1
|
Manokawinchoke J, Limraksasin P, Limjeerajarus CN, Limjeerajarus N, Samaranayake LP, Egusa H, Osathanon T. Mechanical Force Induces Osteogenic Differentiation of Murine Induced Pluripotent Stem Cells via TGF-β Signalling. Orthod Craniofac Res 2025. [PMID: 40238110 DOI: 10.1111/ocr.12933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/07/2024] [Accepted: 04/08/2025] [Indexed: 04/18/2025]
Abstract
OBJECTIVES Mechanical forces are pivotal in regulating various cellular responses, particularly in periodontal ligament and bone. However, the effects of mechanical force are contingent upon several factors, including force types, duration, magnitude and the differentiation stage of the cells. The present study investigated the impact of intermittent compressive force (ICF) on osteogenic differentiation in murine gingiva-derived induced pluripotent stem cells (miPS). MATERIALS AND METHODS Adherent retinoic acid-treated miPS were subjected to ICF in a serum-free medium for 24 h. Real-time polymerase chain reaction, western blot analysis and immunofluorescence staining were employed to evaluate mRNA and protein expression patterns. In vitro mineralisation was assessed using alizarin red S staining. RESULTS Our findings revealed that ICF treatment induced the expression of osteogenic markers, including Runx2, Col1a1, Opn and Dlx5. Furthermore, ICF promoted the release of extracellular adenosine triphosphate (ATP) at 24 h. Pretreatment with ICF increased in vitro mineralisation, while ATP priming did not enhance mineralisation in adherent retinoic acid-treated miPS. A TGF-β inhibitor attenuated the ICF-upregulated Runx2, Col1a1, Opn and Dlx5 as well as the ICF-induced in vitro mineralisation. CONCLUSION Collectively, our results suggest that ICF can induce osteogenic differentiation of adherent retinoic acid-treated miPS, mediated through TGF-β signalling. Eventually, such information could be of value in controlling iPS responses during regenerative treatment applications.
Collapse
Affiliation(s)
- Jeeranan Manokawinchoke
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Department of Anatomy and Center of Excellence for Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Phoonsuk Limraksasin
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Department of Anatomy and Center of Excellence for Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Chalida N Limjeerajarus
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Nuttapol Limjeerajarus
- Office of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Lakshman P Samaranayake
- Office of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Thanaphum Osathanon
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Department of Anatomy and Center of Excellence for Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
2
|
Milovanovic P, Savic I, Popovic A, Grajic M. Ectopic calcifications in the musculoskeletal field: the basis for preventive and curative pharmacological strategies. Clin Rheumatol 2025; 44:869-886. [PMID: 39853559 DOI: 10.1007/s10067-025-07335-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/02/2025] [Accepted: 01/12/2025] [Indexed: 01/26/2025]
Abstract
Ectopic calcifications occur in tendons, ligaments, entheses, muscles, and fasciae, and are often associated with pain and inflammation. In clinical settings, these calcifications are commonly treated by physical therapy and/or surgical interventions. However, there is not enough understanding of pharmacological treatments as primary cures, supportive therapy to physical or surgical treatment, or even preventive measures to avoid or diminish the development of ectopic calcifications. Here, we summarize preclinical and clinical evidence for pharmacological candidates for treatment/prevention of ectopic calcification in the context of painful syndromes in the musculoskeletal field. Specifically, we discuss the potential mechanisms of nonsteroidal anti-inflammatory drugs, corticosteroids, H2-receptor blockers, bisphosphonates, minocycline, biologics, ACTH analogues, colchicine, calcium channel blockers, vitamins K2 and D, magnesium, zinc, curcumin, and phytates. Given that ectopic calcification is sometimes paradoxically associated with reduced bone mineralization, it appears particularly reasonable to employ strategies that can both inhibit ectopic calcification and promote bone mineralization, such as bisphosphonates and the combination of vitamin K2 and vitamin D, along with other supplements such as magnesium and zinc. Future studies need to test whether differential therapeutic approaches are needed in different phases of the disease and whether different mechanisms of ectopic calcification require different therapeutic strategies. A precondition for such approaches is further clinical and/or imaging delineation and differentiation of various types and phases of calcific diseases. Finally, it is essential to ensure that anti-calcification effects of new treatment strategies do not harm bone formation and skeletal mineralization.
Collapse
Affiliation(s)
- Petar Milovanovic
- Center of Bone Biology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ivana Savic
- Institute of Pathology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ana Popovic
- Center for Physical Medicine and Rehabilitation, University Clinical Center of Serbia, Belgrade, Serbia
| | - Mirko Grajic
- Center for Physical Medicine and Rehabilitation, University Clinical Center of Serbia, Belgrade, Serbia.
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
3
|
Alhaskawi A, Dong Y, Zou X, Zhou W, Ezzi SHA, Goutham Kota V, Hasan Abdulla Hasan Abdulla M, Abdalbary S, Lu H. Advancements in biomaterials and scaffold design for tendon repair and regeneration. J Appl Biomater Funct Mater 2025; 23:22808000241310684. [PMID: 40420476 DOI: 10.1177/22808000241310684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025] Open
Abstract
Tendon injuries present a significant clinical challenge due to their limited natural healing capacity and the mechanical demands placed on these tissues. This review provides a comprehensive evaluation of the current strategies and advancements in tendon repair and regeneration, focusing on biomaterial innovations and scaffold design. Through a systematic literature search of databases such as PubMed, Scopus, and Web of Science, key studies were analyzed to assess the efficacy of biocompatible materials like hydrogels, synthetic polymers, and fiber-reinforced scaffolds in promoting tendon healing. Emphasis is placed on the role of collagen fiber architecture, including fiber diameter, alignment, and crimping, in restoring the mechanical strength and functional properties of tendons. Additionally, the review highlights emerging techniques such as electrospinning, melt electrowriting, and hybrid textile methods that allow for precise scaffold designs mimicking native tendon structures. Cutting-edge approaches in regenerative medicine, including stem cell therapies, bioelectronic devices, and bioactive molecules, are also explored for their potential to enhance tendon repair. The findings underscore the transformative impact of these technologies on improving tendon biomechanics and functional recovery. Future research directions are outlined, aiming to overcome the current limitations in scaffold mechanical properties and integration at tendon-bone and tendon-muscle junctions. This review contributes to the development of more effective strategies for tendon regeneration, advancing both clinical outcomes and the field of orthopedic tissue engineering.
