiently phagocytosed to be cleared by a process called efferocytosis. In advanced atherosclerosis, however, defective efferocytosis results in secondary necrosis of these uncleared apoptotic cells, which ultimately contributes to the formation of the characteristic necrotic core and the vulnerable plaque. Here, we outline the different types of lesional macrophage death: apoptosis, autophagic and the newly defined necroptosis (i.e. a type of programmed necrosis). Recent discoveries demonstrate that macrophage necroptosis directly contributes to necrotic core formation and plaque instability. Further, promoting the resolution of inflammation using preresolving mediators has been shown to enhance efferocytosis and decrease plaque vulnerability. Finally, the canonical 'don't eat me' signal CD47 has recently been described as playing an important role in atherosclerotic lesion progression by impairing efficient efferocytosis. Although we have made significant strides in improving our understanding of cell death and clearance mechanisms in atherosclerosis, there still remains unanswered questions as to how these pathways can be harnessed using therapeutics to promote lesion regression and disease stability. SUMMARY Improving our understanding of the mechanisms that regulate macrophage death in atherosclerosis, in particular apoptosis, necroptosis and efferocytosis, will provide novel therapeutic opportunities to resolve atherosclerosis and promote plaque stability.
Collapse
Affiliation(s)
| | - Katey J Rayner
- University of Ottawa Heart Institute, Ottawa, Canada
- Correspondence to: Denuja Karunakaran, PhD or Katey J Rayner, PhD, Cardiometabolic microRNA Laboratory, University of Ottawa Heart Institute, 40 Ruskin St, Ottawa, K1Y 4W7. ; or
| | - Denuja Karunakaran
- University of Ottawa Heart Institute, Ottawa, Canada
- Correspondence to: Denuja Karunakaran, PhD or Katey J Rayner, PhD, Cardiometabolic microRNA Laboratory, University of Ottawa Heart Institute, 40 Ruskin St, Ottawa, K1Y 4W7. ; or
| |
Collapse
|
17
|
Wegner KW, Saleh D, Degterev A. Complex Pathologic Roles of RIPK1 and RIPK3: Moving Beyond Necroptosis. Trends Pharmacol Sci 2017; 38:202-225. [PMID: 28126382 DOI: 10.1016/j.tips.2016.12.005] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/09/2016] [Accepted: 12/15/2016] [Indexed: 02/07/2023]
Abstract
A process of regulated necrosis, termed necroptosis, has been recognized as a major contributor to cell death and inflammation occurring under a wide range of pathologic settings. The core event in necroptosis is the formation of the detergent-insoluble 'necrosome' complex of homologous Ser/Thr kinases, receptor protein interacting kinase 1 (RIPK1) and receptor interacting protein kinase 3 (RIPK3), which promotes phosphorylation of a key prodeath effector, mixed lineage kinase domain-like (MLKL), by RIPK3. Core necroptosis mediators are under multiple controls, which have been a subject of intense investigation. Additional, non-necroptotic functions of these factors, primarily in controlling apoptosis and inflammatory responses, have also begun to emerge. This review will provide an overview of the current understanding of the human disease relevance of this pathway, and potential therapeutic strategies, targeting necroptosis mediators in various pathologies.
Collapse
Affiliation(s)
- Kelby W Wegner
- Master of Science in Biomedical Sciences Program, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Danish Saleh
- Medical Scientist Training Program and Program in Neuroscience, Sackler Graduate School, Tufts University, Boston, MA 02111, USA
| | - Alexei Degterev
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|