1
|
Ghannam IAY, Hassan RM, Abdel-Maksoud MS. Peroxisome proliferator-activated receptors (PPARs) agonists as promising neurotherapeutics. Bioorg Chem 2025; 156:108226. [PMID: 39908735 DOI: 10.1016/j.bioorg.2025.108226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 02/07/2025]
Abstract
Neurodegenerative disorders are characterized by a continuous neurons loss resulting in a wide range of pathogenesis affecting the motor impairment. Several strategies are outlined for therapeutics of synthetic and natural PPARs agonists in some neurological disorders; Parkinson's disease (PD), Alzheimer's disease (AD), Multiple sclerosis (MS), Amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD). The aim of this review is to provide a recent update of the previously reported studies, and reviews dealing with the medicinal chemistry of PPARs and their agonists, and to highlight the outstanding advances in the development of both synthetic compounds including; PPARα agonists (fibrates), PPARγ agonists (thiazolidindiones), and PPARβ/δ agonists either as sole or dual acting PPAR full or pan agonists, in addition to the natural phytochemicals; acids, cannabinoids, and flavonoids for their different neuroprotection effects in the previously mentioned neurodegenerative disorders (PD, AD, MS, ALS, and HD). Moreover, this review reports the diverse pre-clinical and clinical studies of PPARs agonists in the neurodegenerative diseases via cellular, and animal models and human.
Collapse
Affiliation(s)
- Iman A Y Ghannam
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Cairo 12622, Egypt.
| | - Rasha M Hassan
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (ID: 60014618), P.O. 12622, Dokki, Giza, Egypt
| | - Mohammed S Abdel-Maksoud
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (ID: 60014618), P.O. 12622, Dokki, Giza, Egypt
| |
Collapse
|
2
|
Zheng M, Wang C, Hu M, Li Q, Li J, Quan S, Zhang X, Gu L. Research progress on the association of insulin resistance with type 2 diabetes mellitus and Alzheimer's disease. Metab Brain Dis 2024; 40:35. [PMID: 39570454 DOI: 10.1007/s11011-024-01472-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 09/09/2024] [Indexed: 11/22/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorder that is characterized by insulin resistance and hyperglycemia. It is also known to be a risk factor for Alzheimer's disease (AD). Insulin plays a crucial role in regulating the body's metabolism and is responsible for activating the Phosphoinotide-3-Kinase (PI3K)/Protein Kinase B (Akt) signaling pathway. This pathway is activated when insulin binds to the insulin receptor on nerve cells, and it helps regulate the metabolism of glucose and lipids. Dysfunction in the insulin signaling pathway can lead to a decrease in brain insulin levels and insulin sensitivity, thereby inducing disruptions in insulin signal transduction and leading to disorders in brain energy metabolism. Moreover, these dysfunctions also contribute to the accumulation of β-amyloid (Aβ) deposition and the hyperphosphorylation of Tau protein, both of which are characteristic features of AD. Therefore, this article focuses on insulin resistance to reveal the complex mechanism between brain insulin resistance and AD occurrence in T2DM. On this basis, this article further summarizes the biological effects and mechanisms of antidiabetic drugs on the two diseases, aiming to provide new ideas for the discovery of drugs for the treatment of T2DM combined with AD.
Collapse
Affiliation(s)
- Miao Zheng
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310013, Zhejiang, P.R. China
| | - Can Wang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310013, Zhejiang, P.R. China
| | - Min Hu
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310013, Zhejiang, P.R. China
| | - Qin Li
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310013, Zhejiang, P.R. China
| | - Jinhua Li
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310013, Zhejiang, P.R. China
| | - Shengli Quan
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310013, Zhejiang, P.R. China
| | - Xinyue Zhang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310013, Zhejiang, P.R. China.
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy (Institute of Materia Medica), Hangzhou Medical College, No.182, Tianmushan road, Xihu District, Hangzhou, 310013, Zhejiang, P.R. China.
| | - Lili Gu
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310013, Zhejiang, P.R. China.
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy (Institute of Materia Medica), Hangzhou Medical College, No.182, Tianmushan road, Xihu District, Hangzhou, 310013, Zhejiang, P.R. China.
| |
Collapse
|
3
|
Yamaguchi T, Hamano T, Sada K, Asano R, Kanaan NM, Sasaki H, Yen SH, Kitazaki Y, Endo Y, Enomoto S, Shirafuji N, Ikawa M, Yamamura O, Fujita Y, Aoki K, Naiki H, Morishima M, Saito Y, Murayama S, Nakamoto Y. Syk inhibitors reduce tau protein phosphorylation and oligomerization. Neurobiol Dis 2024; 201:106656. [PMID: 39233131 DOI: 10.1016/j.nbd.2024.106656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/23/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024] Open
Abstract
Spleen tyrosine kinase (Syk), a non-receptor-type tyrosine kinase, has a wide range of physiological functions. A possible role of Syk in Alzheimer's disease (AD) has been proposed. We evaluated the localization of Syk in the brains of patients with AD and control participants. Human neuroblastoma M1C cells harboring wild-type tau (4R0N) were used with the tetracycline off (TetOff) induction system. In this model of neuronal tauopathy, the effects of the Syk inhibitors-BAY 61-3606 and R406-on tau phosphorylation and oligomerization were explored using several phosphorylated tau-specific antibodies and an oligomeric tau antibody, and the effects of these Syk inhibitors on autophagy were examined using western blot analyses. Moreover, the effects of the Syk inhibitor R406 were evaluated in vivo using wild-type mice. In AD brains, Syk and phosphorylated tau colocalized in the cytosol. In M1C cells, Syk protein (72 kDa) was detected using western blot analysis. Syk inhibitors decreased the expression levels of several tau phosphoepitopes including PHF-1, CP13, AT180, and AT270. Syk inhibitors also decreased the levels of caspase-cleaved tau (TauC3), a pathological tau form. Syk inhibitors increased inactivated glycogen synthase kinase 3β expression and decreased active p38 mitogen-activated protein kinase expression and demethylated protein phosphatase 2 A levels, indicating that Syk inhibitors inactivate tau kinases and activate tau phosphatases. Syk inhibitors also activated autophagy, as indicated by increased LC3II and decreased p62 levels. In vivo, the Syk inhibitor R406 decreased phosphorylated tau levels in wild-type mice. These findings suggest that Syk inhibitors offer novel therapeutic strategies for tauopathies, including AD.