Collapse
Affiliation(s)
- Ahmad Alhaskawi
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang Province, P. R. China
| | - Yanzhao Dong
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang Province, P. R. China
| | - Xiaodi Zou
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang Province, P. R. China
- Department of Orthopedics, Zhejiang Chinese Medical University, The Second Affiliated School of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, P.R. China
| | - Weijie Zhou
- Department of Orthopedics, No. 903 Hospital of PLA Joint Logistic Support Force, Hangzhou, Zhejiang Province, P. R. China
| | - Sohaib Hasan Abdullah Ezzi
- Department of Orthopaedics, Third Xiangya Hospital, Central South University, Changsha, Hunan Province, P. R. China
| | - Vishnu Goutham Kota
- Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, P. R. China
| | | | - Sahar Abdalbary
- Faculty of Physical Therapy, Department of Orthopedic Physical Therapy, Nahda University in Beni Suef, Beni Suef, Egypt
| | - Hui Lu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang Province, P. R. China
| |
Collapse
|
4
|
Zamboulis DE, Marr N, Moustafa A, Meeson R, Orriss IR, Thorpe CT. Pathological calcification in canine tendon-derived cells is modulated by extracellular ATP. Vet Res Commun 2024; 48:1533-1543. [PMID: 38381244 PMCID: PMC11147865 DOI: 10.1007/s11259-024-10331-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/13/2024] [Indexed: 02/22/2024]
Abstract
Tendon calcification is a commonly associated with degenerative tendinopathy of the Achilles tendons in dogs. It is characterised by the formation of calcific deposits and is refractory to treatment, often re-forming after surgical removal. Little is known about its pathogenesis and therefore the aims of this study were to develop an in vitro model of canine tendon calcification and use this model to investigate mechanisms driving calcification. Cells from the canine Achilles tendon were cultured with different calcifying media to establish which conditions were best able to induce specific, cell-mediated calcification. Once optimum calcification conditions had been established, the effect of ATP treatment on calcification was assessed. Results revealed that 2 mM di-sodium phosphate combined with 2 mM calcium chloride provided the optimum calcifying conditions, increasing calcium deposition and expression of osteogenic-related genes similar to those observed in tendon calcification in vivo. ATP treatment inhibited calcification in a dose-dependent manner, reducing calcium deposition and increasing cell viability, while osteogenic-related genes were no longer upregulated. In conclusion, the in vitro model of canine tendon calcification developed in this study provides the ability to study mechanisms driving tendon calcification, demonstrating that ATP plays a role in modulating tendon calcification that should be explored further in future studies.
Collapse
Affiliation(s)
- Danae E Zamboulis
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Camden, London, UK
- Department of Clinical Sciences, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124, Thessaolinki, Greece
| | - Neil Marr
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Camden, London, UK
- Department of Clinical Science and Services, Royal Veterinary College, London, UK
| | - Alaa Moustafa
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Camden, London, UK
- Department of Surgery, Anaesthesiology, and Radiology, Faculty of Veterinary Medicine, Kafr Elshiekh University, Kafr Elshiekh, Egypt
| | - Richard Meeson
- Department of Clinical Science and Services, Royal Veterinary College, London, UK
| | - Isabel R Orriss
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Camden, London, UK
| | - Chavaunne T Thorpe
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Camden, London, UK.
| |
Collapse
|
5
|
Deng YQ, Gao M, Lu D, Liu QP, Zhang RJ, Ye J, Zhao J, Feng ZH, Li QZ, Zhang H. Compound-composed Chinese medicine of Huachansu triggers apoptosis of gastric cancer cells through increase of reactive oxygen species levels and suppression of proteasome activities. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155169. [PMID: 37992493 DOI: 10.1016/j.phymed.2023.155169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND Huachansu (HCS), a known Chinese patent drug extracted from the Chinese toad skin, is frequently used for the treatment of various advanced cancers, especially gastric cancer, due to the good therapeutic effect. However, it is rather difficult to clarify the active substances and molecular mechanisms involved owing to the lack of appropriate research strategies. We recently proposed the concept and research ideas of compound-composed Chinese medicine formula. PURPOSE To discover compound-composed Chinese medicine from Huachansu and to explore its mechanism of action in inducing apoptosis of gastric cancer cells. METHOD Network pharmacology combined with serum pharmacochemistry was utilized to screen the predominant active constituents from HCS against gastric cancer. Then, the compound-composed Chinese medicine of HCS (CCMH) was prepared according to their relative contents in serum. The pharmacological effects and potential mechanisms for CCMH were investigated by assays for cell viability, cell cycle, apoptosis, mitochondrial membrane potential (MMP), proteomics, reactive oxygen species (ROS), N-Acetylcysteine (NAC) antagonism, proteasome activity, and western blot. RESULTS CCMH was comprised of arenobufagin (11.14%), bufalin (18.67%), bufotalin (7.33%), cinobufagin (16.67%), cinobufotalin (16.74%), gamabufotalin (8.45%), resibufogenin (12.03%), and telocinobufagin (8.97%). CCMH evidently induced proliferation inhibition, cell cycle arrest, apoptosis, and MMP collapse in gastric cancer cells, possessing the better activities than HCS. Proteomic analysis showed that CCMH influenced ROS pathway, ubiquitin proteasome system, and PI3K/Akt and MAPK signaling pathways. CCMH markedly enhanced intracellular ROS levels in gastric cancer cells, which was reversed by NAC. Accordingly, NAC antagonized the apoptosis-inducing effect of CCMH. Significantly decreased proteasome 20S activity by CCMH was observed in gastric cancer cells. CCMH also regulated the expression of key proteins in PI3K/Akt and MAPK signaling pathways. CONCLUSION CCMH possesses more significant apoptotic induction effects on gastric cancer cells than HCS, which is achieved primarily through suppression of proteasome activities and increase of ROS levels, followed by regulating PI3K/Akt and MAPK signaling pathways. Network pharmacology combined with serum pharmacochemistry is an effective strategy for discovering compound-composed Chinese medicine from traditional Chinese medicine, which can help clarify the pharmacological substances and mechanisms of action for traditional Chinese medicine.
