1
|
Huang Y, Wei X, Tu M, Lu W, Xu J. CircMAN1A2_009 facilitates YBX1 nuclear localization to induce GLO1 activation for cervical adenocarcinoma cell growth. Cancer Sci 2024; 115:3273-3287. [PMID: 39038813 PMCID: PMC11447891 DOI: 10.1111/cas.16264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/13/2024] [Accepted: 06/20/2024] [Indexed: 07/24/2024] Open
Abstract
The molecular mechanisms driving the development of cervical adenocarcinoma (CADC) and optimal patient management strategies remain elusive. In this study, we have identified circMAN1A2_009 as an oncogenic circular RNA (circRNA) in CADC. Clinically, circMAN1A2_009 showed significant upregulation in CADC tissues, with an impressive area under the curve value of 0.8075 for detecting CADC. Functional studies, involving both gain-of-function and loss-of-function experiments, revealed that circMAN1A2_009 suppressed reactive oxygen species accumulation and apoptosis, and boosted cell viability in CADC cells. Conversely, silencing circMAN1A2_009 reversed these effects. Further mechanistic investigations indicated that circMAN1A2_009 interacted with YBX1, facilitating the phosphorylation levels of YBX1 at serine 102 (p-YBX1S102) and facilitating YBX1 nuclear localization through sequence 245-251. This interaction subsequently increased the activity of the glyoxalase 1 (GLO1) promoter, leading to the activation of GLO1 expression. Consistently, inhibition of either YBX1 or GLO1 mirrored the biological effects of circMAN1A2_009 in CADC cells. Additionally, knockdown of YBX1 or GLO1 partially reversed the oncogenic behaviors induced by circMAN1A2_009. In conclusion, our findings propose circMAN1A2_009 as a potential oncogene and a promising indicator for diagnosing and guiding therapy in CADC patients.
Collapse
Affiliation(s)
- Yongjie Huang
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyi Wei
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengyan Tu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weiguo Lu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junfen Xu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
2
|
Khozooei S, Veerappan S, Toulany M. YB-1 activating cascades as potential targets in KRAS-mutated tumors. Strahlenther Onkol 2023; 199:1110-1127. [PMID: 37268766 DOI: 10.1007/s00066-023-02092-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/23/2023] [Indexed: 06/04/2023]
Abstract
Y‑box binding protein‑1 (YB-1) is a multifunctional protein that is highly expressed in human solid tumors of various entities. Several cellular processes, e.g. cell cycle progression, cancer stemness and DNA damage signaling that are involved in the response to chemoradiotherapy (CRT) are tightly governed by YB‑1. KRAS gene with about 30% mutations in all cancers, is considered the most commonly mutated oncogene in human cancers. Accumulating evidence indicates that oncogenic KRAS mediates CRT resistance. AKT and p90 ribosomal S6 kinase are downstream of KRAS and are the major kinases that stimulate YB‑1 phosphorylation. Thus, there is a close link between the KRAS mutation status and YB‑1 activity. In this review paper, we highlight the importance of the KRAS/YB‑1 cascade in the response of KRAS-mutated solid tumors to CRT. Likewise, the opportunities to interfere with this pathway to improve CRT outcome are discussed in light of the current literature.
Collapse
Affiliation(s)
- Shayan Khozooei
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
| | - Soundaram Veerappan
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
| | - Mahmoud Toulany
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|
3
|
Bläsius FM, Greven J, Guo W, Bolierakis E, He Z, Lübke C, Simon TP, Hildebrand F, Horst K. Local YB-1, Epo, and EpoR concentrations in fractured bones: results from a porcine model of multiple trauma. Eur J Med Res 2023; 28:25. [PMID: 36639666 PMCID: PMC9837984 DOI: 10.1186/s40001-023-00996-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023] Open
Abstract
Little is known about the impact of multiple trauma (MT)-related systemic hypoxia on osseous protein concentration of the hypoxia transcriptome. To shed light on this issue, we investigated erythropoietin (Epo), erythropoietin receptor (EpoR), and Y-box binding protein 1 (YB-1) concentrations in the fracture zone in a porcine MT + traumatic hemorrhage (TH) model. Sixteen male domestic pigs were randomized into two groups: an MT + TH group and a sham group. A tibia fracture, lung contusion, and TH were induced in the MT + TH group. The total observation period was 72 h. YB-1 concentrations in bone marrow (BM) were significantly lower in the fracture zone of the MT + TH animals than in the sham animals. Significant downregulation of BM-localized EpoR concentration in both unfractured and fractured bones was observed in the MT + TH animals relative to the sham animals. In BM, Epo concentrations were higher in the fracture zone of the MT + TH animals compared with that in the sham animals. Significantly higher Epo concentrations were detected in the BM of fractured bone compared to that in cortical bone. Our results provide the first evidence that MT + TH alters hypoxia-related protein concentrations. The impacts of both the fracture and concomitant injuries on protein concentrations need to be studied in more detail to shed light on the hypoxia transcriptome in fractured and healthy bones after MT + TH.