Collapse
Affiliation(s)
- Tomohisa Yamaguchi
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Tadanori Hamano
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan; Department of Aging and Dementia (DAD), Faculty of Medical Sciences, University of Fukui, Fukui, Japan; Life Science Innovation Center, University of Fukui, Fukui, Japan.
| | - Kiyonao Sada
- Department of Genome Science and Microbiology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Rei Asano
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Nicholas M Kanaan
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, MI, USA
| | - Hirohito Sasaki
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Shu-Hui Yen
- Department of Neuroscience, Mayo Clinic Jacksonville, FL, USA
| | - Yuki Kitazaki
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Yoshinori Endo
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Soichi Enomoto
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Norimichi Shirafuji
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Masamichi Ikawa
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Osamu Yamamura
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Youshi Fujita
- Department of Neurology, Fujita Neurological Hospital, Fukui, Japan
| | - Koji Aoki
- Department of Pharmacology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Hironobu Naiki
- Department of Molecular Pathology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Maho Morishima
- Brain Bank for Aging Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Yuko Saito
- Brain Bank for Aging Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Shigeo Murayama
- Brain Bank for Aging Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Yasunari Nakamoto
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| |
Collapse
|
4
|
Khan S, Bano N, Ahamad S, John U, Dar NJ, Bhat SA. Excitotoxicity, Oxytosis/Ferroptosis, and Neurodegeneration: Emerging Insights into Mitochondrial Mechanisms. Aging Dis 2024:AD.2024.0125-1. [PMID: 39122453 DOI: 10.14336/ad.2024.0125-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Mitochondrial dysfunction plays a pivotal role in the development of age-related diseases, particularly neurodegenerative disorders. The etiology of mitochondrial dysfunction involves a multitude of factors that remain elusive. This review centers on elucidating the role(s) of excitotoxicity, oxytosis/ferroptosis and neurodegeneration within the context of mitochondrial bioenergetics, biogenesis, mitophagy and oxidative stress and explores their intricate interplay in the pathogenesis of neurodegenerative diseases. The effective coordination of mitochondrial turnover processes, notably mitophagy and biogenesis, is assumed to be critically important for cellular resilience and longevity. However, the age-associated decrease in mitophagy impedes the elimination of dysfunctional mitochondria, consequently impairing mitochondrial biogenesis. This deleterious cascade results in the accumulation of damaged mitochondria and deterioration of cellular functions. Both excitotoxicity and oxytosis/ferroptosis have been demonstrated to contribute significantly to the pathophysiology of neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's Disease (HD), Amyotrophic Lateral Sclerosis (ALS) and Multiple Sclerosis (MS). Excitotoxicity, characterized by excessive glutamate signaling, initiates a cascade of events involving calcium dysregulation, energy depletion, and oxidative stress and is intricately linked to mitochondrial dysfunction. Furthermore, emerging concepts surrounding oxytosis/ferroptosis underscore the importance of iron-dependent lipid peroxidation and mitochondrial engagement in the pathogenesis of neurodegeneration. This review not only discusses the individual contributions of excitotoxicity and ferroptosis but also emphasizes their convergence with mitochondrial dysfunction, a key driver of neurodegenerative diseases. Understanding the intricate crosstalk between excitotoxicity, oxytosis/ferroptosis, and mitochondrial dysfunction holds potential to pave the way for mitochondrion-targeted therapeutic strategies. Such strategies, with a focus on bioenergetics, biogenesis, mitophagy, and oxidative stress, emerge as promising avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Sameera Khan
- Department of Zoology, Aligarh Muslim University, Aligarh-202002, India
| | - Nargis Bano
- Department of Zoology, Aligarh Muslim University, Aligarh-202002, India
| | - Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh-202002, India
| | - Urmilla John
- School of Studies in Neuroscience, Jiwaji University, Gwalior, India; School of Studies in Zoology, Jiwaji University, Gwalior, India
| | - Nawab John Dar
- CNB, SALK Institute of Biological Sciences, La Jolla, CA 92037, USA
| | | |
Collapse
|
5
|
Imtiaz A, Shimonaka S, Uddin MN, Elahi M, Ishiguro K, Hasegawa M, Hattori N, Motoi Y. Selection of lansoprazole from an FDA-approved drug library to inhibit the Alzheimer's disease seed-dependent formation of tau aggregates. Front Aging Neurosci 2024; 16:1368291. [PMID: 38633982 PMCID: PMC11022852 DOI: 10.3389/fnagi.2024.1368291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/15/2024] [Indexed: 04/19/2024] Open
Abstract
The efficacy of current treatments is still insufficient for Alzheimer's disease (AD), the most common cause of Dementia. Out of the two pathological hallmarks of AD amyloid-β plaques and neurofibrillary tangles, comprising of tau protein, tau pathology strongly correlates with the symptoms of AD. Previously, screening for inhibitors of tau aggregation that target recombinant tau aggregates have been attempted. Since a recent cryo-EM analysis revealed distinct differences in the folding patterns of heparin-induced recombinant tau filaments and AD tau filaments, this study focused on AD seed-dependent tau aggregation in drug repositioning for AD. We screened 763 compounds from an FDA-approved drug library using an AD seed-induced tau aggregation in SH-SY5Y cell-based assay. In the first screening, 180 compounds were selected, 72 of which were excluded based on the results of lactate dehydrogenase assay. In the third screening with evaluations of soluble and insoluble tau, 38 compounds were selected. In the fourth screening with 3 different AD seeds, 4 compounds, lansoprazole, calcipotriene, desogestrel, and pentamidine isethionate, were selected. After AD seed-induced real-time quaking-induced conversion, lansoprazole was selected as the most suitable drug for repositioning. The intranasal administration of lansoprazole for 4 months to AD seed-injected mice improved locomotor activity and reduced both the amount of insoluble tau and the extent of phosphorylated tau-positive areas. Alanine replacement of the predicted binding site to an AD filament indicated the involvement of Q351, H362, and K369 in lansoprazole and C-shaped tau filaments. These results suggest the potential of lansoprazole as a candidate for drug repositioning to an inhibitor of tau aggregate formation in AD.
Collapse
Affiliation(s)
- Ahmed Imtiaz
- Department of Diagnosis, Prevention and Treatment of Dementia, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
- Department of Neurology, Juntendo University School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Shotaro Shimonaka
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Mohammad Nasir Uddin
- Department of Biochemistry & Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science & Technology University, Tangail, Bangladesh
| | - Montasir Elahi
- Center for Birth Defect Research, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Koichi Ishiguro
- Department of Neurology, Juntendo University School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Masato Hasegawa
- Department of Brain and Neuroscience, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Yumiko Motoi
- Medical Center for Dementia, Juntendo University Hospital, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
6
|
Golzari-Sorkheh M, Liyanage I, Reed MA, Weaver DF. Alzheimer's Disease and COVID-19 Pathogenic Overlap: Implications for Drug Repurposing. Can J Neurol Sci 2024; 51:161-172. [PMID: 36991574 DOI: 10.1017/cjn.2023.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
As COVID-19 continues, a safe, cost-effective treatment strategy demands continued inquiry. Chronic neuroinflammatory disorders may appear to be of little relevance in this regard; often indolent and progressive disorders characterized by neuroinflammation (such as Alzheimer's disease (AD)) are fundamentally dissimilar in etiology and symptomology to COVID-19's rapid infectivity and pathology. However, the two disorders share extensive pathognomonic features, including at membrane, cytoplasmic, and extracellular levels, culminating in analogous immunogenic destruction of their respective organ parenchyma. We hypothesize that these mechanistic similarities may extent to therapeutic targets, namely that it is conceivable an agent against AD's immunopathy may have efficacy against COVID-19 and vice versa. It is notable that while extensively investigated, no agent has yet demonstrated significant therapeutic efficacy against AD's cognitive and memory declines. Yet this very failure has driven the development of numerous agents with strong mechanistic potential and clinical characteristics. Having already approved for clinical trials, these agents may be an expedient starting point in the urgent search for an effective COVID-19 therapy. Herein, we review the overlapping Alzheimer's/ COVID-19 targets and theorize several initial platforms.