Collapse
Affiliation(s)
- Yi-Qing Deng
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Min Gao
- Yichuan Community Health Service Center, Putuo District, Shanghai 200065, China
| | - Dong Lu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qiu-Ping Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Run-Jing Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ji Ye
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Jing Zhao
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhi-Hui Feng
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Qi-Zhang Li
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| | - Hong Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| |
Collapse
|
6
|
Liu QP, Chen YY, Yu YY, An P, Xing YZ, Yang HX, Zhang YJ, Rahman K, Zhang L, Luan X, Zhang H. Bie-Jia-Ruan-Mai-Tang, a Chinese Medicine Formula, Inhibits Retinal Neovascularization in Diabetic Mice Through Inducing the Apoptosis of Retinal Vascular Endothelial Cells. Front Cardiovasc Med 2022; 9:959298. [PMID: 35903668 PMCID: PMC9314569 DOI: 10.3389/fcvm.2022.959298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/17/2022] [Indexed: 11/18/2022] Open
Abstract
Proliferative diabetic retinopathy (PDR) is one of the main complications of diabetes, mainly caused by the aberrant proliferation of retinal vascular endothelial cells and the formation of new blood vessels. Traditional Chinese medicines possess great potential in the prevention and treatment of PDR. Bie-Jia-Ruan-Mai-Tang (BJ), a Chinese medicine formula, has a good therapeutic effect on PDR clinically; however, the mechanism of action involved remains unclear. Therefore, we investigated the effect of BJ on PDR through in vitro and in vivo experiments. A diabetic mouse model with PDR was established by feeding a high-fat–high-glucose diet combined with an intraperitoneal injection of streptozotocin (STZ), while high-glucose-exposed human retinal capillary endothelial cells (HRCECs) were employed to mimic PDR in vitro. The in vivo experiments indicated that BJ inhibited the formation of acellular capillaries, decreased the expression of VEGF, and increased the level of ZO-1 in diabetic mice retina. In vitro experiments showed that high glucose significantly promoted cell viability and proliferation. However, BJ inhibited cell proliferation by cycle arrest in the S phase, thus leading to apoptosis; it also increased the production of ROS, decreased the mitochondrial membrane potential, reduced the ATP production, and also reduced the expressions of p-PI3K, p-AKT, and Bcl-xL, but increased the expressions of Bax and p-NF-κB. These results suggest that BJ induces the apoptosis of HRCECs exposed to high glucose through activating the mitochondrial death pathway by decreasing the PI3K/AKT signaling and increasing the NF-κB signaling to inhibit the formation of acellular capillaries in the retina, thus impeding the development of PDR.
Collapse
Affiliation(s)
- Qiu-Ping Liu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu-Ying Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuan-Yuan Yu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Pei An
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi-Zhuo Xing
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hong-Xuan Yang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yin-Jian Zhang
- Ophthalmology Department of Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Khalid Rahman
- School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Liverpool, United Kingdom
| | - Lei Zhang
- Department of Vascular Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Lei Zhang,
| | - Xin Luan
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Xin Luan,
| | - Hong Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Hong Zhang,
| |
Collapse
|
7
|
Zhang C, Liu N. Noncoding RNAs in the Glycolysis of Ovarian Cancer. Front Pharmacol 2022; 13:855488. [PMID: 35431949 PMCID: PMC9005897 DOI: 10.3389/fphar.2022.855488] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/15/2022] [Indexed: 01/11/2023] Open
Abstract
Energy metabolism reprogramming is the characteristic feature of tumors. The tumorigenesis, metastasis, and drug resistance of ovarian cancer (OC) is dependent on energy metabolism. Even under adequate oxygen conditions, OC cells tend to convert glucose to lactate, and glycolysis can rapidly produce ATP to meet their metabolic energy needs. Non-coding RNAs (ncRNAs) interact directly with DNA, RNA, and proteins to function as an essential regulatory in gene expression and tumor pathology. Studies have shown that ncRNAs regulate the process of glycolysis by interacting with the predominant glycolysis enzyme and cellular signaling pathway, participating in tumorigenesis and progression. This review summarizes the mechanism of ncRNAs regulation in glycolysis in OC and investigates potential therapeutic targets.