Collapse
Affiliation(s)
- Felix Marius Bläsius
- grid.1957.a0000 0001 0728 696XDeptartment of Orthopaedics, Trauma and Reconstructive Surgery, University Hospital, RWTH University, Pauwelsstraße 30, 52074 Aachen, Germany ,grid.1957.a0000 0001 0728 696XInsitute of Pharmacology and Toxicology, University Hospital, RWTH University, Aachen, Germany
| | - Johannes Greven
- grid.1957.a0000 0001 0728 696XDeptartment of Orthopaedics, Trauma and Reconstructive Surgery, University Hospital, RWTH University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Weijun Guo
- grid.1957.a0000 0001 0728 696XDeptartment of Orthopaedics, Trauma and Reconstructive Surgery, University Hospital, RWTH University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Eftychios Bolierakis
- grid.1957.a0000 0001 0728 696XDeptartment of Orthopaedics, Trauma and Reconstructive Surgery, University Hospital, RWTH University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Zhizhen He
- grid.1957.a0000 0001 0728 696XDeptartment of Orthopaedics, Trauma and Reconstructive Surgery, University Hospital, RWTH University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Cavan Lübke
- grid.1957.a0000 0001 0728 696XDepartment of Intensive Care and Intermediate Care, University Hospital, RWTH University, Aachen, Germany
| | - Tim-Philipp Simon
- grid.1957.a0000 0001 0728 696XDepartment of Intensive Care and Intermediate Care, University Hospital, RWTH University, Aachen, Germany
| | - Frank Hildebrand
- grid.1957.a0000 0001 0728 696XDeptartment of Orthopaedics, Trauma and Reconstructive Surgery, University Hospital, RWTH University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Klemens Horst
- grid.1957.a0000 0001 0728 696XDeptartment of Orthopaedics, Trauma and Reconstructive Surgery, University Hospital, RWTH University, Pauwelsstraße 30, 52074 Aachen, Germany
| |
Collapse
|
4
|
Wang X, Liu Z, Ma A. Interpretation of the Genotype by Tissue Interactions of Four Genes (AFP1, CIRP, YB-1, and HMGB1) in Takifugu rubripes Under Different Low-Temperature Conditions. Front Mol Biosci 2022; 9:897935. [PMID: 35847974 PMCID: PMC9280165 DOI: 10.3389/fmolb.2022.897935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Background: The differential expression of the same gene in different tissues could be due to the genotype effect, tissue effect, and/or genotype × tissue interactions. However, the genetic mechanisms responsible for this differential expression have not been reported to date.Methods: Four resistance genes to low temperature, the genes for antifreeze protein (AFP), cold induced RNA binding protein (CIRP), high mobility group protein box-1 (HMGB1), and Y-box binding protein (YB-1), were measured by PCR in the liver, spleen, kidney, brain, heart, intestine, muscle, gonad, and skin of Takifugu rubripes cultured under different temperature conditions (18, 13, 8, and 5°C). Split-split-plot analysis of variance, additive main effects and multiplicative interaction (AMMI) and genotype main effects and genotype × environment interaction (GGE) biplot analysis were used to evaluate the effects of genotype × tissue interactions on gene expression.Results: The results of split-split-plot analysis of variance showed that water temperature has a significant effect on the expression of T. rubripes cold resistant genes, while tissue × gene interaction has a highly significant effect on it. AMMI analysis showed that the contributions of genotype, tissue, and genotype × tissue interactions to the total variation in gene expression followed two trends: 1) as temperature decreased, the gene effect increased gradually and the genotype × tissue interaction decreased gradually; 2) the gene effect at 18 and 13°C was significantly lower than that at 8 and 5°C, while the interaction at 18 and 13°C was significantly higher than that at 8 and 5°C. GGE analysis showed that: at all temperatures except 8°C, the expression rankings of all four genes were highly positively correlated in all tissues except muscle; the expression stability of the genes was the same at 18°C/13°C and at 8°C/5°C; and AFP1 showed the best expression and stability among the four genes.Conclusion: 8°C/5°C as the suitable temperature for such experiments for T. rubripes. Among the four antifreeze genes evaluated in this study, AFP1 had the best expression and stability.
Collapse
Affiliation(s)
- Xinan Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhifeng Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Aijun Ma
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- *Correspondence: Aijun Ma,
| |
Collapse
|
5
|
YB-1 as an Oncoprotein: Functions, Regulation, Post-Translational Modifications, and Targeted Therapy. Cells 2022; 11:cells11071217. [PMID: 35406781 PMCID: PMC8997642 DOI: 10.3390/cells11071217] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/26/2022] [Accepted: 04/02/2022] [Indexed: 02/04/2023] Open
Abstract
Y box binding protein 1 (YB-1) is a protein with a highly conserved cold shock domain (CSD) that also belongs to the family of DNA- and RNA-binding proteins. YB-1 is present in both the nucleus and cytoplasm and plays versatile roles in gene transcription, RNA splicing, DNA damage repair, cell cycle progression, and immunity. Cumulative evidence suggests that YB-1 promotes the progression of multiple tumor types and serves as a potential tumor biomarker and therapeutic target. This review comprehensively summarizes the emerging functions, mechanisms, and regulation of YB-1 in cancers, and further discusses targeted strategies.