Collapse
Affiliation(s)
| | - Imindu Liyanage
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Mark A Reed
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
| | - Donald F Weaver
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Gomes-Copeland KKP, Meireles CG, Gomes JVD, Torres AG, Sinoti SBP, Fonseca-Bazzo YM, Magalhães PDO, Fagg CW, Simeoni LA, Silveira D. Hippeastrum stapfianum (Kraenzl.) R.S.Oliveira & Dutilh (Amaryllidaceae) Ethanol Extract Activity on Acetylcholinesterase and PPAR-α/γ Receptors. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11223179. [PMID: 36432907 PMCID: PMC9693985 DOI: 10.3390/plants11223179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 05/14/2023]
Abstract
Hippeastrum stapfianum (Kraenzl.) R.S.Oliveira & Dutilh (Amaryllidaceae) is an endemic plant species from the Brazilian savannah with biological and pharmacological potential. This study evaluated the effects of ethanol extract from H. stapfianum leaves on acetylcholinesterase enzyme activity and the action on nuclear receptors PPAR-α and PPAR-γ. A gene reporter assay was performed to assess the PPAR agonist or antagonist activity with a non-toxic dose of H. stapfianum ethanol extract. The antioxidant capacity was investigated using DPPH• scavenging and fosfomolybdenium reduction assays. The identification of H. stapfianum's chemical composition was performed by gas chromatography-mass spectrometry (GC-MS) and HPLC. The ethanol extract of H. stapfianum activated PPAR-α and PPAR-γ selectively, inhibited the acetylcholinesterase enzyme, and presented antioxidant activity in an in vitro assay. The major compounds identified were lycorine, 7-demethoxy-9-O-methylhostasine, and rutin. Therefore, H. stapfianum is a potential source of drugs for Alzheimer's disease due to its ability to activate PPAR receptors, acetylcholinesterase inhibition activity, and antioxidant attributes.
Collapse
Affiliation(s)
- Kicia Karinne Pereira Gomes-Copeland
- Laboratory of Natural Products, Faculty of Health Sciences, University of Brasilia, Brasília 70910-900, DF, Brazil
- Correspondence: (K.K.P.G.-C.); (D.S.); Tel.: +55-61-31071939 (D.S.)
| | - Cinthia Gabriel Meireles
- Laboratory of Molecular Pharmacology, Health Sciences Faculty, University of Brasilia, Brasília 70910-900, DF, Brazil
| | - João Victor Dutra Gomes
- Laboratory of Natural Products, Faculty of Health Sciences, University of Brasilia, Brasília 70910-900, DF, Brazil
| | - Amanda Gomes Torres
- Laboratory of Natural Products, Faculty of Health Sciences, University of Brasilia, Brasília 70910-900, DF, Brazil
| | - Simone Batista Pires Sinoti
- Laboratory of Molecular Pharmacology, Health Sciences Faculty, University of Brasilia, Brasília 70910-900, DF, Brazil
| | - Yris Maria Fonseca-Bazzo
- Laboratory of Natural Products, Faculty of Health Sciences, University of Brasilia, Brasília 70910-900, DF, Brazil
| | - Pérola de Oliveira Magalhães
- Laboratory of Natural Products, Faculty of Health Sciences, University of Brasilia, Brasília 70910-900, DF, Brazil
| | | | - Luiz Alberto Simeoni
- Laboratory of Natural Products, Faculty of Health Sciences, University of Brasilia, Brasília 70910-900, DF, Brazil
| | - Dâmaris Silveira
- Laboratory of Natural Products, Faculty of Health Sciences, University of Brasilia, Brasília 70910-900, DF, Brazil
- Correspondence: (K.K.P.G.-C.); (D.S.); Tel.: +55-61-31071939 (D.S.)
| |
Collapse
|
8
|
Atlante A, Amadoro G, Latina V, Valenti D. Therapeutic Potential of Targeting Mitochondria for Alzheimer's Disease Treatment. J Clin Med 2022; 11:6742. [PMID: 36431219 PMCID: PMC9697019 DOI: 10.3390/jcm11226742] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD), a chronic and progressive neurodegenerative disease, is characterized by memory and cognitive impairment and by the accumulation in the brain of abnormal proteins, more precisely beta-amyloid (β-amyloid or Aβ) and Tau proteins. Studies aimed at researching pharmacological treatments against AD have focused precisely on molecules capable, in one way or another, of preventing/eliminating the accumulations of the aforementioned proteins. Unfortunately, more than 100 years after the discovery of the disease, there is still no effective therapy in modifying the biology behind AD and nipping the disease in the bud. This state of affairs has made neuroscientists suspicious, so much so that for several years the idea has gained ground that AD is not a direct neuropathological consequence taking place downstream of the deposition of the two toxic proteins, but rather a multifactorial disease, including mitochondrial dysfunction as an early event in the pathogenesis of AD, occurring even before clinical symptoms. This is the reason why the search for pharmacological agents capable of normalizing the functioning of these subcellular organelles of vital importance for nerve cells is certainly to be considered a promising approach to the design of effective neuroprotective drugs aimed at preserving this organelle to arrest or delay the progression of the disease. Here, our intent is to provide an updated overview of the mitochondrial alterations related to this disorder and of the therapeutic strategies (both natural and synthetic) targeting mitochondrial dysfunction.