Collapse
Affiliation(s)
- Chunmei Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ning Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
8
|
Wong PC, Wang RY, Lu LS, Wang WR, Jang JSC, Wu JL, Su TY, Chang LH. Two-Step Approach Using Degradable Magnesium to Inhibit Surface Biofilm and Subsequently Kill Planktonic Bacteria. Biomedicines 2021; 9:biomedicines9111677. [PMID: 34829908 PMCID: PMC8615932 DOI: 10.3390/biomedicines9111677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
Bacterial infection remains a great risk in medical implantation surgery. In this paper, we found that degradable metals may be a feasible alternative option of antibacterial implantation materials. It is known that the spalling mechanism of magnesium (Mg) during degradation leads to Mg ions-induced alkaline environment, which is harmful to planktonic bacteria. In this study, we showed that alkaline pH environment is almost harmless to those adhesive bacteria protected in well-formed biofilms. Moreover, experimental results demonstrated that the biofilm formed in the place where Mg spalls are destroyed, releasing the covered bacteria to be planktonic in the alkaline environment. As a result, the colonization of biofilms continues to shrink during the degradation of Mg. It implies that if degradable metal is employed as implantation material, even if bacterial infection occurs, it may be possibly cured without second surgery.
Collapse
Affiliation(s)
- Pei-Chun Wong
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Orthopedics, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Orthopedics Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Ren-Yi Wang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (R.-Y.W.); (L.-S.L.)
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Long-Sheng Lu
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (R.-Y.W.); (L.-S.L.)
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Wei-Ru Wang
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan;
| | - Jason Shian-Ching Jang
- Department of Mechanical Engineering, National Central University, Taoyuan 32001, Taiwan
- Institute of Materials Science and Engineering, National Central University, Taoyuan 32001, Taiwan
- Correspondence: (J.S.-C.J.); (J.-L.W.); (T.-Y.S.); (L.-H.C.)
| | - Jia-Lin Wu
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Orthopedics, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Orthopedics Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Centers for Regional Anesthesia and Pain Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11600, Taiwan
- Correspondence: (J.S.-C.J.); (J.-L.W.); (T.-Y.S.); (L.-H.C.)
| | - Tai-Yuan Su
- Department Electrical Engineering, Yuan-Ze University, Chung-Li 32003, Taiwan
- Correspondence: (J.S.-C.J.); (J.-L.W.); (T.-Y.S.); (L.-H.C.)
| | - Ling-Hua Chang
- Department Electrical Engineering, Yuan-Ze University, Chung-Li 32003, Taiwan
- Correspondence: (J.S.-C.J.); (J.-L.W.); (T.-Y.S.); (L.-H.C.)
| |
Collapse
|
9
|
Siadat SM, Zamboulis DE, Thorpe CT, Ruberti JW, Connizzo BK. Tendon Extracellular Matrix Assembly, Maintenance and Dysregulation Throughout Life. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1348:45-103. [PMID: 34807415 DOI: 10.1007/978-3-030-80614-9_3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In his Lissner Award medal lecture in 2000, Stephen Cowin asked the question: "How is a tissue built?" It is not a new question, but it remains as relevant today as it did when it was asked 20 years ago. In fact, research on the organization and development of tissue structure has been a primary focus of tendon and ligament research for over two centuries. The tendon extracellular matrix (ECM) is critical to overall tissue function; it gives the tissue its unique mechanical properties, exhibiting complex non-linear responses, viscoelasticity and flow mechanisms, excellent energy storage and fatigue resistance. This matrix also creates a unique microenvironment for resident cells, allowing cells to maintain their phenotype and translate mechanical and chemical signals into biological responses. Importantly, this architecture is constantly remodeled by local cell populations in response to changing biochemical (systemic and local disease or injury) and mechanical (exercise, disuse, and overuse) stimuli. Here, we review the current understanding of matrix remodeling throughout life, focusing on formation and assembly during the postnatal period, maintenance and homeostasis during adulthood, and changes to homeostasis in natural aging. We also discuss advances in model systems and novel tools for studying collagen and non-collagenous matrix remodeling throughout life, and finally conclude by identifying key questions that have yet to be answered.
Collapse
Affiliation(s)
| | - Danae E Zamboulis
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Chavaunne T Thorpe
- Comparative Biomedical Sciences, The Royal Veterinary College, University of London, London, UK
| | - Jeffrey W Ruberti
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Brianne K Connizzo
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| |
Collapse
|
10
|
Extracellular Nucleotides Regulate Arterial Calcification by Activating Both Independent and Dependent Purinergic Receptor Signaling Pathways. Int J Mol Sci 2020; 21:ijms21207636. [PMID: 33076470 PMCID: PMC7589647 DOI: 10.3390/ijms21207636] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 01/02/2023] Open
Abstract
Arterial calcification, the deposition of calcium-phosphate crystals in the extracellular matrix, resembles physiological bone mineralization. It is well-known that extracellular nucleotides regulate bone homeostasis raising an emerging interest in the role of these molecules on arterial calcification. The purinergic independent pathway involves the enzymes ecto-nucleotide pyrophosphatase/phosphodiesterases (NPPs), ecto-nucleoside triphosphate diphosphohydrolases (NTPDases), 5′-nucleotidase and alkaline phosphatase. These regulate the production and breakdown of the calcification inhibitor—pyrophosphate and the calcification stimulator—inorganic phosphate, from extracellular nucleotides. Maintaining ecto-nucleotidase activities in a well-defined range is indispensable as enzymatic hyper- and hypo-expression has been linked to arterial calcification. The purinergic signaling dependent pathway focusses on the activation of purinergic receptors (P1, P2X and P2Y) by extracellular nucleotides. These receptors influence arterial calcification by interfering with the key molecular mechanisms underlying this pathology, including the osteogenic switch and apoptosis of vascular cells and possibly, by favoring the phenotypic switch of vascular cells towards an adipogenic phenotype, a recent, novel hypothesis explaining the systemic prevention of arterial calcification. Selective compounds influencing the activity of ecto-nucleotidases and purinergic receptors, have recently been developed to treat arterial calcification. However, adverse side-effects on bone mineralization are possible as these compounds reasonably could interfere with physiological bone mineralization.