Collapse
|
6
|
Mai S, Liang L, Mai G, Liu X, Diao D, Cai R, Liu L. Development and Validation of Lactate Metabolism-Related lncRNA Signature as a Prognostic Model for Lung Adenocarcinoma. Front Endocrinol (Lausanne) 2022; 13:829175. [PMID: 35422758 PMCID: PMC9004472 DOI: 10.3389/fendo.2022.829175] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 02/21/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Lung cancer has been a prominent research focus in recent years due to its role in cancer-related fatalities globally, with lung adenocarcinoma (LUAD) being the most prevalent histological form. Nonetheless, no signature of lactate metabolism-related long non-coding RNAs (LMR-lncRNAs) has been developed for patients with LUAD. Accordingly, we aimed to develop a unique LMR-lncRNA signature to determine the prognosis of patients with LUAD. METHOD The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were utilized to derive the lncRNA expression patterns. Identification of LMR-lncRNAs was accomplished by analyzing the co-expression patterns between lncRNAs and LMR genes. Subsequently, the association between lncRNA levels and survival outcomes was determined to develop an effective signature. In the TCGA cohort, Cox regression was enlisted to build an innovative signature consisting of three LMR-lncRNAs, which was validated in the GEO validation cohort. GSEA and immune infiltration analysis were conducted to investigate the functional annotation of the signature and the function of each type of immune cell. RESULTS Fourteen differentially expressed LMR-lncRNAs were strongly correlated with the prognosis of patients with LUAD and collectively formed a new LMR-lncRNA signature. The patients could be categorized into two cohorts based on their LMR-lncRNA signatures: a low-risk and high-risk group. The overall survival of patients with LUAD in the high-risk group was considerably lower than those in the low-risk group. Using Cox regression, this signature was shown to have substantial potential as an independent prognostic factor, which was further confirmed in the GEO cohort. Moreover, the signature could anticipate survival across different groups based on stage, age, and gender, among other variables. This signature also correlated with immune cell infiltration (including B cells, neutrophils, CD4+ T cells, CD8+ T cells, etc.) as well as the immune checkpoint blockade target CTLA-4. CONCLUSION We developed and verified a new LMR-lncRNA signature useful for anticipating the survival of patients with LUAD. This signature could give potentially critical insight for immunotherapy interventions in patients with LUAD.
Collapse
Affiliation(s)
- Shijie Mai
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Liping Liang
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Genghui Mai
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiguang Liu
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dingwei Diao
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruijun Cai
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Le Liu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| |
Collapse
|
7
|
Leppik L, Gempp A, Kuçi Z, Kuçi S, Bader P, Bönig H, Marzi I, Henrich D. A New Perspective for Bone Tissue Engineering: Human Mesenchymal Stromal Cells Well-Survive Cryopreservation on β-TCP Scaffold and Show Increased Ability for Osteogenic Differentiation. Int J Mol Sci 2022; 23:ijms23031425. [PMID: 35163348 PMCID: PMC8835857 DOI: 10.3390/ijms23031425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/15/2022] [Accepted: 01/25/2022] [Indexed: 02/01/2023] Open
Abstract
The clinical breakthrough of bone tissue engineering (BTE) depends on the ability to provide patients routinely with BTE products of consistent pharmacological quality. The bottleneck of this approach is the availability of stem cells. To avoid this, we suggest immobilization of random-donor-derived heterologous osteoinductive MSCs onto osteoconductive matrices. Such BTE products could then be frozen and, after thawing, could be released as ready-to-use products for permanent implantation during surgery. For this purpose, we developed a simple protocol for cryopreservation of BTE constructs and evaluated the effects of this procedure on human MSC (hMSCs) metabolic and osteogenic activity in vitro. Our findings show that hMSCs can be freeze-thawed on a β-TCP scaffold through a technically simple procedure. Treated cells sustained their metabolic activity and showed favorable osteogenic potential. Mechanistically, HIF1α and YBX1 genes were activated after freeze-thawing, and supposed to be linked to enhanced osteogenesis. However, the detailed mechanisms as to how the cryopreservation procedure beneficially affects the osteogenic potential of hMSCs remains to be evaluated. Additionally, we demonstrated that our BTE products could be stored for 3 days on dry ice; this could facilitate the supply chain management of cryopreserved BTE constructs from the site of manufacture to the operating room.
Collapse
Affiliation(s)
- Liudmila Leppik
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Goethe-University, 60590 Frankfurt am Main, Germany; (A.G.); (I.M.); (D.H.)
- Correspondence:
| | - Anna Gempp
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Goethe-University, 60590 Frankfurt am Main, Germany; (A.G.); (I.M.); (D.H.)
| | - Zyrafete Kuçi
- Department for Children and Adolescents, Division for Stem Cell Transplantation and Immunology, University Hospital Frankfurt, 60590 Frankfurt am Main, Germany; (Z.K.); (S.K.); (P.B.)
| | - Selim Kuçi
- Department for Children and Adolescents, Division for Stem Cell Transplantation and Immunology, University Hospital Frankfurt, 60590 Frankfurt am Main, Germany; (Z.K.); (S.K.); (P.B.)
| | - Peter Bader
- Department for Children and Adolescents, Division for Stem Cell Transplantation and Immunology, University Hospital Frankfurt, 60590 Frankfurt am Main, Germany; (Z.K.); (S.K.); (P.B.)
| | - Halvard Bönig
- Institute for Transfusion Medicine and Immunohematology, Goethe University, German Red Cross Blood Service BaWüHe, 60528 Frankfurt am Main, Germany;
| | - Ingo Marzi
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Goethe-University, 60590 Frankfurt am Main, Germany; (A.G.); (I.M.); (D.H.)
| | - Dirk Henrich
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Goethe-University, 60590 Frankfurt am Main, Germany; (A.G.); (I.M.); (D.H.)
| |
Collapse
|
8
|
Eliseeva IA, Sogorina EM, Smolin EA, Kulakovskiy IV, Lyabin DN. Diverse Regulation of YB-1 and YB-3 Abundance in Mammals. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:S48-S167. [PMID: 35501986 DOI: 10.1134/s000629792214005x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 06/14/2023]
Abstract
YB proteins are DNA/RNA binding proteins, members of the family of proteins with cold shock domain. Role of YB proteins in the life of cells, tissues, and whole organisms is extremely important. They are involved in transcription regulation, pre-mRNA splicing, mRNA translation and stability, mRNA packaging into mRNPs, including stress granules, DNA repair, and many other cellular events. Many processes, from embryonic development to aging, depend on when and how much of these proteins have been synthesized. Here we discuss regulation of the levels of YB-1 and, in part, of its homologs in the cell. Because the amount of YB-1 is immediately associated with its functioning, understanding the mechanisms of regulation of the protein amount invariably reveals the events where YB-1 is involved. Control over the YB-1 abundance may allow using this gene/protein as a therapeutic target in cancers, where an increased expression of the YBX1 gene often correlates with the disease severity and poor prognosis.