Collapse
Affiliation(s)
- Anna Atlante
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM)-CNR, Via G. Amendola122/O, 70126 Bari, Italy
| | - Giuseppina Amadoro
- Institute of Translational Pharmacology (IFT)-CNR, Via Fosso del Cavaliere 100, 00133 Rome, Italy
| | - Valentina Latina
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Daniela Valenti
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM)-CNR, Via G. Amendola122/O, 70126 Bari, Italy
| |
Collapse
|
9
|
Needham H, Torpey G, Flores CC, Davis CJ, Vanderheyden WM, Gerstner JR. A Dichotomous Role for FABP7 in Sleep and Alzheimer's Disease Pathogenesis: A Hypothesis. Front Neurosci 2022; 16:798994. [PMID: 35844236 PMCID: PMC9280343 DOI: 10.3389/fnins.2022.798994] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 05/10/2022] [Indexed: 11/15/2022] Open
Abstract
Fatty acid binding proteins (FABPs) are a family of intracellular lipid chaperone proteins known to play critical roles in the regulation of fatty acid uptake and transport as well as gene expression. Brain-type fatty acid binding protein (FABP7) is enriched in astrocytes and has been implicated in sleep/wake regulation and neurodegenerative diseases; however, the precise mechanisms underlying the role of FABP7 in these biological processes remain unclear. FABP7 binds to both arachidonic acid (AA) and docosahexaenoic acid (DHA), resulting in discrete physiological responses. Here, we propose a dichotomous role for FABP7 in which ligand type determines the subcellular translocation of fatty acids, either promoting wakefulness aligned with Alzheimer's pathogenesis or promoting sleep with concomitant activation of anti-inflammatory pathways and neuroprotection. We hypothesize that FABP7-mediated translocation of AA to the endoplasmic reticulum of astrocytes increases astrogliosis, impedes glutamatergic uptake, and enhances wakefulness and inflammatory pathways via COX-2 dependent generation of pro-inflammatory prostaglandins. Conversely, we propose that FABP7-mediated translocation of DHA to the nucleus stabilizes astrocyte-neuron lactate shuttle dynamics, preserves glutamatergic uptake, and promotes sleep by activating anti-inflammatory pathways through the peroxisome proliferator-activated receptor-γ transcriptional cascade. Importantly, this model generates several testable hypotheses applicable to other neurodegenerative diseases, including amyotrophic lateral sclerosis and Parkinson's disease.
Collapse
Affiliation(s)
- Hope Needham
- Department of Biology, Gonzaga University, Spokane, WA, United States
| | - Grace Torpey
- Department of Biology, Gonzaga University, Spokane, WA, United States
| | - Carlos C. Flores
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Christopher J. Davis
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
- Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - William M. Vanderheyden
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
- Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Jason R. Gerstner
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
- Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
- Steve Gleason Institute for Neuroscience, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| |
Collapse
|
10
|
Gąsiorowski K, Brokos JB, Sochocka M, Ochnik M, Chojdak-Łukasiewicz J, Zajączkowska K, Fułek M, Leszek J. Current and Near-Future Treatment of Alzheimer's Disease. Curr Neuropharmacol 2022; 20:1144-1157. [PMID: 34856906 PMCID: PMC9886829 DOI: 10.2174/1570159x19666211202124239] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 10/19/2021] [Accepted: 11/26/2021] [Indexed: 11/22/2022] Open
Abstract
Recent findings have improved our understanding of the multifactorial nature of AD. While in early asymptomatic stages of AD, increased amyloid-β synthesis and tau hyperphosphorylation play a key role, while in the latter stages of the disease, numerous dysfunctions of homeostatic mechanisms in neurons, glial cells, and cerebrovascular endothelium determine the rate of progression of clinical symptoms. The main driving forces of advanced neurodegeneration include increased inflammatory reactions in neurons and glial cells, oxidative stress, deficiencies in neurotrophic growth and regenerative capacity of neurons, brain insulin resistance with disturbed metabolism in neurons, or reduction of the activity of the Wnt-β catenin pathway, which should integrate the homeostatic mechanisms of brain tissue. In order to more effectively inhibit the progress of neurodegeneration, combination therapies consisting of drugs that rectify several above-mentioned dysfunctions should be used. It should be noted that many widely-used drugs from various pharmacological groups, "in addition" to the main therapeutic indications, have a beneficial effect on neurodegeneration and may be introduced into clinical practice in combination therapy of AD. There is hope that complex treatment will effectively inhibit the progression of AD and turn it into a slowly progressing chronic disease. Moreover, as the mechanisms of bidirectional communication between the brain and microbiota are better understood, it is expected that these pathways will be harnessed to provide novel methods to enhance health and treat AD.
Collapse
Affiliation(s)
| | | | - Marta Sochocka
- Laboratory of Virology, Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Michał Ochnik
- Laboratory of Virology, Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | | | | | - Michał Fułek
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wrocław Medical University, Wrocław, Poland
| | - Jerzy Leszek
- Department of Psychiatry, Wrocław Medical University, Wrocław, Poland,Address correspondence to this author at the Department of Psychiatry, Wrocław Medical University, 10 Ludwika Pasteura Str., 50-367 Wrocław, Poland; Tel:+48603880572; E-mail:
| |
Collapse
|
11
|
Islam M, Shen F, Regmi D, Du D. Therapeutic strategies for tauopathies and drug repurposing as a potential approach. Biochem Pharmacol 2022; 198:114979. [PMID: 35219701 PMCID: PMC9159505 DOI: 10.1016/j.bcp.2022.114979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/03/2022] [Accepted: 02/21/2022] [Indexed: 11/26/2022]
Abstract
Tauopathies are neurodegenerative diseases characterized by the deposition of abnormal tau in the brain. To date, there are no disease-modifying therapies approved by the U.S. Food and Drug Administration (US FDA) for the treatment of tauopathies. In the past decades, extensive efforts have been provided to develop disease-modifying therapies to treat tauopathies. Specifically, exploring existing drugs with the intent of repurposing for the treatment of tauopathies affords a reasonable alternative to discover potent drugs for treating these formidable diseases. Drug repurposing will not only reduce formulation and development stage effort and cost but will also take a key advantage of the established toxicological studies, which is one of the main causes of clinical trial failure of new molecules. In this review, we provide an overview of the current treatment strategies for tauopathies and the recent progress in drug repurposing as an alternative approach to treat tauopathies.
Collapse
Affiliation(s)
- Majedul Islam
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL 33431, United States.
| | - Fengyun Shen
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL 33431, United States
| | - Deepika Regmi
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL 33431, United States
| | - Deguo Du
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL 33431, United States.
| |
Collapse
|
12
|
Ameliorative effect of pioglitazone on glucose induced glycation of α-crystallin: Management of complications associated with diabetic retinopathy. Int J Biol Macromol 2022; 209:107-116. [PMID: 35378163 DOI: 10.1016/j.ijbiomac.2022.03.202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/28/2022] [Accepted: 03/29/2022] [Indexed: 11/22/2022]
Abstract
The glycation and aggregation of lens proteins significantly contribute to the onset of diabetic cataracts as well as the retinopathy. The glycation exerts numerous alterations in the tertiary structural of proteins. Moreover, the covalent crosslinking of lens crystallins also contribute to the cataract formation. In this article, the effect of pioglitazone on glucose induced glycation and aggregation α-crystallin was examined. A remarkable inhibition of early glycation products (~80%) and advanced glycation products (~75%) was recorded by the treatment of pioglitazone. There was >75% recovery in biochemical marker (carbonyl content). The presence of 150 μM of pioglitazone reduced the free lysine modifications to 35%. Treatment of pioglitazone also protected the secondary structural alterations induced by glycation and inhibited the formation of protein aggregates. The interaction studies showed that pioglitazone interacted with α-crystallin via moderate binding affinity. The interaction between pioglitazone interacted and α-crystallin was energetically and entropically favourable. The complex of pioglitazone with studied protein stable in which RMSF, Rg, SASA, RMSD, and the secondary structural components was not affected. The findings show antiglycation activity of pioglitazone along with its mechanism of action highlighting the ability of drug to be possibly developed novel as glycation inhibitor.