Collapse
|
11
|
No YJ, Castilho M, Ramaswamy Y, Zreiqat H. Role of Biomaterials and Controlled Architecture on Tendon/Ligament Repair and Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1904511. [PMID: 31814177 DOI: 10.1002/adma.201904511] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 11/10/2019] [Indexed: 06/10/2023]
Abstract
Engineering synthetic scaffolds to repair and regenerate ruptured native tendon and ligament (T/L) tissues is a significant engineering challenge due to the need to satisfy both the unique biological and biomechanical properties of these tissues. Long-term clinical outcomes of synthetic scaffolds relying solely on high uniaxial tensile strength are poor with high rates of implant rupture and synovitis. Ideal biomaterials for T/L repair and regeneration need to possess the appropriate biological and biomechanical properties necessary for the successful repair and regeneration of ruptured tendon and ligament tissues.
Collapse
Affiliation(s)
- Young Jung No
- Biomaterials and Tissue Engineering Research Unit, School of Biomedical Engineering, University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Training Centre for Innovative BioEngineering, Sydney, NSW, 2006, Australia
| | - Miguel Castilho
- Department of Orthopedics, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Yogambha Ramaswamy
- Biomaterials and Tissue Engineering Research Unit, School of Biomedical Engineering, University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Training Centre for Innovative BioEngineering, Sydney, NSW, 2006, Australia
| | - Hala Zreiqat
- Biomaterials and Tissue Engineering Research Unit, School of Biomedical Engineering, University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Training Centre for Innovative BioEngineering, Sydney, NSW, 2006, Australia
- Radcliffe Institute for Advanced Study, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
12
|
Urbano N, Scimeca M, Tancredi V, Bonanno E, Schillaci O. 99mTC-sestamibi breast imaging: Current status, new ideas and future perspectives. Semin Cancer Biol 2020; 84:302-309. [PMID: 31982511 DOI: 10.1016/j.semcancer.2020.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 02/06/2023]
Abstract
Here we proposed the most recent innovations in the use of Breast Specific Gamma Imaging with 99mTc-sestamibi for the management of breast cancer patients. To this end, we reported the recent discoveries concerning: a) the implementation of both instrumental devices and software, b) the biological mechanisms involved in the 99mTc-sestamibi uptake in breast cancer cells, c) the evaluation of Breast Specific Gamma Imaging with 99mTc-sestamibi as predictive markers of metastatic diseases. In this last case, we also reported preliminary data about the capability of Breast Specific Gamma Imaging with 99mTc-sestamibi to identify breast cancer lesions with high propensity to form bone metastatic lesions due to the presence of Breast Osteoblast-Like Cells.
Collapse
Affiliation(s)
- Nicoletta Urbano
- Nuclear Medicine, Policlinico "Tor Vergata", Viale Oxford, 81, 00133, Rome, Italy
| | - Manuel Scimeca
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy; University of San Raffaele, Via di Val Cannuta 247, 00166, Rome, Italy; Fondazione Umberto Veronesi (FUV), Piazza Velasca 5, 20122, Milano (Mi), Italy; UniCamillus, Saint Camillus International University of Health Sciences, Rome, Italy
| | - Virginia Tancredi
- Department of Systems Medicine, School of Sport and Exercise Sciences, University of Rome Tor Vergata, Rome, Italy; Centre of Space Biomedicine, University of Rome Tor Vergata, Rome, Italy
| | - Elena Bonanno
- Department of Experimental Medicine, University of Rome "Tor Vergata", Via Montpellier, 1, 00133, Rome, Italy; Diagnostica Medica' & 'Villa dei Platani', Neuromed Group, Avellino, 83100, Italy
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy; IRCCS Neuromed, Pozzilli (Is), 86077, Italy.
| |
Collapse
|
13
|
Yue J, Jin S, Gu S, Sun R, Liang Q. High concentration magnesium inhibits extracellular matrix calcification and protects articular cartilage via Erk/autophagy pathway. J Cell Physiol 2019; 234:23190-23201. [PMID: 31161622 DOI: 10.1002/jcp.28885] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/14/2019] [Accepted: 05/01/2019] [Indexed: 01/05/2023]
Abstract
The significant cytopathological changes of osteoarthritis are chondrocyte hypertrophy, proteoglycan loss, extracellular matrix (ECM) calcification, and terminally, the replacement of cartilage by bone. Meanwhile, magnesium ion (Mg2+ ), as the second most abundant divalent cation in the human body, has been proved to inhibit the ECM calcification of hBMSCs (human bone marrow stromal cells), hVSMCs (Human vascular smooth muscle cells), and TDSCs (tendon-derived stem cells) in vitro studies. The ATDC5 cell line, which holds chondrocyte characteristics, was used in this study as an in vitro subject. We found that Mg2+ can efficiently suppress the ECM calcification and downregulate both hypertrophy and matrix metalloproteinase-related genes. Meanwhile, Mg2+ inhibits the formation of autophagy by inhibiting Erk phosphorylation signaling and lowers the expression of LC3, and eventually effectively reduces the formation of ECM calcification in vitro. In this study, we also used destabilization of the medial meniscus (DMM)-induced osteoarthritis (OA) animal model to further confirm the protective effect of Mg2+ on articular cartilage. Compared with the control group (saline-injected), continuous intra-articular magnesium chloride (MgCl2 ) injection can significantly alleviate the severity of cartilage calcification in OA animal model. Immunofluorescence staining also revealed that saline-injected DMM group had a higher positive rate of LC3 expression in cartilage chondrocytes, compared with MgCl2 -injected DMM group. In general, Mg2+ can significantly downregulate the hypertrophic gene Runx2, MMP13, and Col10α1, upregulate the chondrogenic genes Sox9 and Col1α1, inhibit the Erk phosphorylation signaling, reduce the expression of autophagy protein LC3, and effectively inhibit the ECM calcification of ATDC5. In vivo study also proved that intra-articular injection of Mg2+ protected knee cartilage by inhibiting the autophagy formation.