Collapse
Affiliation(s)
- Irina A Eliseeva
- Institute of Protein Research, Pushchino, Moscow Region, 142290, Russia.
| | | | - Egor A Smolin
- Institute of Protein Research, Pushchino, Moscow Region, 142290, Russia.
| | - Ivan V Kulakovskiy
- Institute of Protein Research, Pushchino, Moscow Region, 142290, Russia.
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Moscow, 119991, Russia
| | - Dmitry N Lyabin
- Institute of Protein Research, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
9
|
Sogorina EM, Kim ER, Sorokin AV, Lyabin DN, Ovchinnikov LP, Mordovkina DA, Eliseeva IA. YB-1 Phosphorylation at Serine 209 Inhibits Its Nuclear Translocation. Int J Mol Sci 2021; 23:ijms23010428. [PMID: 35008856 PMCID: PMC8745666 DOI: 10.3390/ijms23010428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/09/2021] [Accepted: 12/18/2021] [Indexed: 01/18/2023] Open
Abstract
YB-1 is a multifunctional DNA- and RNA-binding protein involved in cell proliferation, differentiation, and migration. YB-1 is a predominantly cytoplasmic protein that is transported to the nucleus in certain conditions, including DNA-damaging stress, transcription inhibition, and viral infection. In tumors, YB-1 nuclear localization correlates with high aggressiveness, multidrug resistance, and a poor prognosis. It is known that posttranslational modifications can regulate the nuclear translocation of YB-1. In particular, well-studied phosphorylation at serine 102 (S102) activates YB-1 nuclear import. Here, we report that Akt kinase phosphorylates YB-1 in vitro at serine 209 (S209), which is located in the vicinity of the YB-1 nuclear localization signal. Using phosphomimetic substitutions, we showed that S209 phosphorylation inhibits YB-1 nuclear translocation and prevents p-S102-mediated YB-1 nuclear import.
Collapse
Affiliation(s)
- Ekaterina M. Sogorina
- Group of Protein Biosynthesis Regulation, Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (E.M.S.); (E.R.K.); (A.V.S.); (D.N.L.)
| | - Ekaterina R. Kim
- Group of Protein Biosynthesis Regulation, Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (E.M.S.); (E.R.K.); (A.V.S.); (D.N.L.)
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Alexey V. Sorokin
- Group of Protein Biosynthesis Regulation, Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (E.M.S.); (E.R.K.); (A.V.S.); (D.N.L.)
- Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dmitry N. Lyabin
- Group of Protein Biosynthesis Regulation, Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (E.M.S.); (E.R.K.); (A.V.S.); (D.N.L.)
| | - Lev P. Ovchinnikov
- Group of Protein Biosynthesis Regulation, Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (E.M.S.); (E.R.K.); (A.V.S.); (D.N.L.)
| | - Daria A. Mordovkina
- Group of Protein Biosynthesis Regulation, Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (E.M.S.); (E.R.K.); (A.V.S.); (D.N.L.)
- Correspondence: (D.A.M.); (I.A.E.)
| | - Irina A. Eliseeva
- Group of Protein Biosynthesis Regulation, Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (E.M.S.); (E.R.K.); (A.V.S.); (D.N.L.)
- Correspondence: (D.A.M.); (I.A.E.)
| |
Collapse
|
10
|
Zhu D, Kang W, Zhang S, Qiao X, Liu J, Liu C, Lu H. Effect of mandibular advancement device treatment on HIF-1α, EPO and VEGF in the myocardium of obstructive sleep apnea-hypopnea syndrome rabbits. Sci Rep 2020; 10:13261. [PMID: 32764565 PMCID: PMC7414037 DOI: 10.1038/s41598-020-70238-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 07/22/2020] [Indexed: 11/09/2022] Open
Abstract
The aim of this study was to investigate the effects of mandibular advancement device (MAD) therapy for obstructive sleep apnea-hypopnea syndrome (OSAHS) on hypoxia-inducible factor-1α (HIF-1α), erythropoietin (EPO) and vascular endothelial growth factor (VEGF) in myocardial tissue. New Zealand rabbits were used to develop OSAHS and MAD models. Cone beam computed tomography (CBCT) of the upper airway and polysomnography (PSG) recordings were performed with the animals in the supine position. All of the animals were induced to sleep in a supine position for 4-6 h each day and were observed continuously for 8 weeks. The myocardial tissue of the three groups was dissected to measure the expression of HIF-1α, EPO and VEGF. The results showed that there was higher expression of HIF-1α, EPO and VEGF in the OSAHS group than those in the MAD and control groups. MAD treatment significantly downregulated the expression of HIF-1α, EPO and VEGF in the OSAHS animals. We concluded that MAD treatment could significantly downregulate the increased expression of HIF-1α, EPO and VEGF in OSAHS rabbits, improving their myocardial function.