Collapse
|
13
|
Clioquinol Decreases Levels of Phosphorylated, Truncated, and Oligomerized Tau Protein. Int J Mol Sci 2021; 22:ijms222112063. [PMID: 34769495 PMCID: PMC8584684 DOI: 10.3390/ijms222112063] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/24/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022] Open
Abstract
The neuropathological hallmarks of Alzheimer's disease (AD) are senile plaques (SPs), which are composed of amyloid β protein (Aβ), and neurofibrillary tangles (NFTs), which consist of highly phosphorylated tau protein. As bio-metal imbalance may be involved in the formation of NFT and SPs, metal regulation may be a direction for AD treatment. Clioquinol (CQ) is a metal-protein attenuating compound with mild chelating effects for Zn2+ and Cu2+, and CQ can not only detach metals from SPs, but also decrease amyloid aggregation in the brain. Previous studies suggested that Cu2+ induces the hyperphosphorylation of tau. However, the effects of CQ on tau were not fully explored. To examine the effects of CQ on tau metabolism, we used a human neuroblastoma cell line, M1C cells, which express wild-type tau protein (4R0N) via tetracycline-off (TetOff) induction. In a morphological study and ATP assay, up to 10 μM CQ had no effect on cell viability; however, 100 μM CQ had cytotoxic effects. CQ decreased accumulation of Cu+ in the M1C cells (39.4% of the control), and both total and phosphorylated tau protein. It also decreased the activity of c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK) (37.3% and 60.7% levels of the control, respectively), which are tau kinases. Of note, activation of protein phosphatase 2A (PP2A), which is a tau phosphatase, was also observed after CQ treatment. Fractionation experiments demonstrated a reduction of oligomeric tau in the tris insoluble, sarkosyl soluble fraction by CQ treatment. CQ also decreased caspase-cleaved tau, which accelerated the aggregation of tau protein. CQ activated autophagy and proteasome pathways, which are considered important for the degradation of tau protein. Although further studies are needed to elucidate the mechanisms responsible for the effects of CQ on tau, CQ may shed light on possible AD therapeutics.
Collapse
|
14
|
Willems S, Zaienne D, Merk D. Targeting Nuclear Receptors in Neurodegeneration and Neuroinflammation. J Med Chem 2021; 64:9592-9638. [PMID: 34251209 DOI: 10.1021/acs.jmedchem.1c00186] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nuclear receptors, also known as ligand-activated transcription factors, regulate gene expression upon ligand signals and present as attractive therapeutic targets especially in chronic diseases. Despite the therapeutic relevance of some nuclear receptors in various pathologies, their potential in neurodegeneration and neuroinflammation is insufficiently established. This perspective gathers preclinical and clinical data for a potential role of individual nuclear receptors as future targets in Alzheimer's disease, Parkinson's disease, and multiple sclerosis, and concomitantly evaluates the level of medicinal chemistry targeting these proteins. Considerable evidence suggests the high promise of ligand-activated transcription factors to counteract neurodegenerative diseases with a particularly high potential of several orphan nuclear receptors. However, potent tools are lacking for orphan receptors, and limited central nervous system exposure or insufficient selectivity also compromises the suitability of well-studied nuclear receptor ligands for functional studies. Medicinal chemistry efforts are needed to develop dedicated high-quality tool compounds for the therapeutic validation of nuclear receptors in neurodegenerative pathologies.
Collapse
Affiliation(s)
- Sabine Willems
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Daniel Zaienne
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| |
Collapse
|
15
|
Autophagy and Tau Protein. Int J Mol Sci 2021; 22:ijms22147475. [PMID: 34299093 PMCID: PMC8303176 DOI: 10.3390/ijms22147475] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/22/2021] [Accepted: 07/01/2021] [Indexed: 12/19/2022] Open
Abstract
Neurofibrillary tangles, which consist of highly phosphorylated tau protein, and senile plaques (SPs) are pathological hallmarks of Alzheimer's disease (AD). In swollen axons, many autophagic vacuoles are observed around SP in the AD brain. This suggests that autophagy function is disturbed in AD. We used a neuronal cellular model of tauopathy (M1C cells), which harbors wild type tau (4R0N), to assess the effects of the lysosomotrophic agent NH4Cl, and autophagy inhibitors chloroquine and 3 methyladenine (3MA). It was found that chloroquine, NH4Cl and 3MA markedly increased tau accumulation. Thus, autophagy lysosomal system disturbances disturbed the degradation mechanisms of tau protein. Other studies also revealed that tau protein, including aggregated tau, is degraded via the autophagy lysosome system. Phosphorylated and C terminal truncated tau were also reported to disturb autophagy function. As a therapeutic strategy, autophagy upregulation was suggested. Thus far, as autophagy modulators, rapamycin, mTOCR1 inhibitor and its analogues, lithium, metformin, clonidine, curcumin, nicotinamide, bexaroten, and torehalose have been proposed. As a therapeutic strategy, autophagic modulation may be the next target of AD therapeutics.
Collapse
|
16
|
Saunders AM, Burns DK, Gottschalk WK. Reassessment of Pioglitazone for Alzheimer's Disease. Front Neurosci 2021; 15:666958. [PMID: 34220427 PMCID: PMC8243371 DOI: 10.3389/fnins.2021.666958] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/18/2021] [Indexed: 01/01/2023] Open
Abstract
Alzheimer's disease is a quintessential 'unmet medical need', accounting for ∼65% of progressive cognitive impairment among the elderly, and 700,000 deaths in the United States in 2020. In 2019, the cost of caring for Alzheimer's sufferers was $244B, not including the emotional and physical toll on caregivers. In spite of this dismal reality, no treatments are available that reduce the risk of developing AD or that offer prolonged mitiagation of its most devestating symptoms. This review summarizes key aspects of the biology and genetics of Alzheimer's disease, and we describe how pioglitazone improves many of the patholophysiological determinants of AD. We also summarize the results of pre-clinical experiments, longitudinal observational studies, and clinical trials. The results of animal testing suggest that pioglitazone can be corrective as well as protective, and that its efficacy is enhanced in a time- and dose-dependent manner, but the dose-effect relations are not monotonic or sigmoid. Longitudinal cohort studies suggests that it delays the onset of dementia in individuals with pre-existing type 2 diabetes mellitus, which small scale, unblinded pilot studies seem to confirm. However, the results of placebo-controlled, blinded clinical trials have not borne this out, and we discuss possible explanations for these discrepancies.