Collapse
Affiliation(s)
- Jiaji Yue
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Shanzi Jin
- Department of Critical Care Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Shizhong Gu
- Department of Sports Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Rui Sun
- Department of Sports Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Qingwei Liang
- Department of Sports Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| |
Collapse
|
14
|
Zhang L, Xu J, Fu S, Qin B, Liu Y, Yang Y, Wang M, Li D, Zhong S, Huang W. Distribution and Morphological Measurement of Bony Spurs on the Coracoid Process in a Chinese Population. Med Sci Monit 2019; 25:2527-2534. [PMID: 30953435 PMCID: PMC6463619 DOI: 10.12659/msm.913658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background There are few studies on distributions or morphological measurements for bony spurs form at the attachment points of the ligaments and tendons on the coracoid process. The aim of this study was to investigate their most common sites and morphological characteristics, and to propose possible reasons. Material/Methods Scapulae with bony spurs on the coracoid process were selected from 377 intact and dry Chinese scapulae. The distribution, height, and transverse and longitudinal diameter of the bony spurs were measured in each coracoid process. Results We selected 71 scapulae, 36 left and 35 right, that had bony spurs, from 377 scapulae. The bony spurs were most commonly located at the attachment point of the superior transverse scapular ligament (STSL) (31, 23.66%), while the trapezoid ligament (TL) accounted for the smaller proportion (8, 6.11%). The TSL was the highest, with the minimum transverse and longitudinal diameter, while the TL had the greatest transverse and longitudinal diameters. Only the TSL and TL had a statistically significant difference between the left and the right bony spur regarding the longitudinal diameter (P<0.05). Conclusions Bony spurs are more likely to form at the attachment points of ligaments and tendons on the coracoid process, which has a greater risk of traction injuries or attachment points avulsion fractures.
Collapse
Affiliation(s)
- Lei Zhang
- National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China (mainland).,Department of Orthopedics, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China (mainland).,Academician Workstation in Luzhou, Luzhou, Sichuan, China (mainland)
| | - Jie Xu
- School of Traditional Chinese Medicine, Southwest Medical University, Luzhou, Sichuan, China (mainland).,Southern Medical University Technology, Ltd., Shunde Science Park, Guangzhou, Guangdong, China (mainland)
| | - Shijie Fu
- Department of Orthopedics, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China (mainland).,Academician Workstation in Luzhou, Luzhou, Sichuan, China (mainland)
| | - Bo Qin
- Department of Orthopedics, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China (mainland).,Academician Workstation in Luzhou, Luzhou, Sichuan, China (mainland)
| | - Yang Liu
- Department of Orthopedics, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China (mainland).,Academician Workstation in Luzhou, Luzhou, Sichuan, China (mainland)
| | - Yang Yang
- National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China (mainland).,Southern Medical University Technology, Ltd., Shunde Science Park, Guangzhou, Guangdong, China (mainland).,Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangzhou, Guangdong, China (mainland)
| | - Mian Wang
- National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China (mainland).,Southern Medical University Technology, Ltd., Shunde Science Park, Guangzhou, Guangdong, China (mainland).,Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangzhou, Guangdong, China (mainland)
| | - Ding Li
- National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China (mainland).,Southern Medical University Technology, Ltd., Shunde Science Park, Guangzhou, Guangdong, China (mainland).,Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangzhou, Guangdong, China (mainland)
| | - Shizhen Zhong
- National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China (mainland).,Academician Workstation in Luzhou, Luzhou, Sichuan, China (mainland)
| | - Wenhua Huang
- National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China (mainland).,Academician Workstation in Luzhou, Luzhou, Sichuan, China (mainland).,Southern Medical University Technology, Ltd., Shunde Science Park, Guangzhou, Guangdong, China (mainland).,Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangzhou, Guangdong, China (mainland)
| |
Collapse
|
15
|
Yu D, Zhang Y, Chen G, Xie Y, Xu Z, Chang S, Hu L, Li B, Bu W, Wang Y, Xiao W, Sun X, Chang G, Gao L, Qiang S, Wu X, Zhu W, Shi J. Targeting the PI3K/Akt/mTOR signaling pathway by pterostilbene attenuates mantle cell lymphoma progression. Acta Biochim Biophys Sin (Shanghai) 2018; 50:782-792. [PMID: 29961897 DOI: 10.1093/abbs/gmy070] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 05/29/2018] [Indexed: 12/12/2022] Open
Abstract
Mantle cell lymphoma (MCL) is an aggressive and mostly incurable B-cell malignancy with frequent relapses after an initial response to standard chemotherapy. Therefore, novel therapies are urgently required to improve MCL clinical outcomes. In this study, MCL cell lines were treated with pterostilbene (PTE), a non-toxic natural phenolic compound primarily found in blueberries. The antitumor activity of PTE was examined by using the Cell Counting Kit-8, apoptosis assays, cell cycle analysis, JC-1 mitochondrial membrane potential assay, western blot analysis, and tumor xenograft models. PTE treatment induced a dose-dependent inhibition of cell proliferation, including the induction of cell apoptosis and cell cycle arrest at the G0/G1 phase. Moreover, the PI3K/Akt/mTOR pathway was downregulated after PTE treatment, which might account for the anti-MCL effects of PTE. Synergistic cytotoxicity was also observed, both in MCL cells and in xenograft mouse models, when PTE was administered in combination with bortezomib (BTZ). The antitumor effects of PTE shown in our study provide an innovative option for MCL patients with poor responses to standardized therapy. It is noteworthy that the treatment combining PTE with BTZ warrants clinical investigation, which may offer an alternative and effective MCL treatment in the future.