Collapse
Affiliation(s)
- Dechao Zhu
- Department of Orthodontics, School and Hospital of Stomatology, Hebei Medical University & Hebei Key Laboratory of Stomatology, No. 383, East Zhongshan Road, Shijiazhuang, 050017, Hebei, People's Republic of China
| | - Wenjing Kang
- Department of Orthodontics, School and Hospital of Stomatology, Hebei Medical University & Hebei Key Laboratory of Stomatology, No. 383, East Zhongshan Road, Shijiazhuang, 050017, Hebei, People's Republic of China
| | - Shilong Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Hebei Medical University & Hebei Key Laboratory of Stomatology, No. 383, East Zhongshan Road, Shijiazhuang, 050017, Hebei, People's Republic of China
| | - Xing Qiao
- Department of Orthodontics, School and Hospital of Stomatology, Hebei Medical University & Hebei Key Laboratory of Stomatology, No. 383, East Zhongshan Road, Shijiazhuang, 050017, Hebei, People's Republic of China
| | - Jie Liu
- Department of Orthodontics, School and Hospital of Stomatology, Hebei Medical University & Hebei Key Laboratory of Stomatology, No. 383, East Zhongshan Road, Shijiazhuang, 050017, Hebei, People's Republic of China
| | - Chunyan Liu
- Department of Orthodontics, School and Hospital of Stomatology, Hebei Medical University & Hebei Key Laboratory of Stomatology, No. 383, East Zhongshan Road, Shijiazhuang, 050017, Hebei, People's Republic of China.
| | - Haiyan Lu
- Department of Orthodontics, School and Hospital of Stomatology, Hebei Medical University & Hebei Key Laboratory of Stomatology, No. 383, East Zhongshan Road, Shijiazhuang, 050017, Hebei, People's Republic of China.
| |
Collapse
|
11
|
Wang W, Han Y, Jo HA, Lee J, Song YS. Non-coding RNAs shuttled via exosomes reshape the hypoxic tumor microenvironment. J Hematol Oncol 2020; 13:67. [PMID: 32503591 PMCID: PMC7275461 DOI: 10.1186/s13045-020-00893-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023] Open
Abstract
Exosomes are small extracellular vesicles secreted by almost all the cells. Molecular cargos of exosomes can partially reflect the characteristics of originating cells. Exosome-mediated cell-to-cell interactions in the microenvironment are critical in cancer progression. Hypoxia, a key pro-cancerous feature of the tumor microenvironment, alters the releasing and contents of exosomes. A growing body of evidence shows that hypoxia induces more aggressive phenotypes in cancer. Of note, non-coding RNAs shuttled in hypoxic tumor-derived exosomes have been demonstrated as fundamental molecules in regulating cancer biology and remodeling tumor microenvironment. Furthermore, these hypoxic tumor-derived exosomal non-coding RNAs can be detected in the body fluids, serving as promising diagnostic and prognostic biomarkers. The current review discusses changes in cancer behaviors regulated by exosomes-secreted non-coding RNAs under hypoxic conditions.
Collapse
Affiliation(s)
- Wenyu Wang
- Interdisciplinary Program in Cancer Biology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Youngjin Han
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul, 03080, Republic of Korea
| | - Hyun A Jo
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul, 03080, Republic of Korea
| | - Juwon Lee
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul, 03080, Republic of Korea
| | - Yong Sang Song
- Interdisciplinary Program in Cancer Biology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul, 03080, Republic of Korea.
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
12
|
Dong S, Nie H, Li D, Cai Z, Sun X, Huo Z, Yan X. Molecular cloning and characterization of Y-box gene (Rpybx) from Manila clam and its expression analysis in different strains under low-temperature stress. Anim Genet 2020; 51:430-438. [PMID: 32091145 DOI: 10.1111/age.12919] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2020] [Indexed: 12/28/2022]
Abstract
Manila clam, Ruditapes philippinarum, is an economically important marine bivalve species. Y-box proteins are members of the cold shock proteins family and highly conserved from bacteria to humans. In this study, a novel Y-box gene (Rpybx) was cloned from the Manila clam and gene expression profiling was performed on three shell color strains (white, zebra and white zebra) and two wild populations (Southern and Northern) of R. philippinarum. The complete ORF length of Rpybx is 1367 bp, encoding 253 amino acids residues. Based on the amino acid sequence analysis and phylogenetic analysis, the Rpybx gene was identified as a member of the invertebrate Y-box proteins family. Rpybx has a similar tertiary structure to human Y-box protein YB-1. The Rpybx mRNA levels were analyzed by qPCR under acute and gradually varied cold stress. Under acute low-temperature stress, the expression of Rpybx mRNA in gills and hepatopancreas was significantly increased in all selected strains and populations (P < 0.05). The Northern population showed the lowest relative expression level of Rpybx. The expressions of Rpybx were greatly upregulated in gills and hepatopancreas of different stains and populations at 5 or -2°C under gradually varied temperature stress (P < 0.05). The results shed light on the biological function of the Rpybx gene in defending against low-temperature challenge and further exploring the molecular mechanism of cold tolerance and resistance in R. philippinarum.
Collapse
Affiliation(s)
- S Dong
- College of Fisheries and Life Science, Engineering and Technology Research Center of Shellfish Breeding of Liaoning Province, Dalian Ocean University, Dalian, 116023, China
| | - H Nie
- College of Fisheries and Life Science, Engineering and Technology Research Center of Shellfish Breeding of Liaoning Province, Dalian Ocean University, Dalian, 116023, China
| | - D Li
- College of Fisheries and Life Science, Engineering and Technology Research Center of Shellfish Breeding of Liaoning Province, Dalian Ocean University, Dalian, 116023, China
| | - Z Cai
- College of Fisheries and Life Science, Engineering and Technology Research Center of Shellfish Breeding of Liaoning Province, Dalian Ocean University, Dalian, 116023, China
| | - X Sun
- College of Fisheries and Life Science, Engineering and Technology Research Center of Shellfish Breeding of Liaoning Province, Dalian Ocean University, Dalian, 116023, China
| | - Z Huo
- College of Fisheries and Life Science, Engineering and Technology Research Center of Shellfish Breeding of Liaoning Province, Dalian Ocean University, Dalian, 116023, China
| | - X Yan
- College of Fisheries and Life Science, Engineering and Technology Research Center of Shellfish Breeding of Liaoning Province, Dalian Ocean University, Dalian, 116023, China
| |
Collapse
|
13
|
Budkina KS, Zlobin NE, Kononova SV, Ovchinnikov LP, Babakov AV. Cold Shock Domain Proteins: Structure and Interaction with Nucleic Acids. BIOCHEMISTRY (MOSCOW) 2020; 85:S1-S19. [DOI: 10.1134/s0006297920140011] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
14
|
He J, Xie TL, Li X, Yu Y, Zhan ZP, Weng SP, Guo CJ, He JG. Molecular cloning of Y-Box binding protein-1 from mandarin fish and its roles in stress-response and antiviral immunity. FISH & SHELLFISH IMMUNOLOGY 2019; 93:406-415. [PMID: 31369857 DOI: 10.1016/j.fsi.2019.07.069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/14/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
Mandarin fish (Siniperca chuatsi) is a universally farmed fish species in China and has a large farming scale and economic value. With the high-density cultural mode in mandarin fish, viral diseases, such as infectious spleen and kidney necrosis virus (ISKNV) and Siniperca chuatsi rhabdovirus (SCRV), have increased loss, which has seriously restricted the development of aquaculture. Y-Box binding protein 1 (YB-1) is a member of cold shock protein family that regulates multiple cellular processes. The roles of mammalian YB-1 protein in environmental stress and innate immunity have been studied well, but its roles in teleost fishes remain unknown. In the present study, the characteristic of S. chuatsi YB-1 (scYB-1) and its roles in cold stress and virus infection were investigated. The scYB-1 obtained an 1541 bp cDNA that contains a 903 bp open reading frame encoding a protein of 300 amino acids. Tissue distribution results showed that the scYB-1 is a ubiquitously expressed gene found among tissues from mandarin fish. Overexpression of scYB-1 can increase the expression levels of cold shock-responsive genes, such as scHsc70a, scHsc70b, and scp53. Furthermore, the role of scYB-1 in innate immunity was also investigated in mandarin fish fry (MFF-1) cells. The expression level of scYB-1 was significant change in response to poly (I:C), poly (dG:dC), PMA, ISKNV, or SCRV stimulation. The overexpression of scYB-1 can significantly increase the expression levels of NF-κB-responsive genes, including scIL-8, scTNF-α, and scIFN-h. The NF-κB-luciferase report assay results showed that the relative expression of luciferin was significantly increased in the cells overexpressed with scYB-1 compared with those in cells overexpressed with control plasmid. These results indicate that scYB-1 can induce the NF-κB signaling pathway in MFF-1 cells. Overexpressed scYB-1 can downregulate the expression of ISKNV viral major capsid protein (mcp) gene but upregulates the expression of SCRV mcp gene. Moreover, knockdown of scYB-1 using siRNA can upregulate the expression of ISKNV mcp gene but downregulates the expression of SCRV mcp gene. These results indicate that scYB-1 suppresses ISKNV infection while enhancing SCRV infection. The above observations suggest that scYB-1 is involved in cold stress and virus infection. Our study will provide an insight into the roles of teleost fish YB-1 protein in stress response and innate immunity.
Collapse
Affiliation(s)
- Jian He
- State Key Laboratory for Biocontrol, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou, Guangdong, 510006, PR China
| | - Tao-Lin Xie
- State Key Laboratory for Biocontrol, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou, Guangdong, 510006, PR China
| | - Xiao Li
- State Key Laboratory for Biocontrol, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou, Guangdong, 510006, PR China
| | - Yang Yu
- State Key Laboratory for Biocontrol, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou, Guangdong, 510006, PR China
| | - Zhi-Peng Zhan
- State Key Laboratory for Biocontrol, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou, Guangdong, 510006, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China
| | - Shao-Ping Weng
- State Key Laboratory for Biocontrol, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou, Guangdong, 510006, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China
| | - Chang-Jun Guo
- State Key Laboratory for Biocontrol, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou, Guangdong, 510006, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, PR China.
| | - Jian-Guo He
- State Key Laboratory for Biocontrol, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou, Guangdong, 510006, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China
| |
Collapse
|
15
|
Johnson TG, Schelch K, Mehta S, Burgess A, Reid G. Why Be One Protein When You Can Affect Many? The Multiple Roles of YB-1 in Lung Cancer and Mesothelioma. Front Cell Dev Biol 2019; 7:221. [PMID: 31632972 PMCID: PMC6781797 DOI: 10.3389/fcell.2019.00221] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/18/2019] [Indexed: 12/14/2022] Open
Abstract
Lung cancers and malignant pleural mesothelioma (MPM) have some of the worst 5-year survival rates of all cancer types, primarily due to a lack of effective treatment options for most patients. Targeted therapies have shown some promise in thoracic cancers, although efficacy is limited only to patients harboring specific mutations or target expression. Although a number of actionable mutations have now been identified, a large population of thoracic cancer patients have no therapeutic options outside of first-line chemotherapy. It is therefore crucial to identify alternative targets that might lead to the development of new ways of treating patients diagnosed with these diseases. The multifunctional oncoprotein Y-box binding protein-1 (YB-1) could serve as one such target. Recent studies also link this protein to many inherent behaviors of thoracic cancer cells such as proliferation, invasion, metastasis and involvement in cancer stem-like cells. Here, we review the regulation of YB-1 at the transcriptional, translational, post-translational and sub-cellular levels in thoracic cancer and discuss its potential use as a biomarker and therapeutic target.
Collapse
Affiliation(s)
- Thomas G Johnson
- Asbestos Diseases Research Institute, Sydney, NSW, Australia.,Cell Division Laboratory, The ANZAC Research Institute, Sydney, NSW, Australia.,School of Medicine, The University of Sydney, Sydney, NSW, Australia.,Sydney Catalyst Translational Cancer Research Centre, The University of Sydney, Sydney, NSW, Australia
| | - Karin Schelch
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Sunali Mehta
- Department of Pathology, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre, University of Otago, Dunedin, New Zealand
| | - Andrew Burgess
- Cell Division Laboratory, The ANZAC Research Institute, Sydney, NSW, Australia.,School of Medicine, The University of Sydney, Sydney, NSW, Australia
| | - Glen Reid
- Department of Pathology, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre, University of Otago, Dunedin, New Zealand
| |
Collapse
|
16
|
Choong OK, Chen CY, Zhang J, Lin JH, Lin PJ, Ruan SC, Kamp TJ, Hsieh PC. Hypoxia-induced H19/YB-1 cascade modulates cardiac remodeling after infarction. Am J Cancer Res 2019; 9:6550-6567. [PMID: 31588235 PMCID: PMC6771230 DOI: 10.7150/thno.35218] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/29/2019] [Indexed: 01/03/2023] Open
Abstract
Rationale: Long non-coding RNA (lncRNAs) has been identified as a pivotal novel regulators in cardiac development as well as cardiac pathogenesis. lncRNA H19 is known as a fetal gene but it is exclusively abundant in the heart and skeletal muscles in adulthood, and is evolutionarily conserved in humans and mice. It has been reported to possess a significant correlation with the risk of coronary artery diseases. However, the function of H19 is not well characterized in heart. Methods: Loss-of-function and gain-of-function mouse models with left anterior descending coronary artery-ligation surgery were utilized to evaluate the functionality of H19 in vivo. For mechanistic studies, hypoxia condition were exerted in in vitro models to mimic cardiac ischemic injury. Chromatin isolation by RNA immunoprecipitation (ChIRP) was performed to reveal the interacting protein of lncRNA H19. Results: lncRNA H19 was significantly upregulated in the infarct area post-surgery day 4 in mouse model. Ectopic expression of H19 in the mouse heart resulted in severe cardiac dilation and fibrosis. Several extracellular matrix (ECM) genes were significantly upregulated. While genetic ablation of H19 by CRISPR-Cas9 ameliorated post-MI cardiac remodeling with reduced expression in ECM genes. Through chromatin isolation by RNA purification (ChIRP), we identified Y-box-binding protein (YB)-1, a suppressor of Collagen 1A1, as an interacting protein of H19. Furthermore, H19 acted to antagonize YB-1 through direct interaction under hypoxia, which resulted in de-repression of Collagen 1A1 expression and cardiac fibrosis. Conclusions: Together these results demonstrate that lncRNA H19 and its interacting protein YB-1 are crucial for ECM regulation during cardiac remodeling.
Collapse
|
17
|
Wang Y, Wang Y, Xu L, Lu X, Fu D, Su J, Geng H, Qin G, Chen R, Quan C, Niu Y, Yue D. CD4 + T cells promote renal cell carcinoma proliferation via modulating YBX1. Exp Cell Res 2017; 363:95-101. [PMID: 29289594 DOI: 10.1016/j.yexcr.2017.12.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/14/2017] [Accepted: 12/27/2017] [Indexed: 12/25/2022]
Abstract
Renal cell carcinoma (RCC) is a common urologic tumor and the third leading cause of death among urological tumors. Recent studies demonstrate that RCC tumors are more heavily infiltrated by lymphocytes than other cancers. However, the exact roles played by CD4 + T cells in RCC proliferation remain unknown. In this study, we cocultured RCC cells with CD4 + T cells. Stable knockdown of YBX1 in RCC cells was constructed. The effects of CD4 + T cells, TGFβ1 and YBX1 on RCC cells were investigated using cell viability assays. In situ RCC nude mouse model was used to observe the tumor growth. The potential mechanisms of CD4 + T cells and YBX1 in RCC cells proliferation were explored by qRT-PCR and western blot. Expression of CD4, Foxp3 and TGFβ1 in RCC were quantified by immunohistochemical staining. The results indicated that CD4, Foxp3 and TGFβ1 were significantly up-regulated in RCC tissues. Human clinical sample and in vitro cell lines studies showed that RCC cells had better capacity than its surrounding normal kidney epithelial cells to recruit the CD4 + T cells. In vivo mouse model studies were consistent with the results by in vitro cell lines studies showing infiltrating T cells enhanced RCC cell proliferation. qRT-PCR and western blot exhibited that CD4 + T cells could enhance RCC cell proliferation via activating YBX1/HIF2α signaling pathway. Furthermore, CD4 + T cells functioned through inducing TGFβ1 expression. In a word, infiltrating CD4 + T cells promoted TGFβ1 expression in both RCC and T cells and regulated RCC cells proliferation via modulating TGFβ1/YBX1/ HIF2α signals.
Collapse
Affiliation(s)
- Yong Wang
- The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, and School of Medical Laboratory, Tianjin Medical University, Tianjin, 300070, China
| | - Yiting Wang
- The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, and School of Medical Laboratory, Tianjin Medical University, Tianjin, 300070, China
| | - Liang Xu
- The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, and School of Medical Laboratory, Tianjin Medical University, Tianjin, 300070, China
| | - Xianqi Lu
- The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, and School of Medical Laboratory, Tianjin Medical University, Tianjin, 300070, China
| | - Donghe Fu
- The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, and School of Medical Laboratory, Tianjin Medical University, Tianjin, 300070, China
| | - Jing Su
- The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, and School of Medical Laboratory, Tianjin Medical University, Tianjin, 300070, China
| | - Hua Geng
- Center for Intestinal and Liver Inflammation Research, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA; Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Guoxuan Qin
- School of Microelectronics, Tianjin University, Tianjin 300072, China
| | - Ruibing Chen
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Changyi Quan
- The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, and School of Medical Laboratory, Tianjin Medical University, Tianjin, 300070, China
| | - Yuanjie Niu
- The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, and School of Medical Laboratory, Tianjin Medical University, Tianjin, 300070, China
| | - Dan Yue
- The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, and School of Medical Laboratory, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
18
|
Digital gene expression analysis of Takifugu rubripes brain after acute hypoxia exposure using next-generation sequencing. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2017; 24:12-18. [DOI: 10.1016/j.cbd.2017.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/07/2017] [Accepted: 05/27/2017] [Indexed: 01/21/2023]
|
19
|
Wang J, Djudjaj S, Gibbert L, Lennartz V, Breitkopf DM, Rauen T, Hermert D, Martin IV, Boor P, Braun GS, Floege J, Ostendorf T, Raffetseder U. YB-1 orchestrates onset and resolution of renal inflammation via IL10 gene regulation. J Cell Mol Med 2017; 21:3494-3505. [PMID: 28664613 PMCID: PMC5706504 DOI: 10.1111/jcmm.13260] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 04/28/2017] [Indexed: 12/24/2022] Open
Abstract
The Y‐box‐binding protein (YB)‐1 plays a non‐redundant role in both systemic and local inflammatory response. We analysed YB‐1‐mediated expression of the immune regulatory cytokine IL‐10 in both LPS and sterile inflammation induced by unilateral renal ischaemia–reperfusion (I/R) and found an important role of YB‐1 not only in the onset but also in the resolution of inflammation in kidneys. Within a decisive cis‐regulatory region of the IL10 gene locus, the fourth intron, we identified and characterized an operative YB‐1 binding site via gel shift experiments and reporter assays in immune and different renal cells. In vivo, YB‐1 phosphorylated at serine 102 localized to the fourth intron, which was paralleled by enhanced IL‐10 mRNA expression in mice following LPS challenge and in I/R. Mice with half‐maximal expression of YB‐1 (Yb1+/−) had diminished IL‐10 expression upon LPS challenge. In I/R, Yb1+/− mice exhibited ameliorated kidney injury/inflammation in the early‐phase (days 1 and 5), however showed aggravated long‐term damage (day 21) with increased expression of IL‐10 and other known mediators of renal injury and inflammation. In conclusion, these data support the notion that there are context‐specific decisions concerning YB‐1 function and that a fine‐tuning of YB‐1, for example, via a post‐translational modification regulates its activity and/or localization that is crucial for systemic processes such as inflammation.
Collapse
Affiliation(s)
- Jialin Wang
- Department of Nephrology and Clinical Immunology, University Hospital RWTH-Aachen, Aachen, Germany
| | - Sonja Djudjaj
- Institute of Pathology, University Hospital RWTH-Aachen, Aachen, Germany
| | - Lydia Gibbert
- Department of Nephrology and Clinical Immunology, University Hospital RWTH-Aachen, Aachen, Germany
| | - Vera Lennartz
- Department of Nephrology and Clinical Immunology, University Hospital RWTH-Aachen, Aachen, Germany
| | - Daniel M Breitkopf
- Department of Nephrology and Clinical Immunology, University Hospital RWTH-Aachen, Aachen, Germany
| | - Thomas Rauen
- Department of Nephrology and Clinical Immunology, University Hospital RWTH-Aachen, Aachen, Germany
| | - Daniela Hermert
- Department of Nephrology and Clinical Immunology, University Hospital RWTH-Aachen, Aachen, Germany
| | - Ina V Martin
- Department of Nephrology and Clinical Immunology, University Hospital RWTH-Aachen, Aachen, Germany
| | - Peter Boor
- Institute of Pathology, University Hospital RWTH-Aachen, Aachen, Germany
| | - Gerald S Braun
- Department of Nephrology and Clinical Immunology, University Hospital RWTH-Aachen, Aachen, Germany
| | - Jürgen Floege
- Department of Nephrology and Clinical Immunology, University Hospital RWTH-Aachen, Aachen, Germany
| | - Tammo Ostendorf
- Department of Nephrology and Clinical Immunology, University Hospital RWTH-Aachen, Aachen, Germany
| | - Ute Raffetseder
- Department of Nephrology and Clinical Immunology, University Hospital RWTH-Aachen, Aachen, Germany
| |
Collapse
|