Collapse
Affiliation(s)
- Ann M. Saunders
- Zinfandel Pharmaceuticals, Inc., Chapel Hill, NC, United States
| | - Daniel K. Burns
- Zinfandel Pharmaceuticals, Inc., Chapel Hill, NC, United States
| | | |
Collapse
|
17
|
Mitochondrial dysfunction: A potential target for Alzheimer's disease intervention and treatment. Drug Discov Today 2021; 26:1991-2002. [PMID: 33962036 DOI: 10.1016/j.drudis.2021.04.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/05/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is an irreversible neurodegenerative brain disorder which manifests as a progressive decline in cognitive function. Mitochondrial dysfunction plays a critical role in the early stages of AD, and advances the progression of this age-related neurodegenerative disorder. Therefore, it can be a potential target for interventions to treat AD. Several therapeutic strategies to target mitochondrial dysfunction have gained significant attention in the preclinical stage, but the clinical trials performed to date have shown little progress. Thus, we discuss the mechanisms and strategies of different therapeutic agents for targeting mitochondrial dysfunction in AD. We hope that this review will inspire and guide the development of efficient AD drugs in the future.
Collapse
|
18
|
Quan Q, Li X, Feng J, Hou J, Li M, Zhang B. Ginsenoside Rg1 reduces β‑amyloid levels by inhibiting CDΚ5‑induced PPARγ phosphorylation in a neuron model of Alzheimer's disease. Mol Med Rep 2020; 22:3277-3288. [PMID: 32945455 PMCID: PMC7453505 DOI: 10.3892/mmr.2020.11424] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/16/2020] [Indexed: 12/25/2022] Open
Abstract
The accumulation of β-amyloid peptides (Aβ) in the brain is a hallmark of Alzheimer's disease (AD). Studies have indicated that ginsenoside Rg1, a primary component of ginseng (Panax ginseng), reduces brain Aβ levels in an AD model through peroxisome proliferator-activated receptor γ (PPARγ), thereby regulating the expression of insulin-degrading enzyme (Ide) and β-amyloid cleavage enzyme 1 (Bace1), which are PPARγ target genes. However, the effects of ginsenoside Rg1 on PPARγ remain unclear. Since cyclin-dependent kinase 5 (CDK5) mediates PPARγ phosphorylation in adipose tissue, this study aimed to investigate whether ginsenoside Rg1 regulates PPARγ target genes and reduces Aβ levels by inhibiting PPARγ phosphorylation through the CDK5 pathway. In the present study, a model of AD was established by treating primary cultured rat hippocampal neurons with Aβ1-42. The cells were pretreatment with ginsenoside Rg1 and roscovitine, a CDK5-inhibitor, prior to the treatment with Aβ1-42. Neuronal apoptosis was detected using TUNEL staining. PPARγ phosphorylation and protein expression levels of PPARγ, CDK5, IDE, BACE1, amyloid precursor protein (APP) and Aβ1-42 were measured by western blotting. The mRNA expression levels of PPARγ, CDK5, IDE, BACE1 and APP were assessed using reverse transcription-quantitative PCR. The results of the present study demonstrated that in an AD model induced by Aβ1-42, ginsenoside Rg1 significantly decreased CDK5 expression, inhibited PPARγ phosphorylation at serine 273, elevated IDE expression, downregulated BACE1 and APP expression, decreased Aβ1-42 levels and attenuated neuronal apoptosis. The CDK5 inhibitor, roscovitine, demonstrated similar effects. These results suggest that ginsenoside Rg1 has neuroprotective properties and has potential for use in the treatment of AD.
Collapse
Affiliation(s)
- Qiankun Quan
- Department of Geriatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Xi Li
- Department of Geriatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jianjun Feng
- Department of Geriatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jixing Hou
- Department of Psychiatry, Xi'an Mental Health Center, Xi'an, Shaanxi 710061, P.R. China
| | - Ming Li
- Department of Geriatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Bingwei Zhang
- Department of Geriatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
19
|
Empagliflozin reduces vascular damage and cognitive impairment in a mixed murine model of Alzheimer's disease and type 2 diabetes. ALZHEIMERS RESEARCH & THERAPY 2020; 12:40. [PMID: 32264944 PMCID: PMC7140573 DOI: 10.1186/s13195-020-00607-4] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/23/2020] [Indexed: 02/08/2023]
Abstract
Background Both Alzheimer’s disease (AD) and type 2 diabetes (T2D) share common pathological features including inflammation, insulin signaling alterations, or vascular damage. AD has no successful treatment, and the close relationship between both diseases supports the study of antidiabetic drugs to limit or slow down brain pathology in AD. Empagliflozin (EMP) is a sodium-glucose co-transporter 2 inhibitor, the newest class of antidiabetic agents. EMP controls hyperglycemia and reduces cardiovascular comorbidities and deaths associated to T2D. Therefore, we have analyzed the role of EMP at the central level in a complex mouse model of AD-T2D. Methods We have treated AD-T2D mice (APP/PS1xdb/db mice) with EMP 10 mg/kg for 22 weeks. Glucose, insulin, and body weight were monthly assessed. We analyzed learning and memory in the Morris water maze and the new object discrimination test. Postmortem brain assessment was conducted to measure brain atrophy, senile plaques, and amyloid-β levels. Tau phosphorylation, hemorrhage burden, and microglia were also measured in the brain after EMP treatment. Results EMP treatment helped to maintain insulin levels in diabetic mice. At the central level, EMP limited cortical thinning and reduced neuronal loss in treated mice. Hemorrhage and microglia burdens were also reduced in EMP-treated mice. Senile plaque burden was lower, and these effects were accompanied by an amelioration of cognitive deficits in APP/PS1xdb/db mice. Conclusions Altogether, our data support a feasible role for EMP to reduce brain complications associated to AD and T2D, including classical pathological features and vascular disease, and supporting further assessment of EMP at the central level.