Collapse
Affiliation(s)
- Dandan Yu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yong Zhang
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Gege Chen
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yongsheng Xie
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhijian Xu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Shuaikang Chang
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liangning Hu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bo Li
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wenxuan Bu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yingcong Wang
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenqin Xiao
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xi Sun
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Gaomei Chang
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lu Gao
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Sujing Qiang
- Tongji University Cancer Center, Tongji University, Shanghai, China
| | - Xiaosong Wu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Weiliang Zhu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jumei Shi
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Tongji University Cancer Center, Tongji University, Shanghai, China
| |
Collapse
|
16
|
Li Y, Wang J, Yue J, Wang Y, Yang C, Cui Q. High magnesium prevents matrix vesicle-mediated mineralization in human bone marrow-derived mesenchymal stem cells via mitochondrial pathway and autophagy. Cell Biol Int 2017; 42:205-215. [PMID: 29024399 DOI: 10.1002/cbin.10888] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 10/07/2017] [Indexed: 01/02/2023]
Abstract
Magnesium, as a physiological calcium antagonist, plays a vital role in the bone metabolism and the balance between magnesium and calcium is crucial in bone physiology. We recently demonstrated that matrix mineralization in human bone marrow-derived mesenchymal stem cells (hBMSCs) can be suppressed by high Mg2+ . However, a complete understanding of the mechanisms involved still remains to be elucidated. As mitochondrial calcium phosphate granules depletion manifests concurrently with the appearance of matrix vesicles (MVs) and autophagy are associated with matrix mineralization, we studied the effect of high extracellular Mg2+ on these pathways. Our results first demonstrated that high Mg2+ has a significant inhibitory effect on the generalization of extracellular mineral aggregates and the expression of collagen 1 along which the mineral crystals grow. Transmission electron microscope results showed that less amount of MVs were observed inside hBMSCs treated with high Mg2+ and high Mg2+ inhibited the release of MVs. In addition, high Mg2+ significantly suppressed mitochondrial Ca2+ accumulation. Autophagy is promoted as a response to osteogenesis of hBMSCs. High Mg2+ inhibited the level of autophagy upon osteogenesis and autophagy inhibitor 3-MA significantly suppressed mineralization. Exogenous ATP can reverse the inhibitory effect of high Mg2+ by increasing the level of autophagy. Taken together, our results indicate that high Mg2+ may modulate MVs-mediated mineralization via suppressing mitochondrial Ca2+ intensity and regulates autophagy of hBMSCs upon osteogenesis, resulting in decreased extracellular mineralized matrix deposition. Our results contribute to the understanding of the role of magnesium homeostasis in osteoporosis and the design of magnesium alloys.
Collapse
Affiliation(s)
- Yaqiang Li
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tenth People's Hospital of Tongji University, 301 Middle Yanchang Road, Shanghai, 200072, P.R. China.,Tongji University School of medicine, 1239 Siping Road, Shanghai, 200092, P.R. China
| | - Jing Wang
- Key Laboratory of Advanced Textile Composite Materials of Ministry of Education, Institute of Textile Composite, Tianjin Polytechnic University, Tianjin, 300387, P.R. China
| | - Jiaji Yue
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tenth People's Hospital of Tongji University, 301 Middle Yanchang Road, Shanghai, 200072, P.R. China.,Tongji University School of medicine, 1239 Siping Road, Shanghai, 200092, P.R. China
| | - Yu Wang
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tenth People's Hospital of Tongji University, 301 Middle Yanchang Road, Shanghai, 200072, P.R. China
| | - Chunxi Yang
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tenth People's Hospital of Tongji University, 301 Middle Yanchang Road, Shanghai, 200072, P.R. China
| | - Quanjun Cui
- Department of Orthopaedic Surgery, University of Virginia School of Medicine, Charlottesville, VA, 22903
| |
Collapse
|
17
|
DCZ3301, a novel cytotoxic agent, inhibits proliferation in diffuse large B-cell lymphoma via the STAT3 pathway. Cell Death Dis 2017; 8:e3111. [PMID: 29022919 PMCID: PMC5680593 DOI: 10.1038/cddis.2017.472] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/23/2017] [Accepted: 08/23/2017] [Indexed: 12/12/2022]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common type of lymphoma in adults, characterized by a rapidly increasing painless mass. A novel compound, DCZ3301, was synthesized that exerted direct cytotoxicity against DLBCL cell lines. The effects of DCZ3301 on DLBCL cells in vitro and in vivo and the associated mechanisms were investigated. DCZ3301 inhibited the viability of DLBCL cell lines, even in the presence of protumorigenesis cytokines. Additionally, the compound induced apoptosis and cell cycle arrest at the G2/M phase by reducing mitochondrial membrane potential. DCZ3301 exerted an antitumor effect through modulation of Akt, extracellular signal-regulated kinases 1/2 (ERK1/2) and janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathways. Furthermore, DCZ3301 downregulates STAT3 phosphorylation by inhibiting Lck/Yes-related novel protein tyrosine kinase (Lyn) activation in DLBCL. A synergistic cytotoxic effect on DLBCL cells was observed upon combination of DCZ3301 with panobinostat. In vivo, intraperitoneal injection of xenograft mice with DCZ3301 resulted in reduced tumor volume. Our preliminary results collectively support the utility of the small-molecule inhibitor DCZ3301 as an effective novel therapeutic option for DLBCL that requires further clinical evaluation.
Collapse
|
18
|
Ter Braake AD, Shanahan CM, de Baaij JHF. Magnesium Counteracts Vascular Calcification: Passive Interference or Active Modulation? Arterioscler Thromb Vasc Biol 2017; 37:1431-1445. [PMID: 28663256 DOI: 10.1161/atvbaha.117.309182] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/15/2017] [Indexed: 12/24/2022]
Abstract
Over the last decade, an increasing number of studies report a close relationship between serum magnesium concentration and cardiovascular disease risk in the general population. In end-stage renal disease, an association was found between serum magnesium and survival. Hypomagnesemia was identified as a strong predictor for cardiovascular disease in these patients. A substantial body of in vitro and in vivo studies has identified a protective role for magnesium in vascular calcification. However, the precise mechanisms and its contribution to cardiovascular protection remain unclear. There are currently 2 leading hypotheses: first, magnesium may bind phosphate and delay calcium phosphate crystal growth in the circulation, thereby passively interfering with calcium phosphate deposition in the vessel wall. Second, magnesium may regulate vascular smooth muscle cell transdifferentiation toward an osteogenic phenotype by active cellular modulation of factors associated with calcification. Here, the data supporting these major hypotheses are reviewed. The literature supports both a passive inorganic phosphate-buffering role reducing hydroxyapatite formation and an active cell-mediated role, directly targeting vascular smooth muscle transdifferentiation. However, current evidence relies on basic experimental designs that are often insufficient to delineate the underlying mechanisms. The field requires more advanced experimental design, including determination of intracellular magnesium concentrations and the identification of the molecular players that regulate magnesium concentrations in vascular smooth muscle cells.
Collapse
Affiliation(s)
- Anique D Ter Braake
- From the Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (A.D.t.B., J.H.F.d.B.); Cardiovascular Division, BHF Centre of Research Excellence, James Black Centre, King's College, London, United Kingdom (C.M.S.); and Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom (J.H.F.d.B.)
| | - Catherine M Shanahan
- From the Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (A.D.t.B., J.H.F.d.B.); Cardiovascular Division, BHF Centre of Research Excellence, James Black Centre, King's College, London, United Kingdom (C.M.S.); and Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom (J.H.F.d.B.)
| | - Jeroen H F de Baaij
- From the Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (A.D.t.B., J.H.F.d.B.); Cardiovascular Division, BHF Centre of Research Excellence, James Black Centre, King's College, London, United Kingdom (C.M.S.); and Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom (J.H.F.d.B.).
| |
Collapse
|
19
|
Pterostilbene Inhibits Human Multiple Myeloma Cells via ERK1/2 and JNK Pathway In Vitro and In Vivo. Int J Mol Sci 2016; 17:ijms17111927. [PMID: 27869675 PMCID: PMC5133923 DOI: 10.3390/ijms17111927] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/06/2016] [Accepted: 11/10/2016] [Indexed: 12/21/2022] Open
Abstract
Multiple myeloma (MM) is the second most common malignancy in the hematologic system, which is characterized by accumulation of plasma cells in bone marrow. Pterostilbene (PTE) is a natural dimethylated analog of resveratrol, which has anti-oxidant, anti-inflammatory and anti-tumor properties. In the present study, we examined the anti-tumor effect of PTE on MM cell lines both in vitro and in vivo using the cell counting kit (CCK)-8, apoptosis assays, cell cycle analysis, reactive oxygen species (ROS) generation, JC-1 mitochondrial membrane potential assay, Western blotting and tumor xenograft models. The results demonstrated that PTE induces apoptosis in the H929 cell line and causes cell cycle arrest at G0/G1 phase by enhancing ROS generation and reducing mitochondrial membrane potential. The anti-tumor effect of PTE may be caused by the activation of the extracellular regulated protein kinases (ERK) 1/2 and c-Jun N-terminal kinase (JNK) signaling pathways. Additionally, mice treated with PTE by intraperitoneal injection demonstrated reduced tumor volume. Taken together, the results of this study indicate that the anti-tumor effect of PTE on MM cells may provide a new therapeutic option for MM patients.
Collapse
|
20
|
Li T, Ni L, Liu X, Wang Z, Liu C. High glucose induces the expression of osteopontin in blood vessels in vitro and in vivo. Biochem Biophys Res Commun 2016; 480:201-207. [PMID: 27743892 DOI: 10.1016/j.bbrc.2016.10.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 10/11/2016] [Indexed: 02/01/2023]
Abstract
Osteopontin (OPN) is involved in mineral metabolism and the inflammatory response while diabetes mellitus is associated with severe and extensive vascular calcification. Therefore, we speculated that OPN could be a key factor in the calcification and dysfunction of blood vessels exposed to high glucose. To identify the relationship between high glucose and OPN, we used high glucose medium to stimulate smooth muscle cells (SMCs) and vascular endothelial cells (VECs) in vitro and diabetic rats for in vivo analyses. As assessed by flow cytometry and western blots, SMC and VEC apoptosis levels increased with high glucose. Potassium and calcium uptake by cells were also increased with high glucose. These findings demonstrated the relationship between mineral metabolism and high glucose. Western blot and quantitative real time polymerase chain reaction analyses demonstrated that OPN increased in vitro with high glucose stimulation. The inflammatory factor ICAM1 and the inhibitory phosphorylation of endothelial nitric-oxide synthase (eNOS) (Thr495) were also upregulated by high glucose. In contrast, the anti-inflammatory factor Nrf2 and the activating phosphorylation of eNOS (Ser1177) were downregulated. Similar to the change of OPN, phosphorylated P38 was increased with high glucose. SB203580, an inhibitor of P38 phosphorylation, downregulated the expression of OPN and related inflammatory factors. Additionally, OPN was increased in the aortas and plasma of diabetic rats. In conclusion, our findings demonstrate that high glucose can induce the expression of OPN, which may be a key factor in the calcification and dysfunction of the vascular wall in diabetes.
Collapse
Affiliation(s)
- Tianjia Li
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China
| | - Leng Ni
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China
| | - Xinnong Liu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China
| | - Zhanqi Wang
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China
| | - Changwei Liu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China.
| |
Collapse
|