Collapse
|
20
|
Hamano T, Shirafuji N, Yen SH, Yoshida H, Kanaan NM, Hayashi K, Ikawa M, Yamamura O, Fujita Y, Kuriyama M, Nakamoto Y. Rho-kinase ROCK inhibitors reduce oligomeric tau protein. Neurobiol Aging 2019; 89:41-54. [PMID: 31982202 DOI: 10.1016/j.neurobiolaging.2019.12.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/21/2022]
Abstract
Neurofibrillary tangles, one of the pathological hallmarks of Alzheimer's disease, consist of highly phosphorylated tau proteins. Tau protein binds to microtubules and is best known for its role in regulating microtubule dynamics. However, if tau protein is phosphorylated by activated major tau kinases, including glycogen synthase kinase 3β or cyclin-dependent kinase 5, or inactivated tau phosphatase, including protein phosphatase 2A, its affinity for microtubules is reduced, and the free tau is believed to aggregate, thereby forming neurofibrillary tangles. We previously reported that pitavastatin decreases the total and phosphorylated tau protein using a cellular model of tauopathy. The reduction of tau was considered to be due to Rho-associated coiled-coil protein kinase (ROCK) inhibition by pitavastatin. ROCK plays important roles to organize the actin cytoskeleton, an expected therapeutic target of human disorders. Several ROCK inhibitors are clinically applied to prevent vasospasm postsubarachnoid hemorrhage (fasudil) and for the treatment of glaucoma (ripasudil). We have examined the effects of ROCK inhibitors (H1152, Y-27632, and fasudil [HA-1077]) on tau protein phosphorylation in detail. A human neuroblastoma cell line (M1C cells) that expresses wild-type tau protein (4R0N) by tetracycline-off (TetOff) induction, primary cultured mouse neurons, and a mouse model of tauopathy (rTG4510 line) were used. The levels of phosphorylated tau and caspase-cleaved tau were reduced by the ROCK inhibitors. Oligomeric tau levels were also reduced by ROCK inhibitors. After ROCK inhibitor treatment, glycogen synthase kinase 3β, cyclin-dependent kinase 5, and caspase were inactivated, protein phosphatase 2A was activated, and the levels of IFN-γ were reduced. ROCK inhibitors activated autophagy and proteasome pathways, which are considered important for the degradation of tau protein. Collectively, these results suggest that ROCK inhibitors represent a viable therapeutic route to reduce the pathogenic forms of tau protein in tauopathies, including Alzheimer's disease.
Collapse
Affiliation(s)
- Tadanori Hamano
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan; Department of Aging and Dementia (DAD), Faculty of Medical Sciences, University of Fukui, Fukui, Japan; Life Science Innovation Center, University of Fukui, Fukui, Japan.
| | - Norimichi Shirafuji
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan; Department of Aging and Dementia (DAD), Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | | | - Hirotaka Yoshida
- National Center for Geriatrics and Gerontology (NCGG), Aichi, Japan
| | - Nicholas M Kanaan
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Kouji Hayashi
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Masamichi Ikawa
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Osamu Yamamura
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Youshi Fujita
- Department of Neurology, Fujita Neurology Hospital, Fukui, Japan
| | | | - Yasunari Nakamoto
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| |
Collapse
|
21
|
Quan Q, Qian Y, Li X, Li M. CDK5 Participates in Amyloid-β Production by Regulating PPARγ Phosphorylation in Primary Rat Hippocampal Neurons. J Alzheimers Dis 2019; 71:443-460. [PMID: 31403945 DOI: 10.3233/jad-190026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Qiankun Quan
- Department of Geriatrics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education of China, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Yihua Qian
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education of China, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Xi Li
- Department of Geriatrics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ming Li
- Department of Geriatrics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
22
|
Pioglitazone improves working memory performance when administered in chronic TBI. Neurobiol Dis 2019; 132:104611. [PMID: 31513844 DOI: 10.1016/j.nbd.2019.104611] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 09/02/2019] [Accepted: 09/06/2019] [Indexed: 01/26/2023] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of long-term disability in the United States. Even in comparatively mild injuries, cognitive and behavioral symptoms can persist for years, and there are currently no established strategies for mitigating symptoms in chronic injury. A key feature of TBI-induced damage in acute and chronic injury is disruption of metabolic pathways. As neurotransmission, and therefore cognition, are highly dependent on the supply of energy, we hypothesized that modulating metabolic activity could help restore behavioral performance even when treatment was initiated weeks after TBI. We treated rats with pioglitazone, a FDA-approved drug for diabetes, beginning 46 days after lateral fluid percussion injury and tested working memory performance in the radial arm maze (RAM) after 14 days of treatment. Pioglitazone treated TBI rats performed significantly better in the RAM test than untreated TBI rats, and similarly to control animals. While hexokinase activity in hippocampus was increased by pioglitazone treatment, there was no upregulation of either the neuronal glucose transporter or hexokinase enzyme expression. Expression of glial markers GFAP and Iba-1 were also not influenced by pioglitazone treatment. These studies suggest that targeting brain metabolism, in particular hippocampal metabolism, may be effective in alleviating cognitive symptoms in chronic TBI.
Collapse
|
23
|
Diabetes drugs in the fight against Alzheimer's disease. Ageing Res Rev 2019; 54:100936. [PMID: 31330313 DOI: 10.1016/j.arr.2019.100936] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/20/2019] [Accepted: 07/17/2019] [Indexed: 01/10/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia, particularly in old age subjects. Hyperinsulinemia and insulin resistance, which are known as pathophysiological features of Type 2 Diabetes Mellitus (T2DM), have also been demonstrated to have a significant impact on cognitive impairment. Studies have shown that an altered insulin pathway may interact with amyloid-β protein deposition and tau protein phosphorylation, both leading factors for AD development. Drugs used for T2DM treatment from insulin and metformin through dipeptidyl peptidase-4 inhibitors and glucagon-like peptide-1 receptor agonists may represent a promising approach to fight AD. With this review from animal to human studies, we aim at responding to the reasons why drugs for diabetes may represent potential treatments for AD.
Collapse
|
24
|
Quan Q, Qian Y, Li X, Li M. Pioglitazone Reduces β Amyloid Levels via Inhibition of PPARγ Phosphorylation in a Neuronal Model of Alzheimer's Disease. Front Aging Neurosci 2019; 11:178. [PMID: 31379559 PMCID: PMC6650543 DOI: 10.3389/fnagi.2019.00178] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/02/2019] [Indexed: 12/28/2022] Open
Abstract
It has been demonstrated that peroxisome proliferator-activated receptor γ (PPARγ) can regulate the transcription of its target gene, insulin-degrading enzyme (IDE), and thus enhance the expression of the IDE protein. The protein can degrade β amyloid (Aβ), a core pathological product of Alzheimer’s disease (AD). PPARγ can also regulate the transcription of other target gene, β-amyloid cleavage enzyme 1 (BACE1), and thus inhibit the expression of the BACE1 protein. BACE1 can hydrolyze amyloid precursor protein (APP), the precursor of Aβ. In adipose tissue, PPARγ agonists can inhibit the phosphorylation of PPARγ by inhibiting cyclin-dependent kinase 5 (CDK5), which in turn affects the expression of target genes regulated by PPARγ. PPARγ agonists may also exert inhibitory effects on the phosphorylation of PPARγ in the brain, thereby affecting the expression of the aforementioned PPARγ target genes and reducing Aβ levels. The present study confirmed this hypothesis by showing that PPARγ agonist pioglitazone attenuated the neuronal apoptosis of primary rat hippocampal neurons induced by Aβ1–42, downregulated CDK5 expression, weakened the binding of CDK5 to PPARγ, reduced PPARγ phosphorylation, increased the expression of PPARγ and IDE, decreased the expression of BACE1, reduced APP production, and downregulated intraneuronal Aβ1–42 levels. These effects were inhibited by the PPARγ antagonist GW9662. After CDK5 silencing with CDK5 shRNA, the above effect of pioglitazone was not observed, except when upregulating the expression of PPARγ in Aβ1–42 treated neurons. In conclusion, this study demonstrated that pioglitazone could inhibit the phosphorylation of PPARγ in vitro by inhibiting CDK5 expression, which in turn affected the expression of PPARγ target genes Ide and Bace1, thereby promoting Aβ degradation and reducing Aβ production. This reduced Aβ levels in the brain, thereby exerting neuroprotective effects in an AD model.
Collapse
Affiliation(s)
- Qiankun Quan
- Department of Geriatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yihua Qian
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xi Li
- Department of Geriatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ming Li
- Department of Geriatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
25
|
Zhong KL, Chen F, Hong H, Ke X, Lv YG, Tang SS, Zhu YB. New views and possibilities of antidiabetic drugs in treating and/or preventing mild cognitive impairment and Alzheimer's Disease. Metab Brain Dis 2018; 33:1009-1018. [PMID: 29626315 DOI: 10.1007/s11011-018-0227-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 03/28/2018] [Indexed: 12/13/2022]
Abstract
Mounting evidence suggests that diabetes mellitus (DM) is associated with mild cognitive impairment (MCI), vascular dementia and Alzheimer's disease (AD). Biological, clinical and epidemiological data support a close link between DM and AD. Increasingly, studies have found that several antidiabetic agents can promote neurogenesis, and clinically ameliorate cognitive and memory impairments in different clinical settings. Data has shown that these antidiabetic drugs positively affect mitochondrial and synaptic function, neuroinflammation, and brain metabolism. Evidence to date strongly suggests that these antidiabetic drugs could be developed as disease-modifying therapies for MCI and AD in patients with and without diabetes.
Collapse
Affiliation(s)
- Kai Long Zhong
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Fang Chen
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing, 210009, China
| | - Hao Hong
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing, 210009, China
| | - Xuan Ke
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing, 210009, China
| | - Yang Ge Lv
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing, 210009, China
| | - Su Su Tang
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing, 210009, China
| | - Yu Bing Zhu
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.
| |
Collapse
|
26
|
Mohamed HE, Asker ME, Younis NN, Shaheen MA, Eissa RG. Modulation of brain insulin signaling in Alzheimer’s disease: New insight on the protective role of green coffee bean extract. Nutr Neurosci 2018; 23:27-36. [DOI: 10.1080/1028415x.2018.1468535] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Hoda E. Mohamed
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Mervat E. Asker
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Nahla N. Younis
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Mohamed A. Shaheen
- Department of Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Rana G. Eissa
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
27
|
Homocysteine Increases Tau Phosphorylation, Truncation and Oligomerization. Int J Mol Sci 2018; 19:ijms19030891. [PMID: 29562600 PMCID: PMC5877752 DOI: 10.3390/ijms19030891] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/01/2018] [Accepted: 03/13/2018] [Indexed: 11/22/2022] Open
Abstract
Increased plasma homocysteinemia is considered a risk factor of dementia, including Alzheimer’s disease (AD) and vascular dementia. However, the reason elevated plasma homocysteinemia increases the risk of dementia remains unknown. A pathological hallmark of AD is neurofibrillary tangles (NFTs) that consist of pathologically phosphorylated tau proteins. The effect of homocysteine (Hcy) on tau aggregation was explored using human neuroblastoma M1C cells that constitutively express human wild-type tau (4R0N) under the control of a tetracycline off system, primary mouse cultured neurons, and by inducing hyperhomocysteinemia in a mouse model of tauopathy (HHCy mice). A wide range of Hcy concentrations (10–1000 µM) increased total tau and phosphorylated tau protein levels. Hcy activated glycogen synthase kinase 3, and cyclin dependent kinase 5, major tau phosphokinases, and inactivated protein phosphatase 2A, a main tau phosphatase. Hcy exhibited cytotoxic effects associated with enhanced activation of caspase. Truncation of tau in the C-terminus, the cleavage site of caspase 3 (i.e., D421, detected by the TauC3 antibody) was also increased. Total tau, phosphorylated tau, as well as C-terminal cleaved tau were increased in the sarkosyl insoluble tau fraction. Hcy also increased the level of tau oligomers, as indicated by the tau oligomer complex 1 (TOC1) antibody that specifically identifies oligomeric tau species, in the tris insoluble, sarkosyl soluble fraction. The levels of TOC1-positive oligomeric tau were increased in brain lysates from HHCy mice, and treating HHCy mice with S-adenosylmethionine, an intermediate of Hcy, reduced the levels of oligomeric tau to control levels. These observations suggest that Hcy increases the levels of phosphorylated tau as well as truncated tau species via caspase 3 activation, and enhanced tau oligomerization and aggregation.
Collapse
|
28
|
Kumar A, Tiwari A, Sharma A. Changing Paradigm from one Target one Ligand Towards Multi-target Directed Ligand Design for Key Drug Targets of Alzheimer Disease: An Important Role of In Silico Methods in Multi-target Directed Ligands Design. Curr Neuropharmacol 2018; 16:726-739. [PMID: 29542413 PMCID: PMC6080096 DOI: 10.2174/1570159x16666180315141643] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 04/01/2017] [Accepted: 05/01/2017] [Indexed: 12/14/2022] Open
Abstract
Alzheimer disease (AD) is now considered as a multifactorial neurodegenerative disorder and rapidly increasing to an alarming situation and causing higher death rate. One target one ligand hypothesis does not provide complete solution of AD due to multifactorial nature of the disease and one target one drug fails to provide better treatment against AD. Moreover, currently available treatments are limited and most of the upcoming treatments under clinical trials are based on modulating single target. So, the current AD drug discovery research is shifting towards a new approach for a better solution that simultaneously modulates more than one targets in the neurodegenerative cascade. This can be achieved by network pharmacology, multi-modal therapies, multifaceted, and/or the more recently proposed term "multi-targeted designed drugs". Drug discovery project is a tedious, costly and long-term project. Moreover, multi-target AD drug discovery added extra challenges such as the good binding affinity of ligands for multiple targets, optimal ADME/T properties, no/less off-target side effect and crossing of the blood-brain barrier. These hurdles may be addressed by insilico methods for an efficient solution in less time and cost as computational methods successfully applied to single target drug discovery project. Here, we are summarizing some of the most prominent and computationally explored single targets against AD and further, we discussed a successful example of dual or multiple inhibitors for same targets. Moreover, we focused on ligand and structure-based computational approach to design MTDL against AD. However, it is not an easy task to balance dual activity in a single molecule but computational approach such as virtual screening docking, QSAR, simulation and free energy is useful in future MTDLs drug discovery alone or in combination with a fragment-based method. However, rational and logical implementations of computational drug designing methods are capable of assisting AD drug discovery and play an important role in optimizing multi-target drug discovery.
Collapse
Affiliation(s)
- Akhil Kumar
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow-226015, (U.P.), India
| | - Ashish Tiwari
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow-226015, (U.P.), India
| | - Ashok Sharma
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow-226015, (U.P.), India
| |
Collapse